Properties

Label 1170.2.q.c.629.3
Level $1170$
Weight $2$
Character 1170.629
Analytic conductor $9.342$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(359,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.359"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.q (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 629.3
Character \(\chi\) \(=\) 1170.629
Dual form 1170.2.q.c.359.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(1.78575 + 1.34577i) q^{5} +(2.75044 - 2.75044i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-2.21432 + 0.311108i) q^{10} +(-3.15348 + 3.15348i) q^{11} +(-2.69372 + 2.39664i) q^{13} +3.88971i q^{14} -1.00000 q^{16} +5.01449i q^{17} +(-2.53612 + 2.53612i) q^{19} +(1.34577 - 1.78575i) q^{20} -4.45969i q^{22} -4.34164i q^{23} +(1.37778 + 4.80642i) q^{25} +(0.210072 - 3.59943i) q^{26} +(-2.75044 - 2.75044i) q^{28} +5.70547i q^{29} +(-3.60613 + 3.60613i) q^{31} +(0.707107 - 0.707107i) q^{32} +(-3.54578 - 3.54578i) q^{34} +(8.61307 - 1.21012i) q^{35} +(4.13155 - 4.13155i) q^{37} -3.58662i q^{38} +(0.311108 + 2.21432i) q^{40} +(8.67345 + 8.67345i) q^{41} +9.44654 q^{43} +(3.15348 + 3.15348i) q^{44} +(3.07000 + 3.07000i) q^{46} +(2.13745 + 2.13745i) q^{47} -8.12986i q^{49} +(-4.37290 - 2.42441i) q^{50} +(2.39664 + 2.69372i) q^{52} -3.21386 q^{53} +(-9.87517 + 1.38744i) q^{55} +3.88971 q^{56} +(-4.03438 - 4.03438i) q^{58} +(8.59111 - 8.59111i) q^{59} -2.76670 q^{61} -5.09983i q^{62} +1.00000i q^{64} +(-8.03564 + 0.654644i) q^{65} +(-4.81488 - 4.81488i) q^{67} +5.01449 q^{68} +(-5.23467 + 6.94604i) q^{70} +(4.04025 + 4.04025i) q^{71} +(0.0463227 - 0.0463227i) q^{73} +5.84290i q^{74} +(2.53612 + 2.53612i) q^{76} +17.3469i q^{77} -3.04420 q^{79} +(-1.78575 - 1.34577i) q^{80} -12.2661 q^{82} +(-8.43545 + 8.43545i) q^{83} +(-6.74837 + 8.95461i) q^{85} +(-6.67971 + 6.67971i) q^{86} -4.45969 q^{88} +(8.57916 - 8.57916i) q^{89} +(-0.817118 + 14.0007i) q^{91} -4.34164 q^{92} -3.02281 q^{94} +(-7.94192 + 1.11582i) q^{95} +(5.09718 + 5.09718i) q^{97} +(5.74868 + 5.74868i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 20 q^{13} - 24 q^{16} - 48 q^{19} + 32 q^{25} - 8 q^{31} + 16 q^{34} - 32 q^{37} + 8 q^{40} + 80 q^{43} + 8 q^{46} - 12 q^{52} + 16 q^{55} - 24 q^{58} - 16 q^{61} - 8 q^{67} - 24 q^{70} + 48 q^{73}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 1.78575 + 1.34577i 0.798610 + 0.601848i
\(6\) 0 0
\(7\) 2.75044 2.75044i 1.03957 1.03957i 0.0403851 0.999184i \(-0.487142\pi\)
0.999184 0.0403851i \(-0.0128585\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) −2.21432 + 0.311108i −0.700229 + 0.0983809i
\(11\) −3.15348 + 3.15348i −0.950809 + 0.950809i −0.998846 0.0480369i \(-0.984703\pi\)
0.0480369 + 0.998846i \(0.484703\pi\)
\(12\) 0 0
\(13\) −2.69372 + 2.39664i −0.747104 + 0.664707i
\(14\) 3.88971i 1.03957i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 5.01449i 1.21619i 0.793863 + 0.608096i \(0.208067\pi\)
−0.793863 + 0.608096i \(0.791933\pi\)
\(18\) 0 0
\(19\) −2.53612 + 2.53612i −0.581826 + 0.581826i −0.935405 0.353579i \(-0.884965\pi\)
0.353579 + 0.935405i \(0.384965\pi\)
\(20\) 1.34577 1.78575i 0.300924 0.399305i
\(21\) 0 0
\(22\) 4.45969i 0.950809i
\(23\) 4.34164i 0.905295i −0.891690 0.452647i \(-0.850480\pi\)
0.891690 0.452647i \(-0.149520\pi\)
\(24\) 0 0
\(25\) 1.37778 + 4.80642i 0.275557 + 0.961285i
\(26\) 0.210072 3.59943i 0.0411984 0.705906i
\(27\) 0 0
\(28\) −2.75044 2.75044i −0.519785 0.519785i
\(29\) 5.70547i 1.05948i 0.848160 + 0.529739i \(0.177710\pi\)
−0.848160 + 0.529739i \(0.822290\pi\)
\(30\) 0 0
\(31\) −3.60613 + 3.60613i −0.647679 + 0.647679i −0.952432 0.304752i \(-0.901426\pi\)
0.304752 + 0.952432i \(0.401426\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) −3.54578 3.54578i −0.608096 0.608096i
\(35\) 8.61307 1.21012i 1.45587 0.204548i
\(36\) 0 0
\(37\) 4.13155 4.13155i 0.679223 0.679223i −0.280601 0.959824i \(-0.590534\pi\)
0.959824 + 0.280601i \(0.0905338\pi\)
\(38\) 3.58662i 0.581826i
\(39\) 0 0
\(40\) 0.311108 + 2.21432i 0.0491905 + 0.350115i
\(41\) 8.67345 + 8.67345i 1.35457 + 1.35457i 0.880478 + 0.474088i \(0.157222\pi\)
0.474088 + 0.880478i \(0.342778\pi\)
\(42\) 0 0
\(43\) 9.44654 1.44058 0.720292 0.693671i \(-0.244008\pi\)
0.720292 + 0.693671i \(0.244008\pi\)
\(44\) 3.15348 + 3.15348i 0.475404 + 0.475404i
\(45\) 0 0
\(46\) 3.07000 + 3.07000i 0.452647 + 0.452647i
\(47\) 2.13745 + 2.13745i 0.311779 + 0.311779i 0.845599 0.533819i \(-0.179244\pi\)
−0.533819 + 0.845599i \(0.679244\pi\)
\(48\) 0 0
\(49\) 8.12986i 1.16141i
\(50\) −4.37290 2.42441i −0.618421 0.342864i
\(51\) 0 0
\(52\) 2.39664 + 2.69372i 0.332354 + 0.373552i
\(53\) −3.21386 −0.441458 −0.220729 0.975335i \(-0.570844\pi\)
−0.220729 + 0.975335i \(0.570844\pi\)
\(54\) 0 0
\(55\) −9.87517 + 1.38744i −1.33157 + 0.187083i
\(56\) 3.88971 0.519785
\(57\) 0 0
\(58\) −4.03438 4.03438i −0.529739 0.529739i
\(59\) 8.59111 8.59111i 1.11847 1.11847i 0.126501 0.991966i \(-0.459625\pi\)
0.991966 0.126501i \(-0.0403747\pi\)
\(60\) 0 0
\(61\) −2.76670 −0.354240 −0.177120 0.984189i \(-0.556678\pi\)
−0.177120 + 0.984189i \(0.556678\pi\)
\(62\) 5.09983i 0.647679i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −8.03564 + 0.654644i −0.996698 + 0.0811986i
\(66\) 0 0
\(67\) −4.81488 4.81488i −0.588231 0.588231i 0.348921 0.937152i \(-0.386548\pi\)
−0.937152 + 0.348921i \(0.886548\pi\)
\(68\) 5.01449 0.608096
\(69\) 0 0
\(70\) −5.23467 + 6.94604i −0.625663 + 0.830211i
\(71\) 4.04025 + 4.04025i 0.479490 + 0.479490i 0.904968 0.425479i \(-0.139894\pi\)
−0.425479 + 0.904968i \(0.639894\pi\)
\(72\) 0 0
\(73\) 0.0463227 0.0463227i 0.00542166 0.00542166i −0.704391 0.709812i \(-0.748780\pi\)
0.709812 + 0.704391i \(0.248780\pi\)
