Properties

Label 1170.2.q.c.359.9
Level $1170$
Weight $2$
Character 1170.359
Analytic conductor $9.342$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(359,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.359"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.q (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 359.9
Character \(\chi\) \(=\) 1170.359
Dual form 1170.2.q.c.629.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(-1.15322 - 1.91575i) q^{5} +(1.29303 + 1.29303i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(0.539189 - 2.17009i) q^{10} +(-3.42313 - 3.42313i) q^{11} +(3.25273 - 1.55555i) q^{13} +1.82862i q^{14} -1.00000 q^{16} -4.71368i q^{17} +(-3.83222 - 3.83222i) q^{19} +(1.91575 - 1.15322i) q^{20} -4.84104i q^{22} -3.20573i q^{23} +(-2.34017 + 4.41855i) q^{25} +(3.39997 + 1.20009i) q^{26} +(-1.29303 + 1.29303i) q^{28} +7.09142i q^{29} +(-4.09901 - 4.09901i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(3.33308 - 3.33308i) q^{34} +(0.985969 - 3.96825i) q^{35} +(3.72990 + 3.72990i) q^{37} -5.41957i q^{38} +(2.17009 + 0.539189i) q^{40} +(4.42620 - 4.42620i) q^{41} +7.68861 q^{43} +(3.42313 - 3.42313i) q^{44} +(2.26679 - 2.26679i) q^{46} +(8.97668 - 8.97668i) q^{47} -3.65617i q^{49} +(-4.77914 + 1.46963i) q^{50} +(1.55555 + 3.25273i) q^{52} -6.86336 q^{53} +(-2.61023 + 10.5055i) q^{55} -1.82862 q^{56} +(-5.01439 + 5.01439i) q^{58} +(-1.67463 - 1.67463i) q^{59} -11.6690 q^{61} -5.79687i q^{62} -1.00000i q^{64} +(-6.73115 - 4.43753i) q^{65} +(5.61487 - 5.61487i) q^{67} +4.71368 q^{68} +(3.50316 - 2.10879i) q^{70} +(3.05893 - 3.05893i) q^{71} +(0.453716 + 0.453716i) q^{73} +5.27488i q^{74} +(3.83222 - 3.83222i) q^{76} -8.85239i q^{77} +8.29230 q^{79} +(1.15322 + 1.91575i) q^{80} +6.25959 q^{82} +(2.48030 + 2.48030i) q^{83} +(-9.03023 + 5.43591i) q^{85} +(5.43667 + 5.43667i) q^{86} +4.84104 q^{88} +(-3.36649 - 3.36649i) q^{89} +(6.21723 + 2.19451i) q^{91} +3.20573 q^{92} +12.6949 q^{94} +(-2.92217 + 11.7609i) q^{95} +(3.71551 - 3.71551i) q^{97} +(2.58530 - 2.58530i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 20 q^{13} - 24 q^{16} - 48 q^{19} + 32 q^{25} - 8 q^{31} + 16 q^{34} - 32 q^{37} + 8 q^{40} + 80 q^{43} + 8 q^{46} - 12 q^{52} + 16 q^{55} - 24 q^{58} - 16 q^{61} - 8 q^{67} - 24 q^{70} + 48 q^{73}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −1.15322 1.91575i −0.515735 0.856748i
\(6\) 0 0
\(7\) 1.29303 + 1.29303i 0.488718 + 0.488718i 0.907902 0.419184i \(-0.137684\pi\)
−0.419184 + 0.907902i \(0.637684\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) 0.539189 2.17009i 0.170506 0.686242i
\(11\) −3.42313 3.42313i −1.03211 1.03211i −0.999467 0.0326453i \(-0.989607\pi\)
−0.0326453 0.999467i \(-0.510393\pi\)
\(12\) 0 0
\(13\) 3.25273 1.55555i 0.902146 0.431431i
\(14\) 1.82862i 0.488718i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 4.71368i 1.14324i −0.820520 0.571618i \(-0.806316\pi\)
0.820520 0.571618i \(-0.193684\pi\)
\(18\) 0 0
\(19\) −3.83222 3.83222i −0.879170 0.879170i 0.114278 0.993449i \(-0.463544\pi\)
−0.993449 + 0.114278i \(0.963544\pi\)
\(20\) 1.91575 1.15322i 0.428374 0.257868i
\(21\) 0 0
\(22\) 4.84104i 1.03211i
\(23\) 3.20573i 0.668440i −0.942495 0.334220i \(-0.891527\pi\)
0.942495 0.334220i \(-0.108473\pi\)
\(24\) 0 0
\(25\) −2.34017 + 4.41855i −0.468035 + 0.883710i
\(26\) 3.39997 + 1.20009i 0.666789 + 0.235357i
\(27\) 0 0
\(28\) −1.29303 + 1.29303i −0.244359 + 0.244359i
\(29\) 7.09142i 1.31684i 0.752649 + 0.658422i \(0.228776\pi\)
−0.752649 + 0.658422i \(0.771224\pi\)
\(30\) 0 0
\(31\) −4.09901 4.09901i −0.736203 0.736203i 0.235638 0.971841i \(-0.424282\pi\)
−0.971841 + 0.235638i \(0.924282\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0 0
\(34\) 3.33308 3.33308i 0.571618 0.571618i
\(35\) 0.985969 3.96825i 0.166659 0.670757i
\(36\) 0 0
\(37\) 3.72990 + 3.72990i 0.613192 + 0.613192i 0.943776 0.330584i \(-0.107246\pi\)
−0.330584 + 0.943776i \(0.607246\pi\)
\(38\) 5.41957i 0.879170i
\(39\) 0 0
\(40\) 2.17009 + 0.539189i 0.343121 + 0.0852532i
\(41\) 4.42620 4.42620i 0.691256 0.691256i −0.271253 0.962508i \(-0.587438\pi\)
0.962508 + 0.271253i \(0.0874379\pi\)
\(42\) 0 0
\(43\) 7.68861 1.17250 0.586251 0.810129i \(-0.300603\pi\)
0.586251 + 0.810129i \(0.300603\pi\)
\(44\) 3.42313 3.42313i 0.516056 0.516056i
\(45\) 0 0
\(46\) 2.26679 2.26679i 0.334220 0.334220i
\(47\) 8.97668 8.97668i 1.30938 1.30938i 0.387523 0.921860i \(-0.373331\pi\)
0.921860 0.387523i \(-0.126669\pi\)
\(48\) 0 0
\(49\) 3.65617i 0.522309i
\(50\) −4.77914 + 1.46963i −0.675872 + 0.207838i
\(51\) 0 0
\(52\) 1.55555 + 3.25273i 0.215716 + 0.451073i
\(53\) −6.86336 −0.942754 −0.471377 0.881932i \(-0.656243\pi\)
−0.471377 + 0.881932i \(0.656243\pi\)
\(54\) 0 0
\(55\) −2.61023 + 10.5055i −0.351964 + 1.41656i
\(56\) −1.82862 −0.244359
\(57\) 0 0
\(58\) −5.01439 + 5.01439i −0.658422 + 0.658422i
\(59\) −1.67463 1.67463i −0.218018 0.218018i 0.589644 0.807663i \(-0.299268\pi\)
−0.807663 + 0.589644i \(0.799268\pi\)
\(60\) 0 0
\(61\) −11.6690 −1.49407 −0.747033 0.664787i \(-0.768522\pi\)
−0.747033 + 0.664787i \(0.768522\pi\)
\(62\) 5.79687i 0.736203i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −6.73115 4.43753i −0.834896 0.550407i
\(66\) 0 0
\(67\) 5.61487 5.61487i 0.685966 0.685966i −0.275372 0.961338i \(-0.588801\pi\)
0.961338 + 0.275372i \(0.0888010\pi\)
\(68\) 4.71368 0.571618
\(69\) 0 0
\(70\) 3.50316 2.10879i 0.418708 0.252049i
\(71\) 3.05893 3.05893i 0.363028 0.363028i −0.501898 0.864927i \(-0.667365\pi\)
0.864927 + 0.501898i \(0.167365\pi\)
\(72\) 0 0
\(73\) 0.453716 + 0.453716i 0.0531034 + 0.0531034i 0.733160 0.680056i \(-0.238045\pi\)
−0.680056 + 0.733160i \(0.738045\pi\)
