Properties

Label 1170.2.q.c.359.7
Level $1170$
Weight $2$
Character 1170.359
Analytic conductor $9.342$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(359,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.359"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.q (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 359.7
Character \(\chi\) \(=\) 1170.359
Dual form 1170.2.q.c.629.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(-1.78575 + 1.34577i) q^{5} +(2.75044 + 2.75044i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-2.21432 - 0.311108i) q^{10} +(3.15348 + 3.15348i) q^{11} +(-2.69372 - 2.39664i) q^{13} +3.88971i q^{14} -1.00000 q^{16} +5.01449i q^{17} +(-2.53612 - 2.53612i) q^{19} +(-1.34577 - 1.78575i) q^{20} +4.45969i q^{22} -4.34164i q^{23} +(1.37778 - 4.80642i) q^{25} +(-0.210072 - 3.59943i) q^{26} +(-2.75044 + 2.75044i) q^{28} +5.70547i q^{29} +(-3.60613 - 3.60613i) q^{31} +(-0.707107 - 0.707107i) q^{32} +(-3.54578 + 3.54578i) q^{34} +(-8.61307 - 1.21012i) q^{35} +(4.13155 + 4.13155i) q^{37} -3.58662i q^{38} +(0.311108 - 2.21432i) q^{40} +(-8.67345 + 8.67345i) q^{41} +9.44654 q^{43} +(-3.15348 + 3.15348i) q^{44} +(3.07000 - 3.07000i) q^{46} +(-2.13745 + 2.13745i) q^{47} +8.12986i q^{49} +(4.37290 - 2.42441i) q^{50} +(2.39664 - 2.69372i) q^{52} +3.21386 q^{53} +(-9.87517 - 1.38744i) q^{55} -3.88971 q^{56} +(-4.03438 + 4.03438i) q^{58} +(-8.59111 - 8.59111i) q^{59} -2.76670 q^{61} -5.09983i q^{62} -1.00000i q^{64} +(8.03564 + 0.654644i) q^{65} +(-4.81488 + 4.81488i) q^{67} -5.01449 q^{68} +(-5.23467 - 6.94604i) q^{70} +(-4.04025 + 4.04025i) q^{71} +(0.0463227 + 0.0463227i) q^{73} +5.84290i q^{74} +(2.53612 - 2.53612i) q^{76} +17.3469i q^{77} -3.04420 q^{79} +(1.78575 - 1.34577i) q^{80} -12.2661 q^{82} +(8.43545 + 8.43545i) q^{83} +(-6.74837 - 8.95461i) q^{85} +(6.67971 + 6.67971i) q^{86} -4.45969 q^{88} +(-8.57916 - 8.57916i) q^{89} +(-0.817118 - 14.0007i) q^{91} +4.34164 q^{92} -3.02281 q^{94} +(7.94192 + 1.11582i) q^{95} +(5.09718 - 5.09718i) q^{97} +(-5.74868 + 5.74868i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 20 q^{13} - 24 q^{16} - 48 q^{19} + 32 q^{25} - 8 q^{31} + 16 q^{34} - 32 q^{37} + 8 q^{40} + 80 q^{43} + 8 q^{46} - 12 q^{52} + 16 q^{55} - 24 q^{58} - 16 q^{61} - 8 q^{67} - 24 q^{70} + 48 q^{73}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −1.78575 + 1.34577i −0.798610 + 0.601848i
\(6\) 0 0