\(74\) 5.84290i 0.679223i
\(75\) 0 0
\(76\) 2.53612 + 2.53612i 0.290913 + 0.290913i
\(77\) 17.3469i 1.97686i
\(78\) 0 0
\(79\) −3.04420 −0.342499 −0.171250 0.985228i \(-0.554780\pi\)
−0.171250 + 0.985228i \(0.554780\pi\)
\(80\) −1.78575 1.34577i −0.199653 0.150462i
\(81\) 0 0
\(82\) −12.2661 −1.35457
\(83\) −8.43545 + 8.43545i −0.925911 + 0.925911i −0.997439 0.0715280i \(-0.977212\pi\)
0.0715280 + 0.997439i \(0.477212\pi\)
\(84\) 0 0
\(85\) −6.74837 + 8.95461i −0.731964 + 0.971264i
\(86\) −6.67971 + 6.67971i −0.720292 + 0.720292i
\(87\) 0 0
\(88\) −4.45969 −0.475404
\(89\) 8.57916 8.57916i 0.909389 0.909389i −0.0868341 0.996223i \(-0.527675\pi\)
0.996223 + 0.0868341i \(0.0276750\pi\)
\(90\) 0 0
\(91\) −0.817118 + 14.0007i −0.0856573 + 1.46768i
\(92\) −4.34164 −0.452647
\(93\) 0 0
\(94\) −3.02281 −0.311779
\(95\) −7.94192 + 1.11582i −0.814824 + 0.114481i
\(96\) 0 0
\(97\) 5.09718 + 5.09718i 0.517540 + 0.517540i 0.916826 0.399286i \(-0.130742\pi\)
−0.399286 + 0.916826i \(0.630742\pi\)
\(98\) 5.74868 + 5.74868i 0.580704 + 0.580704i
\(99\) 0 0
\(100\) 4.80642 1.37778i 0.480642 0.137778i
\(101\) −15.2866 −1.52107 −0.760537 0.649294i \(-0.775064\pi\)
−0.760537 + 0.649294i \(0.775064\pi\)
\(102\) 0 0
\(103\) 8.69475 0.856719 0.428360 0.903608i \(-0.359092\pi\)
0.428360 + 0.903608i \(0.359092\pi\)
\(104\) −3.59943 0.210072i −0.352953 0.0205992i
\(105\) 0 0
\(106\) 2.27254 2.27254i 0.220729 0.220729i
\(107\) −13.0857 −1.26504 −0.632519 0.774545i \(-0.717979\pi\)
−0.632519 + 0.774545i \(0.717979\pi\)
\(108\) 0 0
\(109\) 5.05685 5.05685i 0.484358 0.484358i −0.422162 0.906520i \(-0.638729\pi\)
0.906520 + 0.422162i \(0.138729\pi\)
\(110\) 6.00173 7.96387i 0.572243 0.759326i
\(111\) 0 0
\(112\) −2.75044 + 2.75044i −0.259892 + 0.259892i
\(113\) 3.80322 0.357777 0.178888 0.983869i \(-0.442750\pi\)
0.178888 + 0.983869i \(0.442750\pi\)
\(114\) 0 0
\(115\) 5.84287 7.75307i 0.544850 0.722978i
\(116\) 5.70547 0.529739
\(117\) 0 0
\(118\) 12.1497i 1.11847i
\(119\) 13.7921 + 13.7921i 1.26432 + 1.26432i
\(120\) 0 0
\(121\) 8.88882i 0.808074i
\(122\) 1.95635 1.95635i 0.177120 0.177120i
\(123\) 0 0
\(124\) 3.60613 + 3.60613i 0.323840 + 0.323840i
\(125\) −4.00799 + 10.4372i −0.358485 + 0.933535i
\(126\) 0 0
\(127\) −2.29829 −0.203940 −0.101970 0.994787i \(-0.532515\pi\)
−0.101970 + 0.994787i \(0.532515\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) 5.21915 6.14496i 0.457750 0.538948i
\(131\) 1.82711i 0.159635i 0.996809 + 0.0798175i \(0.0254338\pi\)
−0.996809 + 0.0798175i \(0.974566\pi\)
\(132\) 0 0
\(133\) 13.9509i 1.20970i
\(134\) 6.80927 0.588231
\(135\) 0 0
\(136\) −3.54578 + 3.54578i −0.304048 + 0.304048i
\(137\) −14.3312 14.3312i −1.22440 1.22440i −0.966053 0.258345i \(-0.916823\pi\)
−0.258345 0.966053i \(-0.583177\pi\)
\(138\) 0 0
\(139\) 21.6325 1.83485 0.917423 0.397914i \(-0.130266\pi\)
0.917423 + 0.397914i \(0.130266\pi\)
\(140\) −1.21012 8.61307i −0.102274 0.727937i
\(141\) 0 0
\(142\) −5.71378 −0.479490
\(143\) 0.936854 16.0523i 0.0783437 1.34236i
\(144\) 0 0
\(145\) −7.67827 + 10.1885i −0.637646 + 0.846111i
\(146\) 0.0655102i 0.00542166i
\(147\) 0 0
\(148\) −4.13155 4.13155i −0.339612 0.339612i
\(149\) 3.50428 + 3.50428i 0.287082 + 0.287082i 0.835925 0.548843i \(-0.184932\pi\)
−0.548843 + 0.835925i \(0.684932\pi\)
\(150\) 0 0
\(151\) −1.47277 1.47277i −0.119853 0.119853i 0.644637 0.764489i \(-0.277009\pi\)
−0.764489 + 0.644637i \(0.777009\pi\)
\(152\) −3.58662 −0.290913
\(153\) 0 0
\(154\) −12.2661 12.2661i −0.988431 0.988431i
\(155\) −11.2927 + 1.58660i −0.907048 + 0.127439i
\(156\) 0 0
\(157\) 18.0021i 1.43672i 0.695671 + 0.718360i \(0.255107\pi\)
−0.695671 + 0.718360i \(0.744893\pi\)
\(158\) 2.15258 2.15258i 0.171250 0.171250i
\(159\) 0 0
\(160\) 2.21432 0.311108i 0.175057 0.0245952i
\(161\) −11.9414 11.9414i −0.941117 0.941117i
\(162\) 0 0
\(163\) 8.04240 8.04240i 0.629929 0.629929i −0.318121 0.948050i \(-0.603052\pi\)
0.948050 + 0.318121i \(0.103052\pi\)
\(164\) 8.67345 8.67345i 0.677283 0.677283i
\(165\) 0 0
\(166\) 11.9295i 0.925911i
\(167\) −3.84580 3.84580i −0.297597 0.297597i 0.542475 0.840072i \(-0.317487\pi\)
−0.840072 + 0.542475i \(0.817487\pi\)
\(168\) 0 0
\(169\) 1.51228 12.9117i 0.116329 0.993211i
\(170\) −1.56005 11.1037i −0.119650 0.851614i
\(171\) 0 0
\(172\) 9.44654i 0.720292i
\(173\) 5.52237i 0.419858i 0.977717 + 0.209929i \(0.0673233\pi\)
−0.977717 + 0.209929i \(0.932677\pi\)
\(174\) 0 0
\(175\) 17.0093 + 9.43027i 1.28578 + 0.712862i
\(176\) 3.15348 3.15348i 0.237702 0.237702i
\(177\) 0 0
\(178\) 12.1328i 0.909389i
\(179\) −7.38088 −0.551673 −0.275837 0.961205i \(-0.588955\pi\)
−0.275837 + 0.961205i \(0.588955\pi\)
\(180\) 0 0
\(181\) 20.9149i 1.55459i 0.629135 + 0.777296i \(0.283409\pi\)
−0.629135 + 0.777296i \(0.716591\pi\)
\(182\) −9.32222 10.4778i −0.691009 0.776666i
\(183\) 0 0
\(184\) 3.07000 3.07000i 0.226324 0.226324i
\(185\) 12.9380 1.81777i 0.951224 0.133645i
\(186\) 0 0
\(187\) −15.8131 15.8131i −1.15637 1.15637i
\(188\) 2.13745 2.13745i 0.155890 0.155890i
\(189\) 0 0
\(190\) 4.82678 6.40479i 0.350171 0.464652i
\(191\) 14.3283i 1.03676i −0.855151 0.518379i \(-0.826536\pi\)
0.855151 0.518379i \(-0.173464\pi\)
\(192\) 0 0
\(193\) 7.61561 7.61561i 0.548184 0.548184i −0.377731 0.925915i \(-0.623296\pi\)
0.925915 + 0.377731i \(0.123296\pi\)
\(194\) −7.20850 −0.517540
\(195\) 0 0
\(196\) −8.12986 −0.580704
\(197\) −0.357634 + 0.357634i −0.0254804 + 0.0254804i −0.719732 0.694252i \(-0.755735\pi\)
0.694252 + 0.719732i \(0.255735\pi\)
\(198\) 0 0
\(199\) 22.2951i 1.58046i −0.612812 0.790229i \(-0.709962\pi\)
0.612812 0.790229i \(-0.290038\pi\)
\(200\) −2.42441 + 4.37290i −0.171432 + 0.309210i
\(201\) 0 0