\(74\) 5.27488i 0.613192i
\(75\) 0 0
\(76\) 3.83222 3.83222i 0.439585 0.439585i
\(77\) 8.85239i 1.00882i
\(78\) 0 0
\(79\) 8.29230 0.932957 0.466479 0.884533i \(-0.345522\pi\)
0.466479 + 0.884533i \(0.345522\pi\)
\(80\) 1.15322 + 1.91575i 0.128934 + 0.214187i
\(81\) 0 0
\(82\) 6.25959 0.691256
\(83\) 2.48030 + 2.48030i 0.272248 + 0.272248i 0.830005 0.557756i \(-0.188338\pi\)
−0.557756 + 0.830005i \(0.688338\pi\)
\(84\) 0 0
\(85\) −9.03023 + 5.43591i −0.979465 + 0.589607i
\(86\) 5.43667 + 5.43667i 0.586251 + 0.586251i
\(87\) 0 0
\(88\) 4.84104 0.516056
\(89\) −3.36649 3.36649i −0.356847 0.356847i 0.505802 0.862649i \(-0.331196\pi\)
−0.862649 + 0.505802i \(0.831196\pi\)
\(90\) 0 0
\(91\) 6.21723 + 2.19451i 0.651743 + 0.230047i
\(92\) 3.20573 0.334220
\(93\) 0 0
\(94\) 12.6949 1.30938
\(95\) −2.92217 + 11.7609i −0.299809 + 1.20665i
\(96\) 0 0
\(97\) 3.71551 3.71551i 0.377253 0.377253i −0.492857 0.870110i \(-0.664048\pi\)
0.870110 + 0.492857i \(0.164048\pi\)
\(98\) 2.58530 2.58530i 0.261155 0.261155i
\(99\) 0 0
\(100\) −4.41855 2.34017i −0.441855 0.234017i
\(101\) −16.9657 −1.68815 −0.844074 0.536227i \(-0.819849\pi\)
−0.844074 + 0.536227i \(0.819849\pi\)
\(102\) 0 0
\(103\) −15.3380 −1.51129 −0.755647 0.654979i \(-0.772678\pi\)
−0.755647 + 0.654979i \(0.772678\pi\)
\(104\) −1.20009 + 3.39997i −0.117679 + 0.333394i
\(105\) 0 0
\(106\) −4.85313 4.85313i −0.471377 0.471377i
\(107\) −2.44651 −0.236513 −0.118256 0.992983i \(-0.537730\pi\)
−0.118256 + 0.992983i \(0.537730\pi\)
\(108\) 0 0
\(109\) 11.7964 + 11.7964i 1.12989 + 1.12989i 0.990194 + 0.139700i \(0.0446137\pi\)
0.139700 + 0.990194i \(0.455386\pi\)
\(110\) −9.27420 + 5.58277i −0.884260 + 0.532297i
\(111\) 0 0
\(112\) −1.29303 1.29303i −0.122180 0.122180i
\(113\) 7.30279 0.686988 0.343494 0.939155i \(-0.388389\pi\)
0.343494 + 0.939155i \(0.388389\pi\)
\(114\) 0 0
\(115\) −6.14136 + 3.69690i −0.572685 + 0.344738i
\(116\) −7.09142 −0.658422
\(117\) 0 0
\(118\) 2.36829i 0.218018i
\(119\) 6.09492 6.09492i 0.558720 0.558720i
\(120\) 0 0
\(121\) 12.4356i 1.13051i
\(122\) −8.25125 8.25125i −0.747033 0.747033i
\(123\) 0 0
\(124\) 4.09901 4.09901i 0.368102 0.368102i
\(125\) 11.1636 0.612376i 0.998499 0.0547726i
\(126\) 0 0
\(127\) 9.77725 0.867591 0.433795 0.901011i \(-0.357174\pi\)
0.433795 + 0.901011i \(0.357174\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) −1.62184 7.89745i −0.142244 0.692652i
\(131\) 3.06190i 0.267520i 0.991014 + 0.133760i \(0.0427051\pi\)
−0.991014 + 0.133760i \(0.957295\pi\)
\(132\) 0 0
\(133\) 9.91031i 0.859333i
\(134\) 7.94063 0.685966
\(135\) 0 0
\(136\) 3.33308 + 3.33308i 0.285809 + 0.285809i
\(137\) −15.8693 + 15.8693i −1.35580 + 1.35580i −0.476779 + 0.879023i \(0.658196\pi\)
−0.879023 + 0.476779i \(0.841804\pi\)
\(138\) 0 0
\(139\) 1.10199 0.0934697 0.0467349 0.998907i \(-0.485118\pi\)
0.0467349 + 0.998907i \(0.485118\pi\)
\(140\) 3.96825 + 0.985969i 0.335379 + 0.0833296i
\(141\) 0 0
\(142\) 4.32598 0.363028
\(143\) −16.4594 5.80968i −1.37640 0.485830i
\(144\) 0 0
\(145\) 13.5854 8.17796i 1.12820 0.679143i
\(146\) 0.641651i 0.0531034i
\(147\) 0 0
\(148\) −3.72990 + 3.72990i −0.306596 + 0.306596i
\(149\) −11.5204 + 11.5204i −0.943788 + 0.943788i −0.998502 0.0547142i \(-0.982575\pi\)
0.0547142 + 0.998502i \(0.482575\pi\)
\(150\) 0 0
\(151\) −13.1195 + 13.1195i −1.06765 + 1.06765i −0.0701126 + 0.997539i \(0.522336\pi\)
−0.997539 + 0.0701126i \(0.977664\pi\)
\(152\) 5.41957 0.439585
\(153\) 0 0
\(154\) 6.25959 6.25959i 0.504412 0.504412i
\(155\) −3.12561 + 12.5797i −0.251055 + 1.01043i
\(156\) 0 0
\(157\) 18.1705i 1.45016i 0.688664 + 0.725080i \(0.258197\pi\)
−0.688664 + 0.725080i \(0.741803\pi\)
\(158\) 5.86354 + 5.86354i 0.466479 + 0.466479i
\(159\) 0 0
\(160\) −0.539189 + 2.17009i −0.0426266 + 0.171560i
\(161\) 4.14509 4.14509i 0.326679 0.326679i
\(162\) 0 0
\(163\) 7.45812 + 7.45812i 0.584165 + 0.584165i 0.936045 0.351880i \(-0.114458\pi\)
−0.351880 + 0.936045i \(0.614458\pi\)
\(164\) 4.42620 + 4.42620i 0.345628 + 0.345628i
\(165\) 0 0
\(166\) 3.50767i 0.272248i
\(167\) 7.14982 7.14982i 0.553269 0.553269i −0.374113 0.927383i \(-0.622053\pi\)
0.927383 + 0.374113i \(0.122053\pi\)
\(168\) 0 0
\(169\) 8.16054 10.1196i 0.627734 0.778428i
\(170\) −10.2291 2.54157i −0.784536 0.194929i
\(171\) 0 0
\(172\) 7.68861i 0.586251i
\(173\) 15.0993i 1.14798i 0.818864 + 0.573988i \(0.194604\pi\)
−0.818864 + 0.573988i \(0.805396\pi\)
\(174\) 0 0
\(175\) −8.73921 + 2.68740i −0.660622 + 0.203148i
\(176\) 3.42313 + 3.42313i 0.258028 + 0.258028i
\(177\) 0 0
\(178\) 4.76093i 0.356847i
\(179\) 16.4200 1.22729 0.613645 0.789582i \(-0.289703\pi\)
0.613645 + 0.789582i \(0.289703\pi\)
\(180\) 0 0
\(181\) 4.47735i 0.332799i 0.986058 + 0.166399i \(0.0532141\pi\)
−0.986058 + 0.166399i \(0.946786\pi\)
\(182\) 2.84450 + 5.94800i 0.210848 + 0.440895i
\(183\) 0 0
\(184\) 2.26679 + 2.26679i 0.167110 + 0.167110i
\(185\) 2.84416 11.4469i 0.209107 0.841596i
\(186\) 0 0
\(187\) −16.1355 + 16.1355i −1.17995 + 1.17995i
\(188\) 8.97668 + 8.97668i 0.654691 + 0.654691i
\(189\) 0 0
\(190\) −10.3825 + 6.24995i −0.753228 + 0.453419i
\(191\) 10.5841i 0.765836i 0.923782 + 0.382918i \(0.125081\pi\)
−0.923782 + 0.382918i \(0.874919\pi\)
\(192\) 0 0
\(193\) −7.20113 7.20113i −0.518348 0.518348i 0.398723 0.917071i \(-0.369454\pi\)
−0.917071 + 0.398723i \(0.869454\pi\)
\(194\) 5.25453 0.377253
\(195\) 0 0
\(196\) 3.65617 0.261155
\(197\) 9.16979 + 9.16979i 0.653321 + 0.653321i 0.953791 0.300470i \(-0.0971437\pi\)
−0.300470 + 0.953791i \(0.597144\pi\)
\(198\) 0 0
\(199\) 20.7555i 1.47132i −0.677353 0.735658i \(-0.736873\pi\)
0.677353 0.735658i \(-0.263127\pi\)
\(200\) −1.46963 4.77914i −0.103919 0.337936i
\(201\) 0 0