\(7\) 2.75044 + 2.75044i 1.03957 + 1.03957i 0.999184 + 0.0403851i \(0.0128585\pi\)
0.0403851 + 0.999184i \(0.487142\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) −2.21432 0.311108i −0.700229 0.0983809i
\(11\) 3.15348 + 3.15348i 0.950809 + 0.950809i 0.998846 0.0480369i \(-0.0152965\pi\)
−0.0480369 + 0.998846i \(0.515297\pi\)
\(12\) 0 0
\(13\) −2.69372 2.39664i −0.747104 0.664707i
\(14\) 3.88971i 1.03957i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 5.01449i 1.21619i 0.793863 + 0.608096i \(0.208067\pi\)
−0.793863 + 0.608096i \(0.791933\pi\)
\(18\) 0 0
\(19\) −2.53612 2.53612i −0.581826 0.581826i 0.353579 0.935405i \(-0.384965\pi\)
−0.935405 + 0.353579i \(0.884965\pi\)
\(20\) −1.34577 1.78575i −0.300924 0.399305i
\(21\) 0 0
\(22\) 4.45969i 0.950809i
\(23\) 4.34164i 0.905295i −0.891690 0.452647i \(-0.850480\pi\)
0.891690 0.452647i \(-0.149520\pi\)
\(24\) 0 0
\(25\) 1.37778 4.80642i 0.275557 0.961285i
\(26\) −0.210072 3.59943i −0.0411984 0.705906i
\(27\) 0 0
\(28\) −2.75044 + 2.75044i −0.519785 + 0.519785i
\(29\) 5.70547i 1.05948i 0.848160 + 0.529739i \(0.177710\pi\)
−0.848160 + 0.529739i \(0.822290\pi\)
\(30\) 0 0
\(31\) −3.60613 3.60613i −0.647679 0.647679i 0.304752 0.952432i \(-0.401426\pi\)
−0.952432 + 0.304752i \(0.901426\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0 0
\(34\) −3.54578 + 3.54578i −0.608096 + 0.608096i
\(35\) −8.61307 1.21012i −1.45587 0.204548i
\(36\) 0 0
\(37\) 4.13155 + 4.13155i 0.679223 + 0.679223i 0.959824 0.280601i \(-0.0905338\pi\)
−0.280601 + 0.959824i \(0.590534\pi\)
\(38\) 3.58662i 0.581826i
\(39\) 0 0
\(40\) 0.311108 2.21432i 0.0491905 0.350115i
\(41\) −8.67345 + 8.67345i −1.35457 + 1.35457i −0.474088 + 0.880478i \(0.657222\pi\)
−0.880478 + 0.474088i \(0.842778\pi\)
\(42\) 0 0
\(43\) 9.44654 1.44058 0.720292 0.693671i \(-0.244008\pi\)
0.720292 + 0.693671i \(0.244008\pi\)
\(44\) −3.15348 + 3.15348i −0.475404 + 0.475404i
\(45\) 0 0
\(46\) 3.07000 3.07000i 0.452647 0.452647i
\(47\) −2.13745 + 2.13745i −0.311779 + 0.311779i −0.845599 0.533819i \(-0.820756\pi\)
0.533819 + 0.845599i \(0.320756\pi\)
\(48\) 0 0
\(49\) 8.12986i 1.16141i
\(50\) 4.37290 2.42441i 0.618421 0.342864i
\(51\) 0 0
\(52\) 2.39664 2.69372i 0.332354 0.373552i
\(53\) 3.21386 0.441458 0.220729 0.975335i \(-0.429156\pi\)
0.220729 + 0.975335i \(0.429156\pi\)
\(54\) 0 0
\(55\) −9.87517 1.38744i −1.33157 0.187083i
\(56\) −3.88971 −0.519785
\(57\) 0 0
\(58\) −4.03438 + 4.03438i −0.529739 + 0.529739i