\(202\) 10.8093 10.8093i 0.760537 0.760537i
\(203\) 15.6926 + 15.6926i 1.10140 + 1.10140i
\(204\) 0 0
\(205\) 3.81608 + 27.1611i 0.266527 + 1.89701i
\(206\) −6.14812 + 6.14812i −0.428360 + 0.428360i
\(207\) 0 0
\(208\) 2.69372 2.39664i 0.186776 0.166177i
\(209\) 15.9952i 1.10641i
\(210\) 0 0
\(211\) 16.2996 1.12211 0.561054 0.827779i \(-0.310396\pi\)
0.561054 + 0.827779i \(0.310396\pi\)
\(212\) 3.21386i 0.220729i
\(213\) 0 0
\(214\) 9.25296 9.25296i 0.632519 0.632519i
\(215\) 16.8691 + 12.7129i 1.15046 + 0.867013i
\(216\) 0 0
\(217\) 19.8369i 1.34661i
\(218\) 7.15147i 0.484358i
\(219\) 0 0
\(220\) 1.38744 + 9.87517i 0.0935414 + 0.665784i
\(221\) −12.0179 13.5076i −0.808412 0.908623i
\(222\) 0 0
\(223\) −17.7721 17.7721i −1.19011 1.19011i −0.977036 0.213073i \(-0.931653\pi\)
−0.213073 0.977036i \(-0.568347\pi\)
\(224\) 3.88971i 0.259892i
\(225\) 0 0
\(226\) −2.68928 + 2.68928i −0.178888 + 0.178888i
\(227\) −10.6055 + 10.6055i −0.703909 + 0.703909i −0.965247 0.261338i \(-0.915836\pi\)
0.261338 + 0.965247i \(0.415836\pi\)
\(228\) 0 0
\(229\) 1.17330 + 1.17330i 0.0775336 + 0.0775336i 0.744810 0.667277i \(-0.232540\pi\)
−0.667277 + 0.744810i \(0.732540\pi\)
\(230\) 1.35072 + 9.61378i 0.0890637 + 0.633914i
\(231\) 0 0
\(232\) −4.03438 + 4.03438i −0.264870 + 0.264870i
\(233\) 18.0187i 1.18044i −0.807242 0.590221i \(-0.799041\pi\)
0.807242 0.590221i \(-0.200959\pi\)
\(234\) 0 0
\(235\) 0.940420 + 6.69347i 0.0613463 + 0.436634i
\(236\) −8.59111 8.59111i −0.559234 0.559234i
\(237\) 0 0
\(238\) −19.5049 −1.26432
\(239\) −8.29254 8.29254i −0.536400 0.536400i 0.386070 0.922470i \(-0.373832\pi\)
−0.922470 + 0.386070i \(0.873832\pi\)
\(240\) 0 0
\(241\) −19.8348 19.8348i −1.27767 1.27767i −0.941969 0.335700i \(-0.891027\pi\)
−0.335700 0.941969i \(-0.608973\pi\)
\(242\) 6.28534 + 6.28534i 0.404037 + 0.404037i
\(243\) 0 0
\(244\) 2.76670i 0.177120i
\(245\) 10.9410 14.5179i 0.698992 0.927513i
\(246\) 0 0
\(247\) 0.753447 12.9098i 0.0479407 0.821429i
\(248\) −5.09983 −0.323840
\(249\) 0 0
\(250\) −4.54617 10.2143i −0.287525 0.646010i
\(251\) −0.799071 −0.0504369 −0.0252184 0.999682i \(-0.508028\pi\)
−0.0252184 + 0.999682i \(0.508028\pi\)
\(252\) 0 0
\(253\) 13.6913 + 13.6913i 0.860762 + 0.860762i
\(254\) 1.62514 1.62514i 0.101970 0.101970i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 5.27299i 0.328920i 0.986384 + 0.164460i \(0.0525882\pi\)
−0.986384 + 0.164460i \(0.947412\pi\)
\(258\) 0 0
\(259\) 22.7272i 1.41220i
\(260\) 0.654644 + 8.03564i 0.0405993 + 0.498349i
\(261\) 0 0
\(262\) −1.29196 1.29196i −0.0798175 0.0798175i
\(263\) 8.58678 0.529484 0.264742 0.964319i \(-0.414713\pi\)
0.264742 + 0.964319i \(0.414713\pi\)
\(264\) 0 0
\(265\) −5.73914 4.32513i −0.352553 0.265691i
\(266\) −9.86478 9.86478i −0.604849 0.604849i
\(267\) 0 0
\(268\) −4.81488 + 4.81488i −0.294115 + 0.294115i
\(269\) 20.8259i 1.26978i 0.772604 + 0.634888i \(0.218954\pi\)
−0.772604 + 0.634888i \(0.781046\pi\)
\(270\) 0 0
\(271\) 12.8558 + 12.8558i 0.780935 + 0.780935i 0.979989 0.199053i \(-0.0637867\pi\)
−0.199053 + 0.979989i \(0.563787\pi\)
\(272\) 5.01449i 0.304048i
\(273\) 0 0
\(274\) 20.2674 1.22440
\(275\) −19.5017 10.8121i −1.17600 0.651996i
\(276\) 0 0
\(277\) −27.3255 −1.64183 −0.820915 0.571051i \(-0.806536\pi\)
−0.820915 + 0.571051i \(0.806536\pi\)
\(278\) −15.2965 + 15.2965i −0.917423 + 0.917423i
\(279\) 0 0
\(280\) 6.94604 + 5.23467i 0.415105 + 0.312832i
\(281\) 8.30339 8.30339i 0.495338 0.495338i −0.414645 0.909983i \(-0.636094\pi\)
0.909983 + 0.414645i \(0.136094\pi\)
\(282\) 0 0
\(283\) 24.5729 1.46071 0.730355 0.683068i \(-0.239355\pi\)
0.730355 + 0.683068i \(0.239355\pi\)
\(284\) 4.04025 4.04025i 0.239745 0.239745i
\(285\) 0 0
\(286\) 10.6882 + 12.0132i 0.632009 + 0.710353i
\(287\) 47.7116 2.81633
\(288\) 0 0
\(289\) −8.14513 −0.479125
\(290\) −1.77502 12.6337i −0.104233 0.741878i
\(291\) 0 0
\(292\) −0.0463227 0.0463227i −0.00271083 0.00271083i
\(293\) −18.1139 18.1139i −1.05822 1.05822i −0.998197 0.0600274i \(-0.980881\pi\)
−0.0600274 0.998197i \(-0.519119\pi\)
\(294\) 0 0
\(295\) 26.9032 3.77986i 1.56637 0.220072i
\(296\) 5.84290 0.339612
\(297\) 0 0
\(298\) −4.95580 −0.287082
\(299\) 10.4053 + 11.6952i 0.601756 + 0.676349i
\(300\) 0 0
\(301\) 25.9821 25.9821i 1.49759 1.49759i
\(302\) 2.08282 0.119853
\(303\) 0 0
\(304\) 2.53612 2.53612i 0.145457 0.145457i
\(305\) −4.94063 3.72336i −0.282900 0.213199i
\(306\) 0 0
\(307\) 5.81587 5.81587i 0.331929 0.331929i −0.521390 0.853319i \(-0.674586\pi\)
0.853319 + 0.521390i \(0.174586\pi\)
\(308\) 17.3469 0.988431
\(309\) 0 0
\(310\) 6.86322 9.10701i 0.389805 0.517243i
\(311\) 11.4481 0.649164 0.324582 0.945858i \(-0.394776\pi\)
0.324582 + 0.945858i \(0.394776\pi\)
\(312\) 0 0
\(313\) 16.2495i 0.918474i −0.888314 0.459237i \(-0.848123\pi\)
0.888314 0.459237i \(-0.151877\pi\)
\(314\) −12.7294 12.7294i −0.718360 0.718360i
\(315\) 0 0
\(316\) 3.04420i 0.171250i
\(317\) 1.23365 1.23365i 0.0692886 0.0692886i −0.671613 0.740902i \(-0.734398\pi\)
0.740902 + 0.671613i \(0.234398\pi\)
\(318\) 0 0
\(319\) −17.9921 17.9921i −1.00736 1.00736i
\(320\) −1.34577 + 1.78575i −0.0752311 + 0.0998263i
\(321\) 0 0
\(322\) 16.8877 0.941117
\(323\) −12.7174 12.7174i −0.707613 0.707613i
\(324\) 0 0
\(325\) −15.2306 9.64512i −0.844842 0.535015i
\(326\) 11.3737i 0.629929i
\(327\) 0 0
\(328\) 12.2661i 0.677283i
\(329\) 11.7579 0.648232
\(330\) 0 0
\(331\) −14.9630 + 14.9630i −0.822443 + 0.822443i −0.986458 0.164015i \(-0.947555\pi\)
0.164015 + 0.986458i \(0.447555\pi\)
\(332\) 8.43545 + 8.43545i 0.462955 + 0.462955i
\(333\) 0 0
\(334\) 5.43879 0.297597
\(335\) −2.11842 15.0779i −0.115741 0.823793i
\(336\) 0 0
\(337\) 20.9471 1.14106 0.570530 0.821277i \(-0.306738\pi\)