\(202\) −11.9965 11.9965i −0.844074 0.844074i
\(203\) −9.16939 + 9.16939i −0.643565 + 0.643565i
\(204\) 0 0
\(205\) −13.5838 3.37510i −0.948737 0.235727i
\(206\) −10.8456 10.8456i −0.755647 0.755647i
\(207\) 0 0
\(208\) −3.25273 + 1.55555i −0.225536 + 0.107858i
\(209\) 26.2363i 1.81481i
\(210\) 0 0
\(211\) −19.9602 −1.37412 −0.687058 0.726603i \(-0.741098\pi\)
−0.687058 + 0.726603i \(0.741098\pi\)
\(212\) 6.86336i 0.471377i
\(213\) 0 0
\(214\) −1.72994 1.72994i −0.118256 0.118256i
\(215\) −8.86665 14.7294i −0.604700 1.00454i
\(216\) 0 0
\(217\) 10.6002i 0.719591i
\(218\) 16.6827i 1.12989i
\(219\) 0 0
\(220\) −10.5055 2.61023i −0.708278 0.175982i
\(221\) −7.33236 15.3324i −0.493228 1.03137i
\(222\) 0 0
\(223\) 9.64691 9.64691i 0.646005 0.646005i −0.306020 0.952025i \(-0.598998\pi\)
0.952025 + 0.306020i \(0.0989976\pi\)
\(224\) 1.82862i 0.122180i
\(225\) 0 0
\(226\) 5.16385 + 5.16385i 0.343494 + 0.343494i
\(227\) −9.61668 9.61668i −0.638281 0.638281i 0.311850 0.950131i \(-0.399051\pi\)
−0.950131 + 0.311850i \(0.899051\pi\)
\(228\) 0 0
\(229\) −0.831438 + 0.831438i −0.0549429 + 0.0549429i −0.734044 0.679101i \(-0.762370\pi\)
0.679101 + 0.734044i \(0.262370\pi\)
\(230\) −6.95670 1.72849i −0.458711 0.113973i
\(231\) 0 0
\(232\) −5.01439 5.01439i −0.329211 0.329211i
\(233\) 13.0922i 0.857698i −0.903376 0.428849i \(-0.858919\pi\)
0.903376 0.428849i \(-0.141081\pi\)
\(234\) 0 0
\(235\) −27.5491 6.84497i −1.79711 0.446517i
\(236\) 1.67463 1.67463i 0.109009 0.109009i
\(237\) 0 0
\(238\) 8.61951 0.558720
\(239\) 8.83842 8.83842i 0.571710 0.571710i −0.360896 0.932606i \(-0.617529\pi\)
0.932606 + 0.360896i \(0.117529\pi\)
\(240\) 0 0
\(241\) 5.80438 5.80438i 0.373893 0.373893i −0.495000 0.868893i \(-0.664832\pi\)
0.868893 + 0.495000i \(0.164832\pi\)
\(242\) −8.79332 + 8.79332i −0.565256 + 0.565256i
\(243\) 0 0
\(244\) 11.6690i 0.747033i
\(245\) −7.00429 + 4.21636i −0.447488 + 0.269373i
\(246\) 0 0
\(247\) −18.4264 6.50398i −1.17244 0.413838i
\(248\) 5.79687 0.368102
\(249\) 0 0
\(250\) 8.32684 + 7.46081i 0.526636 + 0.471863i
\(251\) 26.8994 1.69787 0.848936 0.528495i \(-0.177244\pi\)
0.848936 + 0.528495i \(0.177244\pi\)
\(252\) 0 0
\(253\) −10.9736 + 10.9736i −0.689905 + 0.689905i
\(254\) 6.91356 + 6.91356i 0.433795 + 0.433795i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 5.66502i 0.353374i 0.984267 + 0.176687i \(0.0565380\pi\)
−0.984267 + 0.176687i \(0.943462\pi\)
\(258\) 0 0
\(259\) 9.64572i 0.599356i
\(260\) 4.43753 6.73115i 0.275204 0.417448i
\(261\) 0 0
\(262\) −2.16509 + 2.16509i −0.133760 + 0.133760i
\(263\) 0.793522 0.0489307 0.0244653 0.999701i \(-0.492212\pi\)
0.0244653 + 0.999701i \(0.492212\pi\)
\(264\) 0 0
\(265\) 7.91495 + 13.1485i 0.486212 + 0.807703i
\(266\) 7.00765 7.00765i 0.429666 0.429666i
\(267\) 0 0
\(268\) 5.61487 + 5.61487i 0.342983 + 0.342983i
\(269\) 13.2877i 0.810165i 0.914280 + 0.405083i \(0.132757\pi\)
−0.914280 + 0.405083i \(0.867243\pi\)
\(270\) 0 0
\(271\) 15.5871 15.5871i 0.946849 0.946849i −0.0518080 0.998657i \(-0.516498\pi\)
0.998657 + 0.0518080i \(0.0164984\pi\)
\(272\) 4.71368i 0.285809i
\(273\) 0 0
\(274\) −22.4425 −1.35580
\(275\) 23.1360 7.11456i 1.39515 0.429024i
\(276\) 0 0
\(277\) 11.4081 0.685445 0.342722 0.939437i \(-0.388651\pi\)
0.342722 + 0.939437i \(0.388651\pi\)
\(278\) 0.779226 + 0.779226i 0.0467349 + 0.0467349i
\(279\) 0 0
\(280\) 2.10879 + 3.50316i 0.126025 + 0.209354i
\(281\) −18.4689 18.4689i −1.10176 1.10176i −0.994198 0.107565i \(-0.965695\pi\)
−0.107565 0.994198i \(-0.534305\pi\)
\(282\) 0 0
\(283\) −24.4471 −1.45323 −0.726615 0.687045i \(-0.758908\pi\)
−0.726615 + 0.687045i \(0.758908\pi\)
\(284\) 3.05893 + 3.05893i 0.181514 + 0.181514i
\(285\) 0 0
\(286\) −7.53046 15.7466i −0.445286 0.931116i
\(287\) 11.4464 0.675658
\(288\) 0 0
\(289\) −5.21882 −0.306989
\(290\) 15.3890 + 3.82362i 0.903673 + 0.224530i
\(291\) 0 0
\(292\) −0.453716 + 0.453716i −0.0265517 + 0.0265517i
\(293\) −12.7581 + 12.7581i −0.745336 + 0.745336i −0.973599 0.228264i \(-0.926695\pi\)
0.228264 + 0.973599i \(0.426695\pi\)
\(294\) 0 0
\(295\) −1.27695 + 5.13939i −0.0743471 + 0.299227i
\(296\) −5.27488 −0.306596
\(297\) 0 0
\(298\) −16.2923 −0.943788
\(299\) −4.98666 10.4274i −0.288386 0.603030i
\(300\) 0 0
\(301\) 9.94158 + 9.94158i 0.573023 + 0.573023i
\(302\) −18.5538 −1.06765
\(303\) 0 0
\(304\) 3.83222 + 3.83222i 0.219793 + 0.219793i
\(305\) 13.4569 + 22.3549i 0.770543 + 1.28004i
\(306\) 0 0
\(307\) 1.54476 + 1.54476i 0.0881641 + 0.0881641i 0.749813 0.661649i \(-0.230143\pi\)
−0.661649 + 0.749813i \(0.730143\pi\)
\(308\) 8.85239 0.504412
\(309\) 0 0
\(310\) −11.1053 + 6.68506i −0.630741 + 0.379686i
\(311\) 7.11421 0.403410 0.201705 0.979446i \(-0.435352\pi\)
0.201705 + 0.979446i \(0.435352\pi\)
\(312\) 0 0
\(313\) 4.63441i 0.261952i 0.991386 + 0.130976i \(0.0418112\pi\)
−0.991386 + 0.130976i \(0.958189\pi\)
\(314\) −12.8485 + 12.8485i −0.725080 + 0.725080i
\(315\) 0 0
\(316\) 8.29230i 0.466479i
\(317\) 2.74539 + 2.74539i 0.154196 + 0.154196i 0.779989 0.625793i \(-0.215225\pi\)
−0.625793 + 0.779989i \(0.715225\pi\)
\(318\) 0 0
\(319\) 24.2748 24.2748i 1.35913 1.35913i
\(320\) −1.91575 + 1.15322i −0.107094 + 0.0644669i
\(321\) 0 0
\(322\) 5.86204 0.326679
\(323\) −18.0639 + 18.0639i −1.00510 + 1.00510i
\(324\) 0 0
\(325\) −0.738692 + 18.0126i −0.0409753 + 0.999160i
\(326\) 10.5474i 0.584165i
\(327\) 0 0
\(328\) 6.25959i 0.345628i
\(329\) 23.2142 1.27984
\(330\) 0 0
\(331\) −4.29030 4.29030i −0.235816 0.235816i 0.579299 0.815115i \(-0.303326\pi\)
−0.815115 + 0.579299i \(0.803326\pi\)
\(332\) −2.48030 + 2.48030i −0.136124 + 0.136124i
\(333\) 0 0
\(334\) 10.1114 0.553269
\(335\) −17.2319 4.28150i −0.941477 0.233923i