\(59\) −8.59111 8.59111i −1.11847 1.11847i −0.991966 0.126501i \(-0.959625\pi\)
−0.126501 0.991966i \(-0.540375\pi\)
\(60\) 0 0
\(61\) −2.76670 −0.354240 −0.177120 0.984189i \(-0.556678\pi\)
−0.177120 + 0.984189i \(0.556678\pi\)
\(62\) 5.09983i 0.647679i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 8.03564 + 0.654644i 0.996698 + 0.0811986i
\(66\) 0 0
\(67\) −4.81488 + 4.81488i −0.588231 + 0.588231i −0.937152 0.348921i \(-0.886548\pi\)
0.348921 + 0.937152i \(0.386548\pi\)
\(68\) −5.01449 −0.608096
\(69\) 0 0
\(70\) −5.23467 6.94604i −0.625663 0.830211i
\(71\) −4.04025 + 4.04025i −0.479490 + 0.479490i −0.904968 0.425479i \(-0.860106\pi\)
0.425479 + 0.904968i \(0.360106\pi\)
\(72\) 0 0
\(73\) 0.0463227 + 0.0463227i 0.00542166 + 0.00542166i 0.709812 0.704391i \(-0.248780\pi\)
−0.704391 + 0.709812i \(0.748780\pi\)
\(74\) 5.84290i 0.679223i
\(75\) 0 0
\(76\) 2.53612 2.53612i 0.290913 0.290913i
\(77\) 17.3469i 1.97686i
\(78\) 0 0
\(79\) −3.04420 −0.342499 −0.171250 0.985228i \(-0.554780\pi\)
−0.171250 + 0.985228i \(0.554780\pi\)
\(80\) 1.78575 1.34577i 0.199653 0.150462i
\(81\) 0 0
\(82\) −12.2661 −1.35457
\(83\) 8.43545 + 8.43545i 0.925911 + 0.925911i 0.997439 0.0715280i \(-0.0227875\pi\)
−0.0715280 + 0.997439i \(0.522788\pi\)
\(84\) 0 0
\(85\) −6.74837 8.95461i −0.731964 0.971264i
\(86\) 6.67971 + 6.67971i 0.720292 + 0.720292i
\(87\) 0 0
\(88\) −4.45969 −0.475404
\(89\) −8.57916 8.57916i −0.909389 0.909389i 0.0868341 0.996223i \(-0.472325\pi\)
−0.996223 + 0.0868341i \(0.972325\pi\)
\(90\) 0 0
\(91\) −0.817118 14.0007i −0.0856573 1.46768i
\(92\) 4.34164 0.452647
\(93\) 0 0
\(94\) −3.02281 −0.311779
\(95\) 7.94192 + 1.11582i 0.814824 + 0.114481i
\(96\) 0 0
\(97\) 5.09718 5.09718i 0.517540 0.517540i −0.399286 0.916826i \(-0.630742\pi\)
0.916826 + 0.399286i \(0.130742\pi\)
\(98\) −5.74868 + 5.74868i −0.580704 + 0.580704i
\(99\) 0 0
\(100\) 4.80642 + 1.37778i 0.480642 + 0.137778i
\(101\) 15.2866 1.52107 0.760537 0.649294i \(-0.224936\pi\)
0.760537 + 0.649294i \(0.224936\pi\)
\(102\) 0 0
\(103\) 8.69475 0.856719 0.428360 0.903608i \(-0.359092\pi\)
0.428360 + 0.903608i \(0.359092\pi\)
\(104\) 3.59943 0.210072i 0.352953 0.0205992i
\(105\) 0 0
\(106\) 2.27254 + 2.27254i 0.220729 + 0.220729i
\(107\) 13.0857 1.26504 0.632519 0.774545i \(-0.282021\pi\)
0.632519 + 0.774545i \(0.282021\pi\)
\(108\) 0 0
\(109\) 5.05685 + 5.05685i 0.484358 + 0.484358i 0.906520 0.422162i \(-0.138729\pi\)