0.570530 + 0.821277i \(0.306738\pi\)
\(338\) 8.06064 + 10.1993i 0.438441 + 0.554770i
\(339\) 0 0
\(340\) 8.95461 + 6.74837i 0.485632 + 0.365982i
\(341\) 22.7437i 1.23164i
\(342\) 0 0
\(343\) −3.10761 3.10761i −0.167795 0.167795i
\(344\) 6.67971 + 6.67971i 0.360146 + 0.360146i
\(345\) 0 0
\(346\) −3.90491 3.90491i −0.209929 0.209929i
\(347\) 11.4795 0.616251 0.308126 0.951346i \(-0.400298\pi\)
0.308126 + 0.951346i \(0.400298\pi\)
\(348\) 0 0
\(349\) 3.25043 + 3.25043i 0.173991 + 0.173991i 0.788731 0.614739i \(-0.210739\pi\)
−0.614739 + 0.788731i \(0.710739\pi\)
\(350\) −18.6956 + 5.35918i −0.999322 + 0.286460i
\(351\) 0 0
\(352\) 4.45969i 0.237702i
\(353\) −11.2170 + 11.2170i −0.597019 + 0.597019i −0.939518 0.342499i \(-0.888727\pi\)
0.342499 + 0.939518i \(0.388727\pi\)
\(354\) 0 0
\(355\) 1.77760 + 12.6521i 0.0943453 + 0.671505i
\(356\) −8.57916 8.57916i −0.454694 0.454694i
\(357\) 0 0
\(358\) 5.21907 5.21907i 0.275837 0.275837i
\(359\) −6.74584 + 6.74584i −0.356032 + 0.356032i −0.862348 0.506316i \(-0.831007\pi\)
0.506316 + 0.862348i \(0.331007\pi\)
\(360\) 0 0
\(361\) 6.13617i 0.322956i
\(362\) −14.7891 14.7891i −0.777296 0.777296i
\(363\) 0 0
\(364\) 14.0007 + 0.817118i 0.733838 + 0.0428286i
\(365\) 0.145061 0.0203807i 0.00759281 0.00106678i
\(366\) 0 0
\(367\) 1.34284i 0.0700955i −0.999386 0.0350477i \(-0.988842\pi\)
0.999386 0.0350477i \(-0.0111583\pi\)
\(368\) 4.34164i 0.226324i
\(369\) 0 0
\(370\) −7.86322 + 10.4339i −0.408789 + 0.542435i
\(371\) −8.83953 + 8.83953i −0.458926 + 0.458926i
\(372\) 0 0
\(373\) 1.00977i 0.0522837i −0.999658 0.0261418i \(-0.991678\pi\)
0.999658 0.0261418i \(-0.00832216\pi\)
\(374\) 22.3631 1.15637
\(375\) 0 0
\(376\) 3.02281i 0.155890i
\(377\) −13.6739 15.3689i −0.704243 0.791541i
\(378\) 0 0
\(379\) 23.5294 23.5294i 1.20863 1.20863i 0.237153 0.971472i \(-0.423786\pi\)
0.971472 0.237153i \(-0.0762143\pi\)
\(380\) 1.11582 + 7.94192i 0.0572406 + 0.407412i
\(381\) 0 0
\(382\) 10.1316 + 10.1316i 0.518379 + 0.518379i
\(383\) 20.4310 20.4310i 1.04398 1.04398i 0.0449898 0.998987i \(-0.485674\pi\)
0.998987 0.0449898i \(-0.0143255\pi\)
\(384\) 0 0
\(385\) −23.3450 + 30.9772i −1.18977 + 1.57874i
\(386\) 10.7701i 0.548184i
\(387\) 0 0
\(388\) 5.09718 5.09718i 0.258770 0.258770i
\(389\) −0.672990 −0.0341220 −0.0170610 0.999854i \(-0.505431\pi\)
−0.0170610 + 0.999854i \(0.505431\pi\)
\(390\) 0 0
\(391\) 21.7711 1.10101
\(392\) 5.74868 5.74868i 0.290352 0.290352i
\(393\) 0 0
\(394\) 0.505771i 0.0254804i
\(395\) −5.43617 4.09681i −0.273524 0.206133i
\(396\) 0 0
\(397\) 11.4614 11.4614i 0.575230 0.575230i −0.358355 0.933585i \(-0.616662\pi\)
0.933585 + 0.358355i \(0.116662\pi\)
\(398\) 15.7650 + 15.7650i 0.790229 + 0.790229i
\(399\) 0 0
\(400\) −1.37778 4.80642i −0.0688892 0.240321i
\(401\) −13.7266 + 13.7266i −0.685475 + 0.685475i −0.961228 0.275754i \(-0.911073\pi\)
0.275754 + 0.961228i \(0.411073\pi\)
\(402\) 0 0
\(403\) 1.07133 18.3565i 0.0533668 0.914401i
\(404\) 15.2866i 0.760537i
\(405\) 0 0
\(406\) −22.1926 −1.10140
\(407\) 26.0575i 1.29162i
\(408\) 0 0
\(409\) 15.7819 15.7819i 0.780364 0.780364i −0.199528 0.979892i \(-0.563941\pi\)
0.979892 + 0.199528i \(0.0639409\pi\)
\(410\) −21.9042 16.5074i −1.08177 0.815243i
\(411\) 0 0
\(412\) 8.69475i 0.428360i
\(413\) 47.2587i 2.32545i
\(414\) 0 0
\(415\) −26.4158 + 3.71137i −1.29670 + 0.182184i
\(416\) −0.210072 + 3.59943i −0.0102996 + 0.176476i
\(417\) 0 0
\(418\) 11.3103 + 11.3103i 0.553205 + 0.553205i
\(419\) 0.452702i 0.0221160i −0.999939 0.0110580i \(-0.996480\pi\)
0.999939 0.0110580i \(-0.00351994\pi\)
\(420\) 0 0
\(421\) −16.8812 + 16.8812i −0.822739 + 0.822739i −0.986500 0.163761i \(-0.947637\pi\)
0.163761 + 0.986500i \(0.447637\pi\)
\(422\) −11.5255 + 11.5255i −0.561054 + 0.561054i
\(423\) 0 0
\(424\) −2.27254 2.27254i −0.110364 0.110364i
\(425\) −24.1018 + 6.90889i −1.16911 + 0.335130i
\(426\) 0 0
\(427\) −7.60966 + 7.60966i −0.368257 + 0.368257i
\(428\) 13.0857i 0.632519i
\(429\) 0 0
\(430\) −20.9176 + 2.93889i −1.00874 + 0.141726i
\(431\) 16.1075 + 16.1075i 0.775869 + 0.775869i 0.979126 0.203256i \(-0.0651524\pi\)
−0.203256 + 0.979126i \(0.565152\pi\)
\(432\) 0 0
\(433\) −22.0933 −1.06174 −0.530869 0.847454i \(-0.678134\pi\)
−0.530869 + 0.847454i \(0.678134\pi\)
\(434\) −14.0268 14.0268i −0.673307 0.673307i
\(435\) 0 0
\(436\) −5.05685 5.05685i −0.242179 0.242179i
\(437\) 11.0109 + 11.0109i 0.526724 + 0.526724i
\(438\) 0 0
\(439\) 28.6601i 1.36787i 0.729542 + 0.683936i \(0.239733\pi\)
−0.729542 + 0.683936i \(0.760267\pi\)
\(440\) −7.96387 6.00173i −0.379663 0.286121i
\(441\) 0 0
\(442\) 18.0493 + 1.05340i 0.858517 + 0.0501053i
\(443\) 7.84995 0.372962 0.186481 0.982459i \(-0.440292\pi\)
0.186481 + 0.982459i \(0.440292\pi\)
\(444\) 0 0
\(445\) 26.8658 3.77460i 1.27356 0.178933i
\(446\) 25.1336 1.19011
\(447\) 0 0
\(448\) 2.75044 + 2.75044i 0.129946 + 0.129946i
\(449\) 1.32444 1.32444i 0.0625041 0.0625041i −0.675164 0.737668i \(-0.735927\pi\)
0.737668 + 0.675164i \(0.235927\pi\)
\(450\) 0 0
\(451\) −54.7030 −2.57587
\(452\) 3.80322i 0.178888i
\(453\) 0 0
\(454\) 14.9984i 0.703909i
\(455\) −20.3010 + 23.9021i −0.951725 + 1.12055i
\(456\) 0 0
\(457\) 26.4926 + 26.4926i 1.23927 + 1.23927i 0.960300 + 0.278969i \(0.0899928\pi\)
0.278969 + 0.960300i \(0.410007\pi\)
\(458\) −1.65929 −0.0775336
\(459\) 0 0
\(460\) −7.75307 5.84287i −0.361489 0.272425i
\(461\) −25.6328 25.6328i −1.19384 1.19384i −0.975981 0.217858i \(-0.930093\pi\)
−0.217858 0.975981i \(-0.569907\pi\)
\(462\) 0 0
\(463\) −1.94829 + 1.94829i −0.0905447 + 0.0905447i −0.750928 0.660384i \(-0.770394\pi\)
0.660384 + 0.750928i \(0.270394\pi\)
\(464\) 5.70547i 0.264870i
\(465\) 0 0
\(466\) 12.7411 + 12.7411i 0.590221 + 0.590221i