\(336\) 0 0
\(337\) 2.00498 0.109218 0.0546092 0.998508i \(-0.482609\pi\)
0.0546092 + 0.998508i \(0.482609\pi\)
\(338\) 12.9260 1.38524i 0.703081 0.0753469i
\(339\) 0 0
\(340\) −5.43591 9.03023i −0.294804 0.489733i
\(341\) 28.0628i 1.51969i
\(342\) 0 0
\(343\) 13.7787 13.7787i 0.743980 0.743980i
\(344\) −5.43667 + 5.43667i −0.293126 + 0.293126i
\(345\) 0 0
\(346\) −10.6768 + 10.6768i −0.573988 + 0.573988i
\(347\) 17.8409 0.957748 0.478874 0.877884i \(-0.341045\pi\)
0.478874 + 0.877884i \(0.341045\pi\)
\(348\) 0 0
\(349\) 19.2150 19.2150i 1.02855 1.02855i 0.0289745 0.999580i \(-0.490776\pi\)
0.999580 0.0289745i \(-0.00922416\pi\)
\(350\) −8.07983 4.27928i −0.431885 0.228737i
\(351\) 0 0
\(352\) 4.84104i 0.258028i
\(353\) −5.98145 5.98145i −0.318361 0.318361i 0.529777 0.848137i \(-0.322276\pi\)
−0.848137 + 0.529777i \(0.822276\pi\)
\(354\) 0 0
\(355\) −9.38776 2.33252i −0.498250 0.123797i
\(356\) 3.36649 3.36649i 0.178423 0.178423i
\(357\) 0 0
\(358\) 11.6107 + 11.6107i 0.613645 + 0.613645i
\(359\) 26.0867 + 26.0867i 1.37680 + 1.37680i 0.849966 + 0.526837i \(0.176622\pi\)
0.526837 + 0.849966i \(0.323378\pi\)
\(360\) 0 0
\(361\) 10.3717i 0.545881i
\(362\) −3.16597 + 3.16597i −0.166399 + 0.166399i
\(363\) 0 0
\(364\) −2.19451 + 6.21723i −0.115023 + 0.325872i
\(365\) 0.345971 1.39244i 0.0181090 0.0728836i
\(366\) 0 0
\(367\) 7.79988i 0.407150i −0.979059 0.203575i \(-0.934744\pi\)
0.979059 0.203575i \(-0.0652561\pi\)
\(368\) 3.20573i 0.167110i
\(369\) 0 0
\(370\) 10.1053 6.08309i 0.525351 0.316245i
\(371\) −8.87450 8.87450i −0.460741 0.460741i
\(372\) 0 0
\(373\) 29.3018i 1.51719i −0.651563 0.758594i \(-0.725886\pi\)
0.651563 0.758594i \(-0.274114\pi\)
\(374\) −22.8191 −1.17995
\(375\) 0 0
\(376\) 12.6949i 0.654691i
\(377\) 11.0310 + 23.0665i 0.568128 + 1.18799i
\(378\) 0 0
\(379\) −6.78165 6.78165i −0.348350 0.348350i 0.511145 0.859495i \(-0.329222\pi\)
−0.859495 + 0.511145i \(0.829222\pi\)
\(380\) −11.7609 2.92217i −0.603323 0.149904i
\(381\) 0 0
\(382\) −7.48406 + 7.48406i −0.382918 + 0.382918i
\(383\) −9.46794 9.46794i −0.483789 0.483789i 0.422550 0.906339i \(-0.361135\pi\)
−0.906339 + 0.422550i \(0.861135\pi\)
\(384\) 0 0
\(385\) −16.9589 + 10.2087i −0.864308 + 0.520286i
\(386\) 10.1839i 0.518348i
\(387\) 0 0
\(388\) 3.71551 + 3.71551i 0.188627 + 0.188627i
\(389\) 26.5150 1.34436 0.672182 0.740386i \(-0.265357\pi\)
0.672182 + 0.740386i \(0.265357\pi\)
\(390\) 0 0
\(391\) −15.1108 −0.764185
\(392\) 2.58530 + 2.58530i 0.130577 + 0.130577i
\(393\) 0 0
\(394\) 12.9680i 0.653321i
\(395\) −9.56284 15.8860i −0.481159 0.799309i
\(396\) 0 0
\(397\) 13.5450 + 13.5450i 0.679806 + 0.679806i 0.959956 0.280150i \(-0.0903843\pi\)
−0.280150 + 0.959956i \(0.590384\pi\)
\(398\) 14.6763 14.6763i 0.735658 0.735658i
\(399\) 0 0
\(400\) 2.34017 4.41855i 0.117009 0.220928i
\(401\) 0.170681 + 0.170681i 0.00852341 + 0.00852341i 0.711356 0.702832i \(-0.248082\pi\)
−0.702832 + 0.711356i \(0.748082\pi\)
\(402\) 0 0
\(403\) −19.7092 6.95677i −0.981784 0.346541i
\(404\) 16.9657i 0.844074i
\(405\) 0 0
\(406\) −12.9675 −0.643565
\(407\) 25.5359i 1.26577i
\(408\) 0 0
\(409\) 15.8128 + 15.8128i 0.781895 + 0.781895i 0.980150 0.198255i \(-0.0635276\pi\)
−0.198255 + 0.980150i \(0.563528\pi\)
\(410\) −7.21867 11.9918i −0.356505 0.592232i
\(411\) 0 0
\(412\) 15.3380i 0.755647i
\(413\) 4.33069i 0.213099i
\(414\) 0 0
\(415\) 1.89130 7.61196i 0.0928402 0.373656i
\(416\) −3.39997 1.20009i −0.166697 0.0588393i
\(417\) 0 0
\(418\) −18.5519 + 18.5519i −0.907403 + 0.907403i
\(419\) 9.92023i 0.484635i 0.970197 + 0.242318i \(0.0779076\pi\)
−0.970197 + 0.242318i \(0.922092\pi\)
\(420\) 0 0
\(421\) 16.6990 + 16.6990i 0.813862 + 0.813862i 0.985210 0.171349i \(-0.0548125\pi\)
−0.171349 + 0.985210i \(0.554812\pi\)
\(422\) −14.1140 14.1140i −0.687058 0.687058i
\(423\) 0 0
\(424\) 4.85313 4.85313i 0.235689 0.235689i
\(425\) 20.8277 + 11.0308i 1.01029 + 0.535074i
\(426\) 0 0
\(427\) −15.0884 15.0884i −0.730177 0.730177i
\(428\) 2.44651i 0.118256i
\(429\) 0 0
\(430\) 4.14561 16.6849i 0.199919 0.804620i
\(431\) −17.0012 + 17.0012i −0.818920 + 0.818920i −0.985952 0.167032i \(-0.946582\pi\)
0.167032 + 0.985952i \(0.446582\pi\)
\(432\) 0 0
\(433\) −2.50595 −0.120428 −0.0602141 0.998185i \(-0.519178\pi\)
−0.0602141 + 0.998185i \(0.519178\pi\)
\(434\) 7.49550 7.49550i 0.359796 0.359796i
\(435\) 0 0
\(436\) −11.7964 + 11.7964i −0.564947 + 0.564947i
\(437\) −12.2850 + 12.2850i −0.587673 + 0.587673i
\(438\) 0 0
\(439\) 29.9255i 1.42827i −0.700009 0.714134i \(-0.746821\pi\)
0.700009 0.714134i \(-0.253179\pi\)
\(440\) −5.58277 9.27420i −0.266148 0.442130i
\(441\) 0 0
\(442\) 5.65685 16.0264i 0.269069 0.762297i
\(443\) 7.51200 0.356906 0.178453 0.983948i \(-0.442891\pi\)
0.178453 + 0.983948i \(0.442891\pi\)
\(444\) 0 0
\(445\) −2.56704 + 10.3316i −0.121689 + 0.489766i
\(446\) 13.6428 0.646005
\(447\) 0 0
\(448\) 1.29303 1.29303i 0.0610898 0.0610898i
\(449\) −12.7797 12.7797i −0.603113 0.603113i 0.338025 0.941137i \(-0.390241\pi\)
−0.941137 + 0.338025i \(0.890241\pi\)
\(450\) 0 0
\(451\) −30.3029 −1.42691
\(452\) 7.30279i 0.343494i
\(453\) 0 0
\(454\) 13.6000i 0.638281i
\(455\) −2.96571 14.4414i −0.139035 0.677023i
\(456\) 0 0
\(457\) −1.41879 + 1.41879i −0.0663682 + 0.0663682i −0.739512 0.673144i \(-0.764944\pi\)
0.673144 + 0.739512i \(0.264944\pi\)
\(458\) −1.17583 −0.0549429
\(459\) 0 0
\(460\) −3.69690 6.14136i −0.172369 0.286342i
\(461\) 8.94270 8.94270i 0.416503 0.416503i −0.467494 0.883996i \(-0.654843\pi\)
0.883996 + 0.467494i \(0.154843\pi\)
\(462\) 0 0
\(463\) 1.64030 + 1.64030i 0.0762314 + 0.0762314i 0.744194 0.667963i \(-0.232834\pi\)
−0.667963 + 0.744194i \(0.732834\pi\)
\(464\) 7.09142i 0.329211i