−0.422162 + 0.906520i \(0.638729\pi\)
\(110\) −6.00173 7.96387i −0.572243 0.759326i
\(111\) 0 0
\(112\) −2.75044 2.75044i −0.259892 0.259892i
\(113\) −3.80322 −0.357777 −0.178888 0.983869i \(-0.557250\pi\)
−0.178888 + 0.983869i \(0.557250\pi\)
\(114\) 0 0
\(115\) 5.84287 + 7.75307i 0.544850 + 0.722978i
\(116\) −5.70547 −0.529739
\(117\) 0 0
\(118\) 12.1497i 1.11847i
\(119\) −13.7921 + 13.7921i −1.26432 + 1.26432i
\(120\) 0 0
\(121\) 8.88882i 0.808074i
\(122\) −1.95635 1.95635i −0.177120 0.177120i
\(123\) 0 0
\(124\) 3.60613 3.60613i 0.323840 0.323840i
\(125\) 4.00799 + 10.4372i 0.358485 + 0.933535i
\(126\) 0 0
\(127\) −2.29829 −0.203940 −0.101970 0.994787i \(-0.532515\pi\)
−0.101970 + 0.994787i \(0.532515\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) 5.21915 + 6.14496i 0.457750 + 0.538948i
\(131\) 1.82711i 0.159635i 0.996809 + 0.0798175i \(0.0254338\pi\)
−0.996809 + 0.0798175i \(0.974566\pi\)
\(132\) 0 0
\(133\) 13.9509i 1.20970i
\(134\) −6.80927 −0.588231
\(135\) 0 0
\(136\) −3.54578 3.54578i −0.304048 0.304048i
\(137\) 14.3312 14.3312i 1.22440 1.22440i 0.258345 0.966053i \(-0.416823\pi\)
0.966053 0.258345i \(-0.0831772\pi\)
\(138\) 0 0
\(139\) 21.6325 1.83485 0.917423 0.397914i \(-0.130266\pi\)
0.917423 + 0.397914i \(0.130266\pi\)
\(140\) 1.21012 8.61307i 0.102274 0.727937i
\(141\) 0 0
\(142\) −5.71378 −0.479490
\(143\) −0.936854 16.0523i −0.0783437 1.34236i
\(144\) 0 0
\(145\) −7.67827 10.1885i −0.637646 0.846111i
\(146\) 0.0655102i 0.00542166i
\(147\) 0 0
\(148\) −4.13155 + 4.13155i −0.339612 + 0.339612i
\(149\) −3.50428 + 3.50428i −0.287082 + 0.287082i −0.835925 0.548843i \(-0.815068\pi\)
0.548843 + 0.835925i \(0.315068\pi\)
\(150\) 0 0
\(151\) −1.47277 + 1.47277i −0.119853 + 0.119853i −0.764489 0.644637i \(-0.777009\pi\)
0.644637 + 0.764489i \(0.277009\pi\)
\(152\) 3.58662 0.290913
\(153\) 0 0
\(154\) −12.2661 + 12.2661i −0.988431 + 0.988431i
\(155\) 11.2927 + 1.58660i 0.907048 + 0.127439i
\(156\) 0 0
\(157\) 18.0021i 1.43672i −0.695671 0.718360i \(-0.744893\pi\)
0.695671 0.718360i \(-0.255107\pi\)
\(158\) −2.15258 2.15258i −0.171250 0.171250i
\(159\) 0 0
\(160\) 2.21432 + 0.311108i 0.175057 + 0.0245952i
\(161\) 11.9414 11.9414i 0.941117 0.941117i
\(162\) 0 0
\(163\) 8.04240 + 8.04240i 0.629929 + 0.629929i 0.948050 0.318121i \(-0.103052\pi\)
−0.318121 + 0.948050i \(0.603052\pi\)
\(164\) −8.67345 8.67345i −0.677283 0.677283i
\(165\) 0 0
\(166\) 11.9295i 0.925911i