\(467\) 23.3069i 1.07852i 0.842141 + 0.539258i \(0.181295\pi\)
−0.842141 + 0.539258i \(0.818705\pi\)
\(468\) 0 0
\(469\) −26.4861 −1.22301
\(470\) −5.39798 4.06802i −0.248990 0.187644i
\(471\) 0 0
\(472\) 12.1497 0.559234
\(473\) −29.7894 + 29.7894i −1.36972 + 1.36972i
\(474\) 0 0
\(475\) −15.6839 8.69545i −0.719627 0.398975i
\(476\) 13.7921 13.7921i 0.632158 0.632158i
\(477\) 0 0
\(478\) 11.7274 0.536400
\(479\) 6.77616 6.77616i 0.309610 0.309610i −0.535148 0.844758i \(-0.679744\pi\)
0.844758 + 0.535148i \(0.179744\pi\)
\(480\) 0 0
\(481\) −1.22743 + 21.0311i −0.0559659 + 0.958935i
\(482\) 28.0506 1.27767
\(483\) 0 0
\(484\) −8.88882 −0.404037
\(485\) 2.24262 + 15.9619i 0.101832 + 0.724793i
\(486\) 0 0
\(487\) −25.9766 25.9766i −1.17711 1.17711i −0.980476 0.196638i \(-0.936998\pi\)
−0.196638 0.980476i \(-0.563002\pi\)
\(488\) −1.95635 1.95635i −0.0885600 0.0885600i
\(489\) 0 0
\(490\) 2.52926 + 18.0021i 0.114260 + 0.813252i
\(491\) 32.4284 1.46347 0.731737 0.681587i \(-0.238710\pi\)
0.731737 + 0.681587i \(0.238710\pi\)
\(492\) 0 0
\(493\) −28.6100 −1.28853
\(494\) 8.59582 + 9.66135i 0.386744 + 0.434685i
\(495\) 0 0
\(496\) 3.60613 3.60613i 0.161920 0.161920i
\(497\) 22.2250 0.996925
\(498\) 0 0
\(499\) 2.06919 2.06919i 0.0926295 0.0926295i −0.659274 0.751903i \(-0.729136\pi\)
0.751903 + 0.659274i \(0.229136\pi\)
\(500\) 10.4372 + 4.00799i 0.466768 + 0.179243i
\(501\) 0 0
\(502\) 0.565028 0.565028i 0.0252184 0.0252184i
\(503\) −4.56318 −0.203462 −0.101731 0.994812i \(-0.532438\pi\)
−0.101731 + 0.994812i \(0.532438\pi\)
\(504\) 0 0
\(505\) −27.2980 20.5723i −1.21475 0.915456i
\(506\) −19.3624 −0.860762
\(507\) 0 0
\(508\) 2.29829i 0.101970i
\(509\) 3.80809 + 3.80809i 0.168791 + 0.168791i 0.786448 0.617657i \(-0.211918\pi\)
−0.617657 + 0.786448i \(0.711918\pi\)
\(510\) 0 0
\(511\) 0.254816i 0.0112724i
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −3.72857 3.72857i −0.164460 0.164460i
\(515\) 15.5266 + 11.7012i 0.684185 + 0.515615i
\(516\) 0 0
\(517\) −13.4808 −0.592885
\(518\) 16.0706 + 16.0706i 0.706100 + 0.706100i
\(519\) 0 0
\(520\) −6.14496 5.21915i −0.269474 0.228875i
\(521\) 37.3410i 1.63594i 0.575260 + 0.817970i \(0.304901\pi\)
−0.575260 + 0.817970i \(0.695099\pi\)
\(522\) 0 0
\(523\) 19.5269i 0.853850i 0.904287 + 0.426925i \(0.140403\pi\)
−0.904287 + 0.426925i \(0.859597\pi\)
\(524\) 1.82711 0.0798175
\(525\) 0 0
\(526\) −6.07177 + 6.07177i −0.264742 + 0.264742i
\(527\) −18.0829 18.0829i −0.787703 0.787703i
\(528\) 0 0
\(529\) 4.15015 0.180442
\(530\) 7.11651 0.999857i 0.309122 0.0434310i
\(531\) 0 0
\(532\) 13.9509 0.604849
\(533\) −44.1510 2.57676i −1.91239 0.111612i
\(534\) 0 0
\(535\) −23.3677 17.6103i −1.01027 0.761361i
\(536\) 6.80927i 0.294115i
\(537\) 0 0
\(538\) −14.7261 14.7261i −0.634888 0.634888i
\(539\) 25.6373 + 25.6373i 1.10428 + 1.10428i
\(540\) 0 0
\(541\) −12.1877 12.1877i −0.523991 0.523991i 0.394783 0.918774i \(-0.370820\pi\)
−0.918774 + 0.394783i \(0.870820\pi\)
\(542\) −18.1809 −0.780935
\(543\) 0 0
\(544\) 3.54578 + 3.54578i 0.152024 + 0.152024i
\(545\) 15.8356 2.22488i 0.678324 0.0953033i
\(546\) 0 0
\(547\) 6.83555i 0.292267i −0.989265 0.146133i \(-0.953317\pi\)
0.989265 0.146133i \(-0.0466829\pi\)
\(548\) −14.3312 + 14.3312i −0.612199 + 0.612199i
\(549\) 0 0
\(550\) 21.4351 6.14449i 0.913998 0.262002i
\(551\) −14.4698 14.4698i −0.616433 0.616433i
\(552\) 0 0
\(553\) −8.37290 + 8.37290i −0.356052 + 0.356052i
\(554\) 19.3220 19.3220i 0.820915 0.820915i
\(555\) 0 0
\(556\) 21.6325i 0.917423i
\(557\) −24.2541 24.2541i −1.02768 1.02768i −0.999606 0.0280755i \(-0.991062\pi\)
−0.0280755 0.999606i \(-0.508938\pi\)
\(558\) 0 0
\(559\) −25.4463 + 22.6399i −1.07627 + 0.957566i
\(560\) −8.61307 + 1.21012i −0.363968 + 0.0511369i
\(561\) 0 0
\(562\) 11.7428i 0.495338i
\(563\) 17.1720i 0.723712i 0.932234 + 0.361856i \(0.117857\pi\)
−0.932234 + 0.361856i \(0.882143\pi\)
\(564\) 0 0
\(565\) 6.79159 + 5.11827i 0.285724 + 0.215327i
\(566\) −17.3757 + 17.3757i −0.730355 + 0.730355i
\(567\) 0 0
\(568\) 5.71378i 0.239745i
\(569\) 24.1483 1.01235 0.506174 0.862431i \(-0.331059\pi\)
0.506174 + 0.862431i \(0.331059\pi\)
\(570\) 0 0
\(571\) 27.6629i 1.15765i −0.815450 0.578827i \(-0.803511\pi\)
0.815450 0.578827i \(-0.196489\pi\)
\(572\) −16.0523 0.936854i −0.671181 0.0391718i
\(573\) 0 0
\(574\) −33.7372 + 33.7372i −1.40816 + 1.40816i
\(575\) 20.8678 5.98184i 0.870246 0.249460i
\(576\) 0 0
\(577\) −24.6548 24.6548i −1.02639 1.02639i −0.999642 0.0267515i \(-0.991484\pi\)
−0.0267515 0.999642i \(-0.508516\pi\)
\(578\) 5.75948 5.75948i 0.239563 0.239563i
\(579\) 0 0
\(580\) 10.1885 + 7.67827i 0.423055 + 0.318823i
\(581\) 46.4024i 1.92510i
\(582\) 0 0
\(583\) 10.1348 10.1348i 0.419742 0.419742i
\(584\) 0.0655102 0.00271083
\(585\) 0 0
\(586\) 25.6169 1.05822
\(587\) 16.7940 16.7940i 0.693164 0.693164i −0.269763 0.962927i \(-0.586945\pi\)
0.962927 + 0.269763i \(0.0869453\pi\)
\(588\) 0 0
\(589\) 18.2911i 0.753674i
\(590\) −16.3507 + 21.6962i −0.673148 + 0.893220i
\(591\) 0 0
\(592\) −4.13155 + 4.13155i −0.169806 + 0.169806i
\(593\) −20.8963 20.8963i −0.858109 0.858109i 0.133006 0.991115i \(-0.457537\pi\)
−0.991115 + 0.133006i \(0.957537\pi\)
\(594\) 0 0
\(595\) 6.06814 + 43.1902i 0.248769 + 1.77062i
\(596\) 3.50428 3.50428i 0.143541 0.143541i
\(597\) 0 0
\(598\) −15.6274 0.912056i −0.639053 0.0372967i
\(599\) 0.794778i 0.0324737i −0.999868 0.0162369i \(-0.994831\pi\)
0.999868 0.0162369i \(-0.00516858\pi\)
\(600\) 0 0
\(601\) 10.9711 0.447520 0.223760 0.974644i \(-0.428167\pi\)
0.223760 + 0.974644i \(0.428167\pi\)
\(602\) 36.7443i 1.49759i
\(603\) 0 0
\(604\) −1.47277 + 1.47277i −0.0599263 + 0.0599263i