\(465\) 0 0
\(466\) 9.25758 9.25758i 0.428849 0.428849i
\(467\) 21.6984i 1.00408i 0.864844 + 0.502040i \(0.167417\pi\)
−0.864844 + 0.502040i \(0.832583\pi\)
\(468\) 0 0
\(469\) 14.5204 0.670488
\(470\) −14.6400 24.3203i −0.675295 1.12181i
\(471\) 0 0
\(472\) 2.36829 0.109009
\(473\) −26.3191 26.3191i −1.21015 1.21015i
\(474\) 0 0
\(475\) 25.9009 7.96479i 1.18841 0.365450i
\(476\) 6.09492 + 6.09492i 0.279360 + 0.279360i
\(477\) 0 0
\(478\) 12.4994 0.571710
\(479\) −3.65613 3.65613i −0.167053 0.167053i 0.618630 0.785683i \(-0.287688\pi\)
−0.785683 + 0.618630i \(0.787688\pi\)
\(480\) 0 0
\(481\) 17.9344 + 6.33034i 0.817739 + 0.288639i
\(482\) 8.20864 0.373893
\(483\) 0 0
\(484\) −12.4356 −0.565256
\(485\) −11.4028 2.83318i −0.517773 0.128648i
\(486\) 0 0
\(487\) 24.5766 24.5766i 1.11367 1.11367i 0.121021 0.992650i \(-0.461383\pi\)
0.992650 0.121021i \(-0.0386169\pi\)
\(488\) 8.25125 8.25125i 0.373517 0.373517i
\(489\) 0 0
\(490\) −7.93420 1.97136i −0.358430 0.0890571i
\(491\) −35.0848 −1.58336 −0.791678 0.610939i \(-0.790792\pi\)
−0.791678 + 0.610939i \(0.790792\pi\)
\(492\) 0 0
\(493\) 33.4267 1.50546
\(494\) −8.43040 17.6284i −0.379302 0.793140i
\(495\) 0 0
\(496\) 4.09901 + 4.09901i 0.184051 + 0.184051i
\(497\) 7.91056 0.354837
\(498\) 0 0
\(499\) 6.90060 + 6.90060i 0.308913 + 0.308913i 0.844488 0.535575i \(-0.179905\pi\)
−0.535575 + 0.844488i \(0.679905\pi\)
\(500\) 0.612376 + 11.1636i 0.0273863 + 0.499249i
\(501\) 0 0
\(502\) 19.0207 + 19.0207i 0.848936 + 0.848936i
\(503\) −8.61769 −0.384244 −0.192122 0.981371i \(-0.561537\pi\)
−0.192122 + 0.981371i \(0.561537\pi\)
\(504\) 0 0
\(505\) 19.5651 + 32.5019i 0.870637 + 1.44632i
\(506\) −15.5190 −0.689905
\(507\) 0 0
\(508\) 9.77725i 0.433795i
\(509\) 12.3534 12.3534i 0.547555 0.547555i −0.378178 0.925733i \(-0.623449\pi\)
0.925733 + 0.378178i \(0.123449\pi\)
\(510\) 0 0
\(511\) 1.17333i 0.0519052i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −4.00577 + 4.00577i −0.176687 + 0.176687i
\(515\) 17.6880 + 29.3837i 0.779428 + 1.29480i
\(516\) 0 0
\(517\) −61.4567 −2.70286
\(518\) −6.82056 + 6.82056i −0.299678 + 0.299678i
\(519\) 0 0
\(520\) 7.89745 1.62184i 0.346326 0.0711222i
\(521\) 42.6428i 1.86822i 0.356991 + 0.934108i \(0.383803\pi\)
−0.356991 + 0.934108i \(0.616197\pi\)
\(522\) 0 0
\(523\) 9.80957i 0.428942i −0.976730 0.214471i \(-0.931197\pi\)
0.976730 0.214471i \(-0.0688028\pi\)
\(524\) −3.06190 −0.133760
\(525\) 0 0
\(526\) 0.561105 + 0.561105i 0.0244653 + 0.0244653i
\(527\) −19.3214 + 19.3214i −0.841654 + 0.841654i
\(528\) 0 0
\(529\) 12.7233 0.553188
\(530\) −3.70065 + 14.8941i −0.160746 + 0.646957i
\(531\) 0 0
\(532\) 9.91031 0.429666
\(533\) 7.51208 21.2824i 0.325384 0.921843i
\(534\) 0 0
\(535\) 2.82136 + 4.68689i 0.121978 + 0.202632i
\(536\) 7.94063i 0.342983i
\(537\) 0 0
\(538\) −9.39582 + 9.39582i −0.405083 + 0.405083i
\(539\) −12.5155 + 12.5155i −0.539082 + 0.539082i
\(540\) 0 0
\(541\) 21.5440 21.5440i 0.926250 0.926250i −0.0712116 0.997461i \(-0.522687\pi\)
0.997461 + 0.0712116i \(0.0226866\pi\)
\(542\) 22.0435 0.946849
\(543\) 0 0
\(544\) −3.33308 + 3.33308i −0.142905 + 0.142905i
\(545\) 8.99512 36.2029i 0.385308 1.55076i
\(546\) 0 0
\(547\) 26.1118i 1.11646i 0.829687 + 0.558229i \(0.188519\pi\)
−0.829687 + 0.558229i \(0.811481\pi\)
\(548\) −15.8693 15.8693i −0.677901 0.677901i
\(549\) 0 0
\(550\) 21.3904 + 11.3289i 0.912088 + 0.483064i
\(551\) 27.1758 27.1758i 1.15773 1.15773i
\(552\) 0 0
\(553\) 10.7222 + 10.7222i 0.455953 + 0.455953i
\(554\) 8.06673 + 8.06673i 0.342722 + 0.342722i
\(555\) 0 0
\(556\) 1.10199i 0.0467349i
\(557\) 24.5719 24.5719i 1.04114 1.04114i 0.0420278 0.999116i \(-0.486618\pi\)
0.999116 0.0420278i \(-0.0133818\pi\)
\(558\) 0 0
\(559\) 25.0090 11.9600i 1.05777 0.505854i
\(560\) −0.985969 + 3.96825i −0.0416648 + 0.167689i
\(561\) 0 0
\(562\) 26.1190i 1.10176i
\(563\) 4.81449i 0.202907i −0.994840 0.101453i \(-0.967651\pi\)
0.994840 0.101453i \(-0.0323493\pi\)
\(564\) 0 0
\(565\) −8.42171 13.9903i −0.354304 0.588576i
\(566\) −17.2867 17.2867i −0.726615 0.726615i
\(567\) 0 0
\(568\) 4.32598i 0.181514i
\(569\) −40.4223 −1.69459 −0.847295 0.531122i \(-0.821771\pi\)
−0.847295 + 0.531122i \(0.821771\pi\)
\(570\) 0 0
\(571\) 33.1629i 1.38782i −0.720060 0.693911i \(-0.755886\pi\)
0.720060 0.693911i \(-0.244114\pi\)
\(572\) 5.80968 16.4594i 0.242915 0.688201i
\(573\) 0 0
\(574\) 8.09381 + 8.09381i 0.337829 + 0.337829i
\(575\) 14.1647 + 7.50195i 0.590707 + 0.312853i
\(576\) 0 0
\(577\) −5.26107 + 5.26107i −0.219021 + 0.219021i −0.808086 0.589065i \(-0.799496\pi\)
0.589065 + 0.808086i \(0.299496\pi\)
\(578\) −3.69026 3.69026i −0.153495 0.153495i
\(579\) 0 0
\(580\) 8.17796 + 13.5854i 0.339571 + 0.564102i
\(581\) 6.41419i 0.266105i
\(582\) 0 0
\(583\) 23.4942 + 23.4942i 0.973028 + 0.973028i
\(584\) −0.641651 −0.0265517
\(585\) 0 0
\(586\) −18.0427 −0.745336
\(587\) −6.51985 6.51985i −0.269103 0.269103i 0.559636 0.828739i \(-0.310941\pi\)
−0.828739 + 0.559636i \(0.810941\pi\)
\(588\) 0 0
\(589\) 31.4165i 1.29450i
\(590\) −4.53704 + 2.73115i −0.186787 + 0.112440i
\(591\) 0 0
\(592\) −3.72990 3.72990i −0.153298 0.153298i
\(593\) 17.8642 17.8642i 0.733596 0.733596i −0.237734 0.971330i \(-0.576405\pi\)
0.971330 + 0.237734i \(0.0764047\pi\)
\(594\) 0 0
\(595\) −18.7051 4.64755i −0.766834 0.190531i
\(596\) −11.5204 11.5204i −0.471894 0.471894i
\(597\) 0 0
\(598\) 3.84716 10.8994i 0.157322 0.445708i
\(599\) 22.7673i 0.930246i 0.885246 + 0.465123i \(0.153990\pi\)
−0.885246 + 0.465123i \(0.846010\pi\)
\(600\) 0 0
\(601\) 21.8501 0.891283 0.445641 0.895212i \(-0.352976\pi\)
0.445641 + 0.895212i \(0.352976\pi\)
\(602\) 14.0595i 0.573023i
\(603\) 0 0