\(167\) 3.84580 3.84580i 0.297597 0.297597i −0.542475 0.840072i \(-0.682513\pi\)
0.840072 + 0.542475i \(0.182513\pi\)
\(168\) 0 0
\(169\) 1.51228 + 12.9117i 0.116329 + 0.993211i
\(170\) 1.56005 11.1037i 0.119650 0.851614i
\(171\) 0 0
\(172\) 9.44654i 0.720292i
\(173\) 5.52237i 0.419858i 0.977717 + 0.209929i \(0.0673233\pi\)
−0.977717 + 0.209929i \(0.932677\pi\)
\(174\) 0 0
\(175\) 17.0093 9.43027i 1.28578 0.712862i
\(176\) −3.15348 3.15348i −0.237702 0.237702i
\(177\) 0 0
\(178\) 12.1328i 0.909389i
\(179\) 7.38088 0.551673 0.275837 0.961205i \(-0.411045\pi\)
0.275837 + 0.961205i \(0.411045\pi\)
\(180\) 0 0
\(181\) 20.9149i 1.55459i −0.629135 0.777296i \(-0.716591\pi\)
0.629135 0.777296i \(-0.283409\pi\)
\(182\) 9.32222 10.4778i 0.691009 0.776666i
\(183\) 0 0
\(184\) 3.07000 + 3.07000i 0.226324 + 0.226324i
\(185\) −12.9380 1.81777i −0.951224 0.133645i
\(186\) 0 0
\(187\) −15.8131 + 15.8131i −1.15637 + 1.15637i
\(188\) −2.13745 2.13745i −0.155890 0.155890i
\(189\) 0 0
\(190\) 4.82678 + 6.40479i 0.350171 + 0.464652i
\(191\) 14.3283i 1.03676i −0.855151 0.518379i \(-0.826536\pi\)
0.855151 0.518379i \(-0.173464\pi\)
\(192\) 0 0
\(193\) 7.61561 + 7.61561i 0.548184 + 0.548184i 0.925915 0.377731i \(-0.123296\pi\)
−0.377731 + 0.925915i \(0.623296\pi\)
\(194\) 7.20850 0.517540
\(195\) 0 0
\(196\) −8.12986 −0.580704
\(197\) 0.357634 + 0.357634i 0.0254804 + 0.0254804i 0.719732 0.694252i \(-0.244265\pi\)
−0.694252 + 0.719732i \(0.744265\pi\)
\(198\) 0 0
\(199\) 22.2951i 1.58046i 0.612812 + 0.790229i \(0.290038\pi\)
−0.612812 + 0.790229i \(0.709962\pi\)
\(200\) 2.42441 + 4.37290i 0.171432 + 0.309210i
\(201\) 0 0
\(202\) 10.8093 + 10.8093i 0.760537 + 0.760537i
\(203\) −15.6926 + 15.6926i −1.10140 + 1.10140i
\(204\) 0 0
\(205\) 3.81608 27.1611i 0.266527 1.89701i
\(206\) 6.14812 + 6.14812i 0.428360 + 0.428360i
\(207\) 0 0
\(208\) 2.69372 + 2.39664i 0.186776 + 0.166177i
\(209\) 15.9952i 1.10641i
\(210\) 0 0
\(211\) 16.2996 1.12211 0.561054 0.827779i \(-0.310396\pi\)
0.561054 + 0.827779i \(0.310396\pi\)
\(212\) 3.21386i 0.220729i
\(213\) 0 0
\(214\) 9.25296 + 9.25296i 0.632519 + 0.632519i
\(215\) −16.8691 + 12.7129i −1.15046 + 0.867013i
\(216\) 0 0
\(217\) 19.8369i 1.34661i
\(218\) 7.15147i 0.484358i
\(219\) 0 0
\(220\) 1.38744 9.87517i 0.0935414 0.665784i
\(221\) 12.0179 13.5076i 0.808412 0.908623i
\(222\) 0 0
\(223\) −17.7721 + 17.7721i −1.19011 + 1.19011i −0.213073 + 0.977036i \(0.568347\pi\)
−0.977036 + 0.213073i \(0.931653\pi\)