\(605\) 11.9623 15.8732i 0.486338 0.645336i
\(606\) 0 0
\(607\) 34.3813i 1.39549i 0.716345 + 0.697746i \(0.245814\pi\)
−0.716345 + 0.697746i \(0.754186\pi\)
\(608\) 3.58662i 0.145457i
\(609\) 0 0
\(610\) 6.12637 0.860743i 0.248049 0.0348505i
\(611\) −10.8804 0.635007i −0.440173 0.0256896i
\(612\) 0 0
\(613\) 26.1862 + 26.1862i 1.05765 + 1.05765i 0.998233 + 0.0594159i \(0.0189238\pi\)
0.0594159 + 0.998233i \(0.481076\pi\)
\(614\) 8.22488i 0.331929i
\(615\) 0 0
\(616\) −12.2661 + 12.2661i −0.494216 + 0.494216i
\(617\) 34.4845 34.4845i 1.38829 1.38829i 0.559390 0.828904i \(-0.311035\pi\)
0.828904 0.559390i \(-0.188965\pi\)
\(618\) 0 0
\(619\) 7.32352 + 7.32352i 0.294357 + 0.294357i 0.838799 0.544442i \(-0.183258\pi\)
−0.544442 + 0.838799i \(0.683258\pi\)
\(620\) 1.58660 + 11.2927i 0.0637193 + 0.453524i
\(621\) 0 0
\(622\) −8.09506 + 8.09506i −0.324582 + 0.324582i
\(623\) 47.1929i 1.89075i
\(624\) 0 0
\(625\) −21.2034 + 13.2444i −0.848137 + 0.529777i
\(626\) 11.4901 + 11.4901i 0.459237 + 0.459237i
\(627\) 0 0
\(628\) 18.0021 0.718360
\(629\) 20.7176 + 20.7176i 0.826066 + 0.826066i
\(630\) 0 0
\(631\) 0.00180587 + 0.00180587i 7.18905e−5 + 7.18905e-5i 0.707143 0.707071i \(-0.249984\pi\)
−0.707071 + 0.707143i \(0.749984\pi\)
\(632\) −2.15258 2.15258i −0.0856248 0.0856248i
\(633\) 0 0
\(634\) 1.74464i 0.0692886i
\(635\) −4.10417 3.09298i −0.162869 0.122741i
\(636\) 0 0
\(637\) 19.4843 + 21.8996i 0.771997 + 0.867693i
\(638\) 25.4446 1.00736
\(639\) 0 0
\(640\) −0.311108 2.21432i −0.0122976 0.0875287i
\(641\) −9.37820 −0.370417 −0.185208 0.982699i \(-0.559296\pi\)
−0.185208 + 0.982699i \(0.559296\pi\)
\(642\) 0 0
\(643\) −24.4684 24.4684i −0.964941 0.964941i 0.0344651 0.999406i \(-0.489027\pi\)
−0.999406 + 0.0344651i \(0.989027\pi\)
\(644\) −11.9414 + 11.9414i −0.470558 + 0.470558i
\(645\) 0 0
\(646\) 17.9851 0.707613
\(647\) 48.7901i 1.91814i −0.283174 0.959069i \(-0.591387\pi\)
0.283174 0.959069i \(-0.408613\pi\)
\(648\) 0 0
\(649\) 54.1837i 2.12690i
\(650\) 17.5898 3.94954i 0.689929 0.154914i
\(651\) 0 0
\(652\) −8.04240 8.04240i −0.314965 0.314965i
\(653\) −10.6839 −0.418094 −0.209047 0.977906i \(-0.567036\pi\)
−0.209047 + 0.977906i \(0.567036\pi\)
\(654\) 0 0
\(655\) −2.45887 + 3.26275i −0.0960761 + 0.127486i
\(656\) −8.67345 8.67345i −0.338641 0.338641i
\(657\) 0 0
\(658\) −8.31407 + 8.31407i −0.324116 + 0.324116i
\(659\) 14.9799i 0.583533i −0.956490 0.291767i \(-0.905757\pi\)
0.956490 0.291767i \(-0.0942431\pi\)
\(660\) 0 0
\(661\) 30.0075 + 30.0075i 1.16715 + 1.16715i 0.982874 + 0.184281i \(0.0589958\pi\)
0.184281 + 0.982874i \(0.441004\pi\)
\(662\) 21.1609i 0.822443i
\(663\) 0 0
\(664\) −11.9295 −0.462955
\(665\) −18.7748 + 24.9128i −0.728055 + 0.966077i
\(666\) 0 0
\(667\) 24.7711 0.959141
\(668\) −3.84580 + 3.84580i −0.148799 + 0.148799i
\(669\) 0 0
\(670\) 12.1596 + 9.16373i 0.469767 + 0.354026i
\(671\) 8.72473 8.72473i 0.336815 0.336815i
\(672\) 0 0
\(673\) 31.2419 1.20428 0.602142 0.798389i \(-0.294314\pi\)
0.602142 + 0.798389i \(0.294314\pi\)
\(674\) −14.8118 + 14.8118i −0.570530 + 0.570530i
\(675\) 0 0
\(676\) −12.9117 1.51228i −0.496605 0.0581644i
\(677\) 44.2056 1.69896 0.849480 0.527621i \(-0.176916\pi\)
0.849480 + 0.527621i \(0.176916\pi\)
\(678\) 0 0
\(679\) 28.0390 1.07604
\(680\) −11.1037 + 1.56005i −0.425807 + 0.0598251i
\(681\) 0 0
\(682\) 16.0822 + 16.0822i 0.615819 + 0.615819i
\(683\) 7.36452 + 7.36452i 0.281795 + 0.281795i 0.833825 0.552029i \(-0.186146\pi\)
−0.552029 + 0.833825i \(0.686146\pi\)
\(684\) 0 0
\(685\) −6.30534 44.8785i −0.240915 1.71472i
\(686\) 4.39483 0.167795
\(687\) 0 0
\(688\) −9.44654 −0.360146
\(689\) 8.65724 7.70245i 0.329815 0.293440i
\(690\) 0 0
\(691\) −14.0880 + 14.0880i −0.535932 + 0.535932i −0.922331 0.386400i \(-0.873718\pi\)
0.386400 + 0.922331i \(0.373718\pi\)
\(692\) 5.52237 0.209929
\(693\) 0 0
\(694\) −8.11722 + 8.11722i −0.308126 + 0.308126i
\(695\) 38.6302 + 29.1125i 1.46533 + 1.10430i
\(696\) 0 0
\(697\) −43.4930 + 43.4930i −1.64741 + 1.64741i
\(698\) −4.59680 −0.173991
\(699\) 0 0
\(700\) 9.43027 17.0093i 0.356431 0.642891i
\(701\) 47.3805 1.78954 0.894769 0.446530i \(-0.147340\pi\)
0.894769 + 0.446530i \(0.147340\pi\)
\(702\) 0 0
\(703\) 20.9562i 0.790380i
\(704\) −3.15348 3.15348i −0.118851 0.118851i
\(705\) 0 0
\(706\) 15.8632i 0.597019i
\(707\) −42.0449 + 42.0449i −1.58126 + 1.58126i
\(708\) 0 0
\(709\) −19.6171 19.6171i −0.736736 0.736736i 0.235209 0.971945i \(-0.424423\pi\)
−0.971945 + 0.235209i \(0.924423\pi\)
\(710\) −10.2034 7.68945i −0.382925 0.288580i
\(711\) 0 0
\(712\) 12.1328 0.454694
\(713\) 15.6565 + 15.6565i 0.586341 + 0.586341i
\(714\) 0 0
\(715\) 23.2758 27.4046i 0.870465 1.02487i
\(716\) 7.38088i 0.275837i
\(717\) 0 0
\(718\) 9.54006i 0.356032i
\(719\) −12.4156 −0.463022 −0.231511 0.972832i \(-0.574367\pi\)
−0.231511 + 0.972832i \(0.574367\pi\)
\(720\) 0 0
\(721\) 23.9144 23.9144i 0.890619 0.890619i
\(722\) −4.33893 4.33893i −0.161478 0.161478i
\(723\) 0 0
\(724\) 20.9149 0.777296
\(725\) −27.4229 + 7.86091i −1.01846 + 0.291947i
\(726\) 0 0
\(727\) −10.6658 −0.395571 −0.197786 0.980245i \(-0.563375\pi\)
−0.197786 + 0.980245i \(0.563375\pi\)
\(728\) −10.4778 + 9.32222i −0.388333 + 0.345505i
\(729\) 0 0
\(730\) −0.0881619 + 0.116985i −0.00326302 + 0.00432980i
\(731\) 47.3696i 1.75203i
\(732\) 0 0
\(733\) −15.1798 15.1798i −0.560679 0.560679i 0.368821 0.929500i \(-0.379761\pi\)
−0.929500 + 0.368821i \(0.879761\pi\)
\(734\) 0.949529 + 0.949529i 0.0350477 + 0.0350477i
\(735\) 0 0
\(736\) −3.07000 3.07000i −0.113162 0.113162i
\(737\) 30.3672 1.11859
\(738\) 0 0
\(739\) −24.7127 24.7127i −0.909071 0.909071i 0.0871259 0.996197i \(-0.472232\pi\)
−0.996197 + 0.0871259i \(0.972232\pi\)