\(604\) −13.1195 13.1195i −0.533826 0.533826i
\(605\) 23.8235 14.3410i 0.968564 0.583044i
\(606\) 0 0
\(607\) 25.6082i 1.03941i 0.854347 + 0.519703i \(0.173957\pi\)
−0.854347 + 0.519703i \(0.826043\pi\)
\(608\) 5.41957i 0.219793i
\(609\) 0 0
\(610\) −6.29181 + 25.3228i −0.254748 + 1.02529i
\(611\) 15.2351 43.1624i 0.616346 1.74616i
\(612\) 0 0
\(613\) 29.1287 29.1287i 1.17650 1.17650i 0.195866 0.980631i \(-0.437248\pi\)
0.980631 0.195866i \(-0.0627519\pi\)
\(614\) 2.18462i 0.0881641i
\(615\) 0 0
\(616\) 6.25959 + 6.25959i 0.252206 + 0.252206i
\(617\) 26.1399 + 26.1399i 1.05235 + 1.05235i 0.998552 + 0.0537999i \(0.0171333\pi\)
0.0537999 + 0.998552i \(0.482867\pi\)
\(618\) 0 0
\(619\) −14.5983 + 14.5983i −0.586756 + 0.586756i −0.936751 0.349995i \(-0.886183\pi\)
0.349995 + 0.936751i \(0.386183\pi\)
\(620\) −12.5797 3.12561i −0.505213 0.125527i
\(621\) 0 0
\(622\) 5.03051 + 5.03051i 0.201705 + 0.201705i
\(623\) 8.70591i 0.348795i
\(624\) 0 0
\(625\) −14.0472 20.6803i −0.561887 0.827214i
\(626\) −3.27702 + 3.27702i −0.130976 + 0.130976i
\(627\) 0 0
\(628\) −18.1705 −0.725080
\(629\) 17.5816 17.5816i 0.701024 0.701024i
\(630\) 0 0
\(631\) 0.525820 0.525820i 0.0209326 0.0209326i −0.696563 0.717496i \(-0.745288\pi\)
0.717496 + 0.696563i \(0.245288\pi\)
\(632\) −5.86354 + 5.86354i −0.233239 + 0.233239i
\(633\) 0 0
\(634\) 3.88256i 0.154196i
\(635\) −11.2753 18.7307i −0.447447 0.743307i
\(636\) 0 0
\(637\) −5.68734 11.8925i −0.225341 0.471199i
\(638\) 34.3298 1.35913
\(639\) 0 0
\(640\) −2.17009 0.539189i −0.0857802 0.0213133i
\(641\) −22.8822 −0.903793 −0.451896 0.892070i \(-0.649252\pi\)
−0.451896 + 0.892070i \(0.649252\pi\)
\(642\) 0 0
\(643\) 16.3799 16.3799i 0.645961 0.645961i −0.306053 0.952014i \(-0.599009\pi\)
0.952014 + 0.306053i \(0.0990085\pi\)
\(644\) 4.14509 + 4.14509i 0.163339 + 0.163339i
\(645\) 0 0
\(646\) −25.5461 −1.00510
\(647\) 36.9703i 1.45345i −0.686927 0.726727i \(-0.741041\pi\)
0.686927 0.726727i \(-0.258959\pi\)
\(648\) 0 0
\(649\) 11.4650i 0.450039i
\(650\) −13.2592 + 12.2145i −0.520068 + 0.479092i
\(651\) 0 0
\(652\) −7.45812 + 7.45812i −0.292082 + 0.292082i
\(653\) 19.2597 0.753690 0.376845 0.926276i \(-0.377009\pi\)
0.376845 + 0.926276i \(0.377009\pi\)
\(654\) 0 0
\(655\) 5.86583 3.53104i 0.229197 0.137969i
\(656\) −4.42620 + 4.42620i −0.172814 + 0.172814i
\(657\) 0 0
\(658\) 16.4149 + 16.4149i 0.639919 + 0.639919i
\(659\) 9.15739i 0.356721i −0.983965 0.178361i \(-0.942921\pi\)
0.983965 0.178361i \(-0.0570794\pi\)
\(660\) 0 0
\(661\) 6.14563 6.14563i 0.239037 0.239037i −0.577414 0.816451i \(-0.695938\pi\)
0.816451 + 0.577414i \(0.195938\pi\)
\(662\) 6.06739i 0.235816i
\(663\) 0 0
\(664\) −3.50767 −0.136124
\(665\) −18.9856 + 11.4288i −0.736232 + 0.443188i
\(666\) 0 0
\(667\) 22.7331 0.880231
\(668\) 7.14982 + 7.14982i 0.276635 + 0.276635i
\(669\) 0 0
\(670\) −9.15728 15.2122i −0.353777 0.587700i
\(671\) 39.9446 + 39.9446i 1.54204 + 1.54204i
\(672\) 0 0
\(673\) 22.1797 0.854964 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(674\) 1.41774 + 1.41774i 0.0546092 + 0.0546092i
\(675\) 0 0
\(676\) 10.1196 + 8.16054i 0.389214 + 0.313867i
\(677\) 1.47676 0.0567566 0.0283783 0.999597i \(-0.490966\pi\)
0.0283783 + 0.999597i \(0.490966\pi\)
\(678\) 0 0
\(679\) 9.60851 0.368741
\(680\) 2.54157 10.2291i 0.0974646 0.392268i
\(681\) 0 0
\(682\) −19.8434 + 19.8434i −0.759844 + 0.759844i
\(683\) 4.17460 4.17460i 0.159736 0.159736i −0.622713 0.782450i \(-0.713970\pi\)
0.782450 + 0.622713i \(0.213970\pi\)
\(684\) 0 0
\(685\) 48.7022 + 12.1008i 1.86082 + 0.462346i
\(686\) 19.4860 0.743980
\(687\) 0 0
\(688\) −7.68861 −0.293126
\(689\) −22.3247 + 10.6763i −0.850502 + 0.406734i
\(690\) 0 0
\(691\) 11.4564 + 11.4564i 0.435823 + 0.435823i 0.890604 0.454781i \(-0.150282\pi\)
−0.454781 + 0.890604i \(0.650282\pi\)
\(692\) −15.0993 −0.573988
\(693\) 0 0
\(694\) 12.6154 + 12.6154i 0.478874 + 0.478874i
\(695\) −1.27084 2.11114i −0.0482056 0.0800800i
\(696\) 0 0
\(697\) −20.8637 20.8637i −0.790269 0.790269i
\(698\) 27.1741 1.02855
\(699\) 0 0
\(700\) −2.68740 8.73921i −0.101574 0.330311i
\(701\) −35.5224 −1.34166 −0.670831 0.741611i \(-0.734062\pi\)
−0.670831 + 0.741611i \(0.734062\pi\)
\(702\) 0 0
\(703\) 28.5876i 1.07820i
\(704\) −3.42313 + 3.42313i −0.129014 + 0.129014i
\(705\) 0 0
\(706\) 8.45905i 0.318361i
\(707\) −21.9371 21.9371i −0.825028 0.825028i
\(708\) 0 0
\(709\) −3.23400 + 3.23400i −0.121455 + 0.121455i −0.765222 0.643767i \(-0.777371\pi\)
0.643767 + 0.765222i \(0.277371\pi\)
\(710\) −4.98880 8.28749i −0.187226 0.311024i
\(711\) 0 0
\(712\) 4.76093 0.178423
\(713\) −13.1403 + 13.1403i −0.492108 + 0.492108i
\(714\) 0 0
\(715\) 7.85136 + 38.2318i 0.293624 + 1.42979i
\(716\) 16.4200i 0.613645i
\(717\) 0 0
\(718\) 36.8922i 1.37680i
\(719\) 11.9941 0.447304 0.223652 0.974669i \(-0.428202\pi\)
0.223652 + 0.974669i \(0.428202\pi\)
\(720\) 0 0
\(721\) −19.8324 19.8324i −0.738597 0.738597i
\(722\) −7.33393 + 7.33393i −0.272941 + 0.272941i
\(723\) 0 0
\(724\) −4.47735 −0.166399
\(725\) −31.3338 16.5952i −1.16371 0.616328i
\(726\) 0 0
\(727\) 45.7458 1.69662 0.848308 0.529503i \(-0.177621\pi\)
0.848308 + 0.529503i \(0.177621\pi\)
\(728\) −5.94800 + 2.84450i −0.220447 + 0.105424i
\(729\) 0 0
\(730\) 1.22924 0.739964i 0.0454963 0.0273873i
\(731\) 36.2417i 1.34045i
\(732\) 0 0
\(733\) 21.7680 21.7680i 0.804018 0.804018i −0.179703 0.983721i \(-0.557514\pi\)
0.983721 + 0.179703i \(0.0575136\pi\)
\(734\) 5.51534 5.51534i 0.203575 0.203575i
\(735\) 0 0
\(736\) −2.26679 + 2.26679i −0.0835550 + 0.0835550i
\(737\) −38.4409 −1.41599
\(738\) 0 0
\(739\) −19.9122 + 19.9122i −0.732484 + 0.732484i −0.971111 0.238627i \(-0.923303\pi\)
0.238627 + 0.971111i \(0.423303\pi\)