\(224\) 3.88971i 0.259892i
\(225\) 0 0
\(226\) −2.68928 2.68928i −0.178888 0.178888i
\(227\) 10.6055 + 10.6055i 0.703909 + 0.703909i 0.965247 0.261338i \(-0.0841638\pi\)
−0.261338 + 0.965247i \(0.584164\pi\)
\(228\) 0 0
\(229\) 1.17330 1.17330i 0.0775336 0.0775336i −0.667277 0.744810i \(-0.732540\pi\)
0.744810 + 0.667277i \(0.232540\pi\)
\(230\) −1.35072 + 9.61378i −0.0890637 + 0.633914i
\(231\) 0 0
\(232\) −4.03438 4.03438i −0.264870 0.264870i
\(233\) 18.0187i 1.18044i −0.807242 0.590221i \(-0.799041\pi\)
0.807242 0.590221i \(-0.200959\pi\)
\(234\) 0 0
\(235\) 0.940420 6.69347i 0.0613463 0.436634i
\(236\) 8.59111 8.59111i 0.559234 0.559234i
\(237\) 0 0
\(238\) −19.5049 −1.26432
\(239\) 8.29254 8.29254i 0.536400 0.536400i −0.386070 0.922470i \(-0.626168\pi\)
0.922470 + 0.386070i \(0.126168\pi\)
\(240\) 0 0
\(241\) −19.8348 + 19.8348i −1.27767 + 1.27767i −0.335700 + 0.941969i \(0.608973\pi\)
−0.941969 + 0.335700i \(0.891027\pi\)
\(242\) −6.28534 + 6.28534i −0.404037 + 0.404037i
\(243\) 0 0
\(244\) 2.76670i 0.177120i
\(245\) −10.9410 14.5179i −0.698992 0.927513i
\(246\) 0 0
\(247\) 0.753447 + 12.9098i 0.0479407 + 0.821429i
\(248\) 5.09983 0.323840
\(249\) 0 0
\(250\) −4.54617 + 10.2143i −0.287525 + 0.646010i
\(251\) 0.799071 0.0504369 0.0252184 0.999682i \(-0.491972\pi\)
0.0252184 + 0.999682i \(0.491972\pi\)
\(252\) 0 0
\(253\) 13.6913 13.6913i 0.860762 0.860762i
\(254\) −1.62514 1.62514i −0.101970 0.101970i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 5.27299i 0.328920i 0.986384 + 0.164460i \(0.0525882\pi\)
−0.986384 + 0.164460i \(0.947412\pi\)
\(258\) 0 0
\(259\) 22.7272i 1.41220i
\(260\) −0.654644 + 8.03564i −0.0405993 + 0.498349i
\(261\) 0 0
\(262\) −1.29196 + 1.29196i −0.0798175 + 0.0798175i
\(263\) −8.58678 −0.529484 −0.264742 0.964319i \(-0.585287\pi\)
−0.264742 + 0.964319i \(0.585287\pi\)
\(264\) 0 0
\(265\) −5.73914 + 4.32513i −0.352553 + 0.265691i
\(266\) 9.86478 9.86478i 0.604849 0.604849i
\(267\) 0 0
\(268\) −4.81488 4.81488i −0.294115 0.294115i
\(269\) 20.8259i 1.26978i 0.772604 + 0.634888i \(0.218954\pi\)
−0.772604 + 0.634888i \(0.781046\pi\)
\(270\) 0 0
\(271\) 12.8558 12.8558i 0.780935 0.780935i −0.199053 0.979989i \(-0.563787\pi\)
0.979989 + 0.199053i \(0.0637867\pi\)
\(272\) 5.01449i 0.304048i
\(273\) 0 0
\(274\) 20.2674 1.22440
\(275\) 19.5017 10.8121i 1.17600 0.651996i
\(276\) 0 0
\(277\) −27.3255 −1.64183 −0.820915 0.571051i \(-0.806536\pi\)