\(740\) −1.81777 12.9380i −0.0668226 0.475612i
\(741\) 0 0
\(742\) 12.5010i 0.458926i
\(743\) 3.04326 3.04326i 0.111646 0.111646i −0.649077 0.760723i \(-0.724845\pi\)
0.760723 + 0.649077i \(0.224845\pi\)
\(744\) 0 0
\(745\) 1.54179 + 10.9737i 0.0564867 + 0.402046i
\(746\) 0.714012 + 0.714012i 0.0261418 + 0.0261418i
\(747\) 0 0
\(748\) −15.8131 + 15.8131i −0.578183 + 0.578183i
\(749\) −35.9913 + 35.9913i −1.31510 + 1.31510i
\(750\) 0 0
\(751\) 4.80106i 0.175193i 0.996156 + 0.0875965i \(0.0279186\pi\)
−0.996156 + 0.0875965i \(0.972081\pi\)
\(752\) −2.13745 2.13745i −0.0779448 0.0779448i
\(753\) 0 0
\(754\) 20.5364 + 1.19856i 0.747892 + 0.0436489i
\(755\) −0.647980 4.61202i −0.0235824 0.167849i
\(756\) 0 0
\(757\) 28.0173i 1.01831i 0.860676 + 0.509154i \(0.170041\pi\)
−0.860676 + 0.509154i \(0.829959\pi\)
\(758\) 33.2756i 1.20863i
\(759\) 0 0
\(760\) −6.40479 4.82678i −0.232326 0.175086i
\(761\) 13.1464 13.1464i 0.476555 0.476555i −0.427473 0.904028i \(-0.640596\pi\)
0.904028 + 0.427473i \(0.140596\pi\)
\(762\) 0 0
\(763\) 27.8171i 1.00705i
\(764\) −14.3283 −0.518379
\(765\) 0 0
\(766\) 28.8939i 1.04398i
\(767\) −2.55230 + 43.7318i −0.0921582 + 1.57906i
\(768\) 0 0
\(769\) 13.3941 13.3941i 0.483005 0.483005i −0.423085 0.906090i \(-0.639053\pi\)
0.906090 + 0.423085i \(0.139053\pi\)
\(770\) −5.39676 38.4116i −0.194486 1.38426i
\(771\) 0 0
\(772\) −7.61561 7.61561i −0.274092 0.274092i
\(773\) 0.0474609 0.0474609i 0.00170705 0.00170705i −0.706253 0.707960i \(-0.749616\pi\)
0.707960 + 0.706253i \(0.249616\pi\)
\(774\) 0 0
\(775\) −22.3010 12.3641i −0.801077 0.444132i
\(776\) 7.20850i 0.258770i
\(777\) 0 0
\(778\) 0.475876 0.475876i 0.0170610 0.0170610i
\(779\) −43.9939 −1.57624
\(780\) 0 0
\(781\) −25.4817 −0.911806
\(782\) −15.3945 + 15.3945i −0.550507 + 0.550507i
\(783\) 0 0
\(784\) 8.12986i 0.290352i
\(785\) −24.2267 + 32.1471i −0.864688 + 1.14738i
\(786\) 0 0
\(787\) 29.8056 29.8056i 1.06246 1.06246i 0.0645402 0.997915i \(-0.479442\pi\)
0.997915 0.0645402i \(-0.0205581\pi\)
\(788\) 0.357634 + 0.357634i 0.0127402 + 0.0127402i
\(789\) 0 0
\(790\) 6.74083 0.947075i 0.239828 0.0336954i
\(791\) 10.4605 10.4605i 0.371934 0.371934i
\(792\) 0 0
\(793\) 7.45273 6.63078i 0.264654 0.235466i
\(794\) 16.2088i 0.575230i
\(795\) 0 0
\(796\) −22.2951 −0.790229
\(797\) 44.3374i 1.57051i −0.619173 0.785255i \(-0.712532\pi\)
0.619173 0.785255i \(-0.287468\pi\)
\(798\) 0 0
\(799\) −10.7182 + 10.7182i −0.379184 + 0.379184i
\(800\) 4.37290 + 2.42441i 0.154605 + 0.0857160i
\(801\) 0 0
\(802\) 19.4124i 0.685475i
\(803\) 0.292155i 0.0103099i
\(804\) 0 0
\(805\) −5.25391 37.3948i −0.185176 1.31799i
\(806\) 12.2224 + 13.7375i 0.430517 + 0.483884i
\(807\) 0 0
\(808\) −10.8093 10.8093i −0.380269 0.380269i
\(809\) 12.5026i 0.439567i −0.975549 0.219784i \(-0.929465\pi\)
0.975549 0.219784i \(-0.0705352\pi\)
\(810\) 0 0
\(811\) 21.4521 21.4521i 0.753287 0.753287i −0.221804 0.975091i \(-0.571195\pi\)
0.975091 + 0.221804i \(0.0711946\pi\)
\(812\) 15.6926 15.6926i 0.550701 0.550701i
\(813\) 0 0
\(814\) −18.4254 18.4254i −0.645811 0.645811i
\(815\) 25.1849 3.53844i 0.882190 0.123946i
\(816\) 0 0
\(817\) −23.9576 + 23.9576i −0.838169 + 0.838169i
\(818\) 22.3190i 0.780364i
\(819\) 0 0
\(820\) 27.1611 3.81608i 0.948507 0.133263i
\(821\) 2.76036 + 2.76036i 0.0963373 + 0.0963373i 0.753633 0.657296i \(-0.228300\pi\)
−0.657296 + 0.753633i \(0.728300\pi\)
\(822\) 0 0
\(823\) −6.80286 −0.237133 −0.118566 0.992946i \(-0.537830\pi\)
−0.118566 + 0.992946i \(0.537830\pi\)
\(824\) 6.14812 + 6.14812i 0.214180 + 0.214180i
\(825\) 0 0
\(826\) 33.4170 + 33.4170i 1.16272 + 1.16272i
\(827\) 14.1668 + 14.1668i 0.492627 + 0.492627i 0.909133 0.416506i \(-0.136746\pi\)
−0.416506 + 0.909133i \(0.636746\pi\)
\(828\) 0 0
\(829\) 14.3887i 0.499741i 0.968279 + 0.249870i \(0.0803880\pi\)
−0.968279 + 0.249870i \(0.919612\pi\)
\(830\) 16.0544 21.3031i 0.557258 0.739442i
\(831\) 0 0
\(832\) −2.39664 2.69372i −0.0830884 0.0933880i
\(833\) 40.7671 1.41250
\(834\) 0 0
\(835\) −1.69205 12.0432i −0.0585558 0.416773i
\(836\) −15.9952 −0.553205
\(837\) 0 0
\(838\) 0.320109 + 0.320109i 0.0110580 + 0.0110580i
\(839\) 18.3654 18.3654i 0.634045 0.634045i −0.315035 0.949080i \(-0.602016\pi\)
0.949080 + 0.315035i \(0.102016\pi\)
\(840\) 0 0
\(841\) −3.55237 −0.122496
\(842\) 23.8736i 0.822739i
\(843\) 0 0
\(844\) 16.2996i 0.561054i
\(845\) 20.0768 21.0219i 0.690664 0.723176i
\(846\) 0 0
\(847\) −24.4482 24.4482i −0.840049 0.840049i
\(848\) 3.21386 0.110364
\(849\) 0 0
\(850\) 12.1572 21.9279i 0.416989 0.752119i
\(851\) −17.9377 17.9377i −0.614897 0.614897i
\(852\) 0 0
\(853\) −12.3605 + 12.3605i −0.423215 + 0.423215i −0.886309 0.463094i \(-0.846739\pi\)
0.463094 + 0.886309i \(0.346739\pi\)
\(854\) 10.7617i 0.368257i
\(855\) 0 0
\(856\) −9.25296 9.25296i −0.316260 0.316260i
\(857\) 27.0299i 0.923323i 0.887056 + 0.461661i \(0.152746\pi\)
−0.887056 + 0.461661i \(0.847254\pi\)
\(858\) 0 0
\(859\) −9.73277 −0.332078 −0.166039 0.986119i \(-0.553098\pi\)
−0.166039 + 0.986119i \(0.553098\pi\)
\(860\) 12.7129 16.8691i 0.433506 0.575232i
\(861\) 0 0
\(862\) −22.7794 −0.775869
\(863\) 2.37807 2.37807i 0.0809503 0.0809503i −0.665472 0.746423i \(-0.731770\pi\)
0.746423 + 0.665472i \(0.231770\pi\)
\(864\) 0 0
\(865\) −7.43186 + 9.86156i −0.252691 + 0.335303i
\(866\) 15.6223 15.6223i 0.530869 0.530869i
\(867\) 0 0
\(868\) 19.8369 0.673307
\(869\) 9.59981 9.59981i 0.325651 0.325651i
\(870\) 0 0
\(871\) 24.5095 + 1.43043i 0.830471 + 0.0484684i
\(872\) 7.15147 0.242179
\(873\) 0 0
\(874\) −15.5718 −0.526724
\(875\) 17.6833 + 39.7308i 0.597805 + 1.34314i
\(876\) 0 0
\(877\) −0.650965 0.650965i −0.0219815 0.0219815i 0.696031 0.718012i \(-0.254948\pi\)