\(740\) 11.4469 + 2.84416i 0.420798 + 0.104553i
\(741\) 0 0
\(742\) 12.5504i 0.460741i
\(743\) 5.98788 + 5.98788i 0.219674 + 0.219674i 0.808361 0.588687i \(-0.200355\pi\)
−0.588687 + 0.808361i \(0.700355\pi\)
\(744\) 0 0
\(745\) 35.3557 + 8.78463i 1.29533 + 0.321844i
\(746\) 20.7195 20.7195i 0.758594 0.758594i
\(747\) 0 0
\(748\) −16.1355 16.1355i −0.589974 0.589974i
\(749\) −3.16340 3.16340i −0.115588 0.115588i
\(750\) 0 0
\(751\) 22.9102i 0.836005i −0.908446 0.418002i \(-0.862730\pi\)
0.908446 0.418002i \(-0.137270\pi\)
\(752\) −8.97668 + 8.97668i −0.327346 + 0.327346i
\(753\) 0 0
\(754\) −8.51035 + 24.1106i −0.309929 + 0.878056i
\(755\) 40.2634 + 10.0040i 1.46533 + 0.364083i
\(756\) 0 0
\(757\) 0.704519i 0.0256062i −0.999918 0.0128031i \(-0.995925\pi\)
0.999918 0.0128031i \(-0.00407546\pi\)
\(758\) 9.59070i 0.348350i
\(759\) 0 0
\(760\) −6.24995 10.3825i −0.226710 0.376614i
\(761\) 24.4534 + 24.4534i 0.886434 + 0.886434i 0.994179 0.107744i \(-0.0343628\pi\)
−0.107744 + 0.994179i \(0.534363\pi\)
\(762\) 0 0
\(763\) 30.5062i 1.10440i
\(764\) −10.5841 −0.382918
\(765\) 0 0
\(766\) 13.3897i 0.483789i
\(767\) −8.05210 2.84216i −0.290744 0.102624i
\(768\) 0 0
\(769\) −23.7953 23.7953i −0.858080 0.858080i 0.133032 0.991112i \(-0.457529\pi\)
−0.991112 + 0.133032i \(0.957529\pi\)
\(770\) −19.2105 4.77311i −0.692297 0.172011i
\(771\) 0 0
\(772\) 7.20113 7.20113i 0.259174 0.259174i
\(773\) −2.81372 2.81372i −0.101202 0.101202i 0.654693 0.755895i \(-0.272798\pi\)
−0.755895 + 0.654693i \(0.772798\pi\)
\(774\) 0 0
\(775\) 27.7040 8.51928i 0.995159 0.306022i
\(776\) 5.25453i 0.188627i
\(777\) 0 0
\(778\) 18.7489 + 18.7489i 0.672182 + 0.672182i
\(779\) −33.9243 −1.21546
\(780\) 0 0
\(781\) −20.9422 −0.749372
\(782\) −10.6849 10.6849i −0.382092 0.382092i
\(783\) 0 0
\(784\) 3.65617i 0.130577i
\(785\) 34.8100 20.9545i 1.24242 0.747899i
\(786\) 0 0
\(787\) 37.4915 + 37.4915i 1.33643 + 1.33643i 0.899493 + 0.436934i \(0.143936\pi\)
0.436934 + 0.899493i \(0.356064\pi\)
\(788\) −9.16979 + 9.16979i −0.326660 + 0.326660i
\(789\) 0 0
\(790\) 4.47112 17.9950i 0.159075 0.640234i
\(791\) 9.44270 + 9.44270i 0.335744 + 0.335744i
\(792\) 0 0
\(793\) −37.9563 + 18.1517i −1.34787 + 0.644587i
\(794\) 19.1556i 0.679806i
\(795\) 0 0
\(796\) 20.7555 0.735658
\(797\) 17.4404i 0.617770i 0.951099 + 0.308885i \(0.0999557\pi\)
−0.951099 + 0.308885i \(0.900044\pi\)
\(798\) 0 0
\(799\) −42.3132 42.3132i −1.49693 1.49693i
\(800\) 4.77914 1.46963i 0.168968 0.0519594i
\(801\) 0 0
\(802\) 0.241380i 0.00852341i
\(803\) 3.10626i 0.109617i
\(804\) 0 0
\(805\) −12.7211 3.16075i −0.448361 0.111402i
\(806\) −9.01731 18.8557i −0.317621 0.664163i
\(807\) 0 0
\(808\) 11.9965 11.9965i 0.422037 0.422037i
\(809\) 42.5773i 1.49694i 0.663170 + 0.748469i \(0.269211\pi\)
−0.663170 + 0.748469i \(0.730789\pi\)
\(810\) 0 0
\(811\) 7.59986 + 7.59986i 0.266867 + 0.266867i 0.827837 0.560969i \(-0.189571\pi\)
−0.560969 + 0.827837i \(0.689571\pi\)
\(812\) −9.16939 9.16939i −0.321783 0.321783i
\(813\) 0 0
\(814\) 18.0566 18.0566i 0.632883 0.632883i
\(815\) 5.68703 22.8887i 0.199208 0.801756i
\(816\) 0 0
\(817\) −29.4644 29.4644i −1.03083 1.03083i
\(818\) 22.3627i 0.781895i
\(819\) 0 0
\(820\) 3.37510 13.5838i 0.117864 0.474368i
\(821\) −1.44315 + 1.44315i −0.0503664 + 0.0503664i −0.731841 0.681475i \(-0.761339\pi\)
0.681475 + 0.731841i \(0.261339\pi\)
\(822\) 0 0
\(823\) −41.1421 −1.43412 −0.717061 0.697010i \(-0.754513\pi\)
−0.717061 + 0.697010i \(0.754513\pi\)
\(824\) 10.8456 10.8456i 0.377824 0.377824i
\(825\) 0 0
\(826\) 3.06226 3.06226i 0.106550 0.106550i
\(827\) 9.52443 9.52443i 0.331197 0.331197i −0.521844 0.853041i \(-0.674756\pi\)
0.853041 + 0.521844i \(0.174756\pi\)
\(828\) 0 0
\(829\) 8.86204i 0.307792i −0.988087 0.153896i \(-0.950818\pi\)
0.988087 0.153896i \(-0.0491820\pi\)
\(830\) 6.71982 4.04512i 0.233248 0.140408i
\(831\) 0 0
\(832\) −1.55555 3.25273i −0.0539289 0.112768i
\(833\) −17.2340 −0.597123
\(834\) 0 0
\(835\) −21.9425 5.45194i −0.759353 0.188672i
\(836\) −26.2363 −0.907403
\(837\) 0 0
\(838\) −7.01466 + 7.01466i −0.242318 + 0.242318i
\(839\) 5.91015 + 5.91015i 0.204041 + 0.204041i 0.801729 0.597688i \(-0.203914\pi\)
−0.597688 + 0.801729i \(0.703914\pi\)
\(840\) 0 0
\(841\) −21.2882 −0.734077
\(842\) 23.6160i 0.813862i
\(843\) 0 0
\(844\) 19.9602i 0.687058i
\(845\) −28.7974 3.96347i −0.990661 0.136347i
\(846\) 0 0
\(847\) −16.0796 + 16.0796i −0.552501 + 0.552501i
\(848\) 6.86336 0.235689
\(849\) 0 0
\(850\) 6.92739 + 22.5274i 0.237608 + 0.772682i
\(851\) 11.9570 11.9570i 0.409882 0.409882i
\(852\) 0 0
\(853\) −1.70532 1.70532i −0.0583891 0.0583891i 0.677309 0.735698i \(-0.263146\pi\)
−0.735698 + 0.677309i \(0.763146\pi\)
\(854\) 21.3382i 0.730177i
\(855\) 0 0
\(856\) 1.72994 1.72994i 0.0591281 0.0591281i
\(857\) 35.6660i 1.21833i 0.793044 + 0.609164i \(0.208495\pi\)
−0.793044 + 0.609164i \(0.791505\pi\)
\(858\) 0 0
\(859\) −40.5671 −1.38413 −0.692065 0.721835i \(-0.743299\pi\)
−0.692065 + 0.721835i \(0.743299\pi\)
\(860\) 14.7294 8.86665i 0.502269 0.302350i
\(861\) 0 0
\(862\) −24.0434 −0.818920
\(863\) 8.23230 + 8.23230i 0.280231 + 0.280231i 0.833201 0.552970i \(-0.186506\pi\)
−0.552970 + 0.833201i \(0.686506\pi\)
\(864\) 0 0
\(865\) 28.9264 17.4128i 0.983526 0.592051i
\(866\) −1.77197 1.77197i −0.0602141 0.0602141i
\(867\) 0 0
\(868\) 10.6002 0.359796
\(869\) −28.3856 28.3856i −0.962916 0.962916i
\(870\) 0 0
\(871\) 9.52948 26.9979i 0.322894 0.914789i
\(872\) −16.6827 −0.564947
\(873\) 0 0
\(874\) −17.3737 −0.587673
\(875\) 15.2266 + 13.6430i 0.514753 + 0.461216i
\(876\) 0 0
\(877\) −23.5233 + 23.5233i −0.794327 + 0.794327i −0.982194 0.187868i \(-0.939842\pi\)