−0.820915 + 0.571051i \(0.806536\pi\)
\(278\) 15.2965 + 15.2965i 0.917423 + 0.917423i
\(279\) 0 0
\(280\) 6.94604 5.23467i 0.415105 0.312832i
\(281\) −8.30339 8.30339i −0.495338 0.495338i 0.414645 0.909983i \(-0.363906\pi\)
−0.909983 + 0.414645i \(0.863906\pi\)
\(282\) 0 0
\(283\) 24.5729 1.46071 0.730355 0.683068i \(-0.239355\pi\)
0.730355 + 0.683068i \(0.239355\pi\)
\(284\) −4.04025 4.04025i −0.239745 0.239745i
\(285\) 0 0
\(286\) 10.6882 12.0132i 0.632009 0.710353i
\(287\) −47.7116 −2.81633
\(288\) 0 0
\(289\) −8.14513 −0.479125
\(290\) 1.77502 12.6337i 0.104233 0.741878i
\(291\) 0 0
\(292\) −0.0463227 + 0.0463227i −0.00271083 + 0.00271083i
\(293\) 18.1139 18.1139i 1.05822 1.05822i 0.0600274 0.998197i \(-0.480881\pi\)
0.998197 0.0600274i \(-0.0191188\pi\)
\(294\) 0 0
\(295\) 26.9032 + 3.77986i 1.56637 + 0.220072i
\(296\) −5.84290 −0.339612
\(297\) 0 0
\(298\) −4.95580 −0.287082
\(299\) −10.4053 + 11.6952i −0.601756 + 0.676349i
\(300\) 0 0
\(301\) 25.9821 + 25.9821i 1.49759 + 1.49759i
\(302\) −2.08282 −0.119853
\(303\) 0 0
\(304\) 2.53612 + 2.53612i 0.145457 + 0.145457i
\(305\) 4.94063 3.72336i 0.282900 0.213199i
\(306\) 0 0
\(307\) 5.81587 + 5.81587i 0.331929 + 0.331929i 0.853319 0.521390i \(-0.174586\pi\)
−0.521390 + 0.853319i \(0.674586\pi\)
\(308\) −17.3469 −0.988431
\(309\) 0 0
\(310\) 6.86322 + 9.10701i 0.389805 + 0.517243i
\(311\) −11.4481 −0.649164 −0.324582 0.945858i \(-0.605224\pi\)
−0.324582 + 0.945858i \(0.605224\pi\)
\(312\) 0 0
\(313\) 16.2495i 0.918474i 0.888314 + 0.459237i \(0.151877\pi\)
−0.888314 + 0.459237i \(0.848123\pi\)
\(314\) 12.7294 12.7294i 0.718360 0.718360i
\(315\) 0 0
\(316\) 3.04420i 0.171250i
\(317\) −1.23365 1.23365i −0.0692886 0.0692886i 0.671613 0.740902i \(-0.265602\pi\)
−0.740902 + 0.671613i \(0.765602\pi\)
\(318\) 0 0
\(319\) −17.9921 + 17.9921i −1.00736 + 1.00736i
\(320\) 1.34577 + 1.78575i 0.0752311 + 0.0998263i
\(321\) 0 0
\(322\) 16.8877 0.941117
\(323\) 12.7174 12.7174i 0.707613 0.707613i
\(324\) 0 0
\(325\) −15.2306 + 9.64512i −0.844842 + 0.535015i
\(326\) 11.3737i 0.629929i
\(327\) 0 0
\(328\) 12.2661i 0.677283i
\(329\) −11.7579 −0.648232
\(330\) 0 0
\(331\) −14.9630 14.9630i −0.822443 0.822443i 0.164015 0.986458i \(-0.447555\pi\)
−0.986458 + 0.164015i \(0.947555\pi\)
\(332\) −8.43545 + 8.43545i −0.462955 + 0.462955i
\(333\) 0 0
\(334\) 5.43879 0.297597
\(335\) 2.11842 15.0779i 0.115741 0.823793i
\(336\) 0 0
\(337\) 20.9471 1.14106 0.570530 0.821277i \(-0.306738\pi\)