−0.718012 + 0.696031i \(0.754948\pi\)
\(878\) −20.2658 20.2658i −0.683936 0.683936i
\(879\) 0 0
\(880\) 9.87517 1.38744i 0.332892 0.0467707i
\(881\) −11.5132 −0.387891 −0.193945 0.981012i \(-0.562128\pi\)
−0.193945 + 0.981012i \(0.562128\pi\)
\(882\) 0 0
\(883\) −1.42033 −0.0477977 −0.0238989 0.999714i \(-0.507608\pi\)
−0.0238989 + 0.999714i \(0.507608\pi\)
\(884\) −13.5076 + 12.0179i −0.454311 + 0.404206i
\(885\) 0 0
\(886\) −5.55075 + 5.55075i −0.186481 + 0.186481i
\(887\) −33.3259 −1.11897 −0.559487 0.828839i \(-0.689002\pi\)
−0.559487 + 0.828839i \(0.689002\pi\)
\(888\) 0 0
\(889\) −6.32132 + 6.32132i −0.212010 + 0.212010i
\(890\) −16.3280 + 21.6660i −0.547314 + 0.726247i
\(891\) 0 0
\(892\) −17.7721 + 17.7721i −0.595055 + 0.595055i
\(893\) −10.8417 −0.362803
\(894\) 0 0
\(895\) −13.1804 9.93300i −0.440572 0.332024i
\(896\) −3.88971 −0.129946
\(897\) 0 0
\(898\) 1.87304i 0.0625041i
\(899\) −20.5746 20.5746i −0.686203 0.686203i
\(900\) 0 0
\(901\) 16.1159i 0.536898i
\(902\) 38.6809 38.6809i 1.28793 1.28793i
\(903\) 0 0
\(904\) 2.68928 + 2.68928i 0.0894442 + 0.0894442i
\(905\) −28.1467 + 37.3487i −0.935629 + 1.24151i
\(906\) 0 0
\(907\) 47.4482 1.57549 0.787747 0.616000i \(-0.211248\pi\)
0.787747 + 0.616000i \(0.211248\pi\)
\(908\) 10.6055 + 10.6055i 0.351954 + 0.351954i
\(909\) 0 0
\(910\) −2.54638 31.2563i −0.0844115 1.03614i
\(911\) 15.7988i 0.523438i 0.965144 + 0.261719i \(0.0842893\pi\)
−0.965144 + 0.261719i \(0.915711\pi\)
\(912\) 0 0
\(913\) 53.2019i 1.76073i
\(914\) −37.4661 −1.23927
\(915\) 0 0
\(916\) 1.17330 1.17330i 0.0387668 0.0387668i
\(917\) 5.02535 + 5.02535i 0.165952 + 0.165952i
\(918\) 0 0
\(919\) −1.84363 −0.0608156 −0.0304078 0.999538i \(-0.509681\pi\)
−0.0304078 + 0.999538i \(0.509681\pi\)
\(920\) 9.61378 1.35072i 0.316957 0.0445319i
\(921\) 0 0
\(922\) 36.2502 1.19384
\(923\) −20.5663 1.20030i −0.676949 0.0395085i
\(924\) 0 0
\(925\) 25.5504 + 14.1656i 0.840092 + 0.465762i
\(926\) 2.75530i 0.0905447i
\(927\) 0 0
\(928\) 4.03438 + 4.03438i 0.132435 + 0.132435i
\(929\) −18.3335 18.3335i −0.601502 0.601502i 0.339209 0.940711i \(-0.389841\pi\)
−0.940711 + 0.339209i \(0.889841\pi\)
\(930\) 0 0
\(931\) 20.6183 + 20.6183i 0.675738 + 0.675738i
\(932\) −18.0187 −0.590221
\(933\) 0 0
\(934\) −16.4805 16.4805i −0.539258 0.539258i
\(935\) −6.95733 49.5190i −0.227529 1.61944i
\(936\) 0 0
\(937\) 9.05077i 0.295676i 0.989012 + 0.147838i \(0.0472314\pi\)
−0.989012 + 0.147838i \(0.952769\pi\)
\(938\) 18.7285 18.7285i 0.611507 0.611507i
\(939\) 0 0
\(940\) 6.69347 0.940420i 0.218317 0.0306731i
\(941\) 22.6872 + 22.6872i 0.739581 + 0.739581i 0.972497 0.232916i \(-0.0748267\pi\)
−0.232916 + 0.972497i \(0.574827\pi\)
\(942\) 0 0
\(943\) 37.6570 37.6570i 1.22628 1.22628i
\(944\) −8.59111 + 8.59111i −0.279617 + 0.279617i
\(945\) 0 0
\(946\) 42.1286i 1.36972i
\(947\) −3.06685 3.06685i −0.0996593 0.0996593i 0.655519 0.755178i \(-0.272450\pi\)
−0.755178 + 0.655519i \(0.772450\pi\)
\(948\) 0 0
\(949\) −0.0137618 + 0.235799i −0.000446728 + 0.00765436i
\(950\) 17.2388 4.94159i 0.559301 0.160326i
\(951\) 0 0
\(952\) 19.5049i 0.632158i
\(953\) 16.1232i 0.522283i −0.965301 0.261142i \(-0.915901\pi\)
0.965301 0.261142i \(-0.0840990\pi\)
\(954\) 0 0
\(955\) 19.2826 25.5867i 0.623971 0.827966i
\(956\) −8.29254 + 8.29254i −0.268200 + 0.268200i
\(957\) 0 0
\(958\) 9.58293i 0.309610i
\(959\) −78.8343 −2.54569
\(960\) 0 0
\(961\) 4.99171i 0.161023i
\(962\) −14.0033 15.7391i −0.451484 0.507450i
\(963\) 0 0
\(964\) −19.8348 + 19.8348i −0.638835 + 0.638835i
\(965\) 23.8485 3.35066i 0.767709 0.107862i
\(966\) 0 0
\(967\) −41.8600 41.8600i −1.34613 1.34613i −0.889824 0.456304i \(-0.849173\pi\)
−0.456304 0.889824i \(-0.650827\pi\)
\(968\) 6.28534 6.28534i 0.202019 0.202019i
\(969\) 0 0
\(970\) −12.8726 9.70101i −0.413313 0.311481i
\(971\) 45.6574i 1.46522i −0.680651 0.732608i \(-0.738303\pi\)
0.680651 0.732608i \(-0.261697\pi\)
\(972\) 0 0
\(973\) 59.4990 59.4990i 1.90745 1.90745i
\(974\) 36.7365 1.17711
\(975\) 0 0
\(976\) 2.76670 0.0885600
\(977\) 10.1014 10.1014i 0.323174 0.323174i −0.526809 0.849983i \(-0.676612\pi\)
0.849983 + 0.526809i \(0.176612\pi\)
\(978\) 0 0
\(979\) 54.1083i 1.72931i
\(980\) −14.5179 10.9410i −0.463756 0.349496i
\(981\) 0 0
\(982\) −22.9303 + 22.9303i −0.731737 + 0.731737i
\(983\) 12.7136 + 12.7136i 0.405501 + 0.405501i 0.880166 0.474666i \(-0.157431\pi\)
−0.474666 + 0.880166i \(0.657431\pi\)
\(984\) 0 0
\(985\) −1.11994 + 0.157349i −0.0356842 + 0.00501356i
\(986\) 20.2303 20.2303i 0.644265 0.644265i
\(987\) 0 0
\(988\) −12.9098 0.753447i −0.410714 0.0239703i
\(989\) 41.0135i 1.30415i
\(990\) 0 0
\(991\) −42.1864 −1.34009 −0.670047 0.742318i \(-0.733726\pi\)
−0.670047 + 0.742318i \(0.733726\pi\)
\(992\) 5.09983i 0.161920i
\(993\) 0 0
\(994\) −15.7154 + 15.7154i −0.498463 + 0.498463i
\(995\) 30.0042 39.8134i 0.951196 1.26217i
\(996\) 0 0
\(997\) 18.4366i 0.583892i 0.956435 + 0.291946i \(0.0943028\pi\)
−0.956435 + 0.291946i \(0.905697\pi\)
\(998\) 2.92627i 0.0926295i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.q.c.629.3 yes 24
3.2 odd 2 inner 1170.2.q.c.629.7 yes 24
5.4 even 2 1170.2.q.d.629.10 yes 24
13.8 odd 4 1170.2.q.d.359.6 yes 24
15.14 odd 2 1170.2.q.d.629.6 yes 24
39.8 even 4 1170.2.q.d.359.10 yes 24
65.34 odd 4 inner 1170.2.q.c.359.7 yes 24
195.164 even 4 inner 1170.2.q.c.359.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1170.2.q.c.359.3 24 195.164 even 4 inner
1170.2.q.c.359.7 yes 24 65.34 odd 4 inner
1170.2.q.c.629.3 yes 24 1.1 even 1 trivial
1170.2.q.c.629.7 yes 24 3.2 odd 2 inner
1170.2.q.d.359.6 yes 24 13.8 odd 4
1170.2.q.d.359.10 yes 24 39.8 even 4
1170.2.q.d.629.6 yes 24 15.14 odd 2
1170.2.q.d.629.10 yes 24 5.4 even 2