0.187868 + 0.982194i \(0.439842\pi\)
\(878\) 21.1606 21.1606i 0.714134 0.714134i
\(879\) 0 0
\(880\) 2.61023 10.5055i 0.0879909 0.354139i
\(881\) 29.8500 1.00567 0.502837 0.864381i \(-0.332290\pi\)
0.502837 + 0.864381i \(0.332290\pi\)
\(882\) 0 0
\(883\) −23.1619 −0.779459 −0.389729 0.920929i \(-0.627431\pi\)
−0.389729 + 0.920929i \(0.627431\pi\)
\(884\) 15.3324 7.33236i 0.515683 0.246614i
\(885\) 0 0
\(886\) 5.31179 + 5.31179i 0.178453 + 0.178453i
\(887\) 46.8884 1.57436 0.787180 0.616723i \(-0.211540\pi\)
0.787180 + 0.616723i \(0.211540\pi\)
\(888\) 0 0
\(889\) 12.6422 + 12.6422i 0.424007 + 0.424007i
\(890\) −9.12074 + 5.49040i −0.305728 + 0.184039i
\(891\) 0 0
\(892\) 9.64691 + 9.64691i 0.323002 + 0.323002i
\(893\) −68.8011 −2.30234
\(894\) 0 0
\(895\) −18.9359 31.4566i −0.632956 1.05148i
\(896\) 1.82862 0.0610898
\(897\) 0 0
\(898\) 18.0733i 0.603113i
\(899\) 29.0678 29.0678i 0.969464 0.969464i
\(900\) 0 0
\(901\) 32.3517i 1.07779i
\(902\) −21.4274 21.4274i −0.713453 0.713453i
\(903\) 0 0
\(904\) −5.16385 + 5.16385i −0.171747 + 0.171747i
\(905\) 8.57747 5.16337i 0.285125 0.171636i
\(906\) 0 0
\(907\) −12.7144 −0.422174 −0.211087 0.977467i \(-0.567700\pi\)
−0.211087 + 0.977467i \(0.567700\pi\)
\(908\) 9.61668 9.61668i 0.319141 0.319141i
\(909\) 0 0
\(910\) 8.11453 12.3087i 0.268994 0.408029i
\(911\) 9.67389i 0.320510i −0.987076 0.160255i \(-0.948768\pi\)
0.987076 0.160255i \(-0.0512317\pi\)
\(912\) 0 0
\(913\) 16.9808i 0.561982i
\(914\) −2.00647 −0.0663682
\(915\) 0 0
\(916\) −0.831438 0.831438i −0.0274715 0.0274715i
\(917\) −3.95912 + 3.95912i −0.130742 + 0.130742i
\(918\) 0 0
\(919\) −10.5683 −0.348616 −0.174308 0.984691i \(-0.555769\pi\)
−0.174308 + 0.984691i \(0.555769\pi\)
\(920\) 1.72849 6.95670i 0.0569867 0.229356i
\(921\) 0 0
\(922\) 12.6469 0.416503
\(923\) 5.19157 14.7082i 0.170883 0.484126i
\(924\) 0 0
\(925\) −25.2094 + 7.75215i −0.828879 + 0.254889i
\(926\) 2.31974i 0.0762314i
\(927\) 0 0
\(928\) 5.01439 5.01439i 0.164605 0.164605i
\(929\) −7.91139 + 7.91139i −0.259564 + 0.259564i −0.824877 0.565313i \(-0.808756\pi\)
0.565313 + 0.824877i \(0.308756\pi\)
\(930\) 0 0
\(931\) −14.0112 + 14.0112i −0.459199 + 0.459199i
\(932\) 13.0922 0.428849
\(933\) 0 0
\(934\) −15.3431 + 15.3431i −0.502040 + 0.502040i
\(935\) 49.5194 + 12.3038i 1.61946 + 0.402378i
\(936\) 0 0
\(937\) 10.4694i 0.342020i 0.985269 + 0.171010i \(0.0547030\pi\)
−0.985269 + 0.171010i \(0.945297\pi\)
\(938\) 10.2674 + 10.2674i 0.335244 + 0.335244i
\(939\) 0 0
\(940\) 6.84497 27.5491i 0.223258 0.898553i
\(941\) 25.1112 25.1112i 0.818600 0.818600i −0.167305 0.985905i \(-0.553506\pi\)
0.985905 + 0.167305i \(0.0535064\pi\)
\(942\) 0 0
\(943\) −14.1892 14.1892i −0.462063 0.462063i
\(944\) 1.67463 + 1.67463i 0.0545046 + 0.0545046i
\(945\) 0 0
\(946\) 37.2208i 1.21015i
\(947\) −6.75196 + 6.75196i −0.219409 + 0.219409i −0.808249 0.588840i \(-0.799585\pi\)
0.588840 + 0.808249i \(0.299585\pi\)
\(948\) 0 0
\(949\) 2.18159 + 0.770040i 0.0708175 + 0.0249966i
\(950\) 23.9466 + 12.6827i 0.776932 + 0.411482i
\(951\) 0 0
\(952\) 8.61951i 0.279360i
\(953\) 36.1972i 1.17254i −0.810115 0.586271i \(-0.800595\pi\)
0.810115 0.586271i \(-0.199405\pi\)
\(954\) 0 0
\(955\) 20.2764 12.2057i 0.656128 0.394968i
\(956\) 8.83842 + 8.83842i 0.285855 + 0.285855i
\(957\) 0 0
\(958\) 5.17055i 0.167053i
\(959\) −41.0387 −1.32521
\(960\) 0 0
\(961\) 2.60369i 0.0839899i
\(962\) 8.20533 + 17.1578i 0.264550 + 0.553189i
\(963\) 0 0
\(964\) 5.80438 + 5.80438i 0.186947 + 0.186947i
\(965\) −5.49106 + 22.1000i −0.176764 + 0.711425i
\(966\) 0 0
\(967\) −26.5164 + 26.5164i −0.852709 + 0.852709i −0.990466 0.137757i \(-0.956011\pi\)
0.137757 + 0.990466i \(0.456011\pi\)
\(968\) −8.79332 8.79332i −0.282628 0.282628i
\(969\) 0 0
\(970\) −6.05962 10.0663i −0.194563 0.323211i
\(971\) 35.6136i 1.14290i 0.820638 + 0.571448i \(0.193618\pi\)
−0.820638 + 0.571448i \(0.806382\pi\)
\(972\) 0 0
\(973\) 1.42490 + 1.42490i 0.0456803 + 0.0456803i
\(974\) 34.7565 1.11367
\(975\) 0 0
\(976\) 11.6690 0.373517
\(977\) 1.70264 + 1.70264i 0.0544722 + 0.0544722i 0.733818 0.679346i \(-0.237736\pi\)
−0.679346 + 0.733818i \(0.737736\pi\)
\(978\) 0 0
\(979\) 23.0478i 0.736612i
\(980\) −4.21636 7.00429i −0.134687 0.223744i
\(981\) 0 0
\(982\) −24.8087 24.8087i −0.791678 0.791678i
\(983\) −11.2285 + 11.2285i −0.358134 + 0.358134i −0.863125 0.504991i \(-0.831496\pi\)
0.504991 + 0.863125i \(0.331496\pi\)
\(984\) 0 0
\(985\) 6.99223 28.1418i 0.222791 0.896672i
\(986\) 23.6363 + 23.6363i 0.752732 + 0.752732i
\(987\) 0 0
\(988\) 6.50398 18.4264i 0.206919 0.586221i
\(989\) 24.6476i 0.783747i
\(990\) 0 0
\(991\) −1.44965 −0.0460497 −0.0230248 0.999735i \(-0.507330\pi\)
−0.0230248 + 0.999735i \(0.507330\pi\)
\(992\) 5.79687i 0.184051i
\(993\) 0 0
\(994\) 5.59361 + 5.59361i 0.177419 + 0.177419i
\(995\) −39.7622 + 23.9356i −1.26055 + 0.758809i
\(996\) 0 0
\(997\) 47.2336i 1.49590i −0.663753 0.747952i \(-0.731037\pi\)
0.663753 0.747952i \(-0.268963\pi\)
\(998\) 9.75893i 0.308913i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.q.c.359.9 yes 24
3.2 odd 2 inner 1170.2.q.c.359.1 24
5.4 even 2 1170.2.q.d.359.4 yes 24
13.5 odd 4 1170.2.q.d.629.12 yes 24
15.14 odd 2 1170.2.q.d.359.12 yes 24
39.5 even 4 1170.2.q.d.629.4 yes 24
65.44 odd 4 inner 1170.2.q.c.629.1 yes 24
195.44 even 4 inner 1170.2.q.c.629.9 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1170.2.q.c.359.1 24 3.2 odd 2 inner
1170.2.q.c.359.9 yes 24 1.1 even 1 trivial
1170.2.q.c.629.1 yes 24 65.44 odd 4 inner
1170.2.q.c.629.9 yes 24 195.44 even 4 inner
1170.2.q.d.359.4 yes 24 5.4 even 2
1170.2.q.d.359.12 yes 24 15.14 odd 2
1170.2.q.d.629.4 yes 24 39.5 even 4
1170.2.q.d.629.12 yes 24 13.5 odd 4