0.570530 + 0.821277i \(0.306738\pi\)
\(338\) −8.06064 + 10.1993i −0.438441 + 0.554770i
\(339\) 0 0
\(340\) 8.95461 6.74837i 0.485632 0.365982i
\(341\) 22.7437i 1.23164i
\(342\) 0 0
\(343\) −3.10761 + 3.10761i −0.167795 + 0.167795i
\(344\) −6.67971 + 6.67971i −0.360146 + 0.360146i
\(345\) 0 0
\(346\) −3.90491 + 3.90491i −0.209929 + 0.209929i
\(347\) −11.4795 −0.616251 −0.308126 0.951346i \(-0.599702\pi\)
−0.308126 + 0.951346i \(0.599702\pi\)
\(348\) 0 0
\(349\) 3.25043 3.25043i 0.173991 0.173991i −0.614739 0.788731i \(-0.710739\pi\)
0.788731 + 0.614739i \(0.210739\pi\)
\(350\) 18.6956 + 5.35918i 0.999322 + 0.286460i
\(351\) 0 0
\(352\) 4.45969i 0.237702i
\(353\) 11.2170 + 11.2170i 0.597019 + 0.597019i 0.939518 0.342499i \(-0.111273\pi\)
−0.342499 + 0.939518i \(0.611273\pi\)
\(354\) 0 0
\(355\) 1.77760 12.6521i 0.0943453 0.671505i
\(356\) 8.57916 8.57916i 0.454694 0.454694i
\(357\) 0 0
\(358\) 5.21907 + 5.21907i 0.275837 + 0.275837i
\(359\) 6.74584 + 6.74584i 0.356032 + 0.356032i 0.862348 0.506316i \(-0.168993\pi\)
−0.506316 + 0.862348i \(0.668993\pi\)
\(360\) 0 0
\(361\) 6.13617i 0.322956i
\(362\) 14.7891 14.7891i 0.777296 0.777296i
\(363\) 0 0
\(364\) 14.0007 0.817118i 0.733838 0.0428286i
\(365\) −0.145061 0.0203807i −0.00759281 0.00106678i
\(366\) 0 0
\(367\) 1.34284i 0.0700955i 0.999386 + 0.0350477i \(0.0111583\pi\)
−0.999386 + 0.0350477i \(0.988842\pi\)
\(368\) 4.34164i 0.226324i
\(369\) 0 0
\(370\) −7.86322 10.4339i −0.408789 0.542435i
\(371\) 8.83953 + 8.83953i 0.458926 + 0.458926i
\(372\) 0 0
\(373\) 1.00977i 0.0522837i 0.999658 + 0.0261418i \(0.00832216\pi\)
−0.999658 + 0.0261418i \(0.991678\pi\)
\(374\) −22.3631 −1.15637
\(375\) 0 0
\(376\) 3.02281i 0.155890i
\(377\) 13.6739 15.3689i 0.704243 0.791541i
\(378\) 0 0
\(379\) 23.5294 + 23.5294i 1.20863 + 1.20863i 0.971472 + 0.237153i \(0.0762143\pi\)
0.237153 + 0.971472i \(0.423786\pi\)
\(380\) −1.11582 + 7.94192i −0.0572406 + 0.407412i
\(381\) 0 0
\(382\) 10.1316 10.1316i 0.518379 0.518379i
\(383\) −20.4310 20.4310i −1.04398 1.04398i −0.998987 0.0449898i \(-0.985674\pi\)
−0.0449898 0.998987i \(-0.514326\pi\)
\(384\) 0 0
\(385\) −23.3450 30.9772i −1.18977 1.57874i
\(386\) 10.7701i 0.548184i
\(387\) 0 0
\(388\) 5.09718 + 5.09718i 0.258770 + 0.258770i
\(389\) 0.672990 0.0341220 0.0170610 0.999854i \(-0.494569\pi\)
0.0170610 + 0.999854i \(0.494569\pi\)
\(390\) 0 0
\(391\) 21.7711 1.10101
\(392\) −5.74868 5.74868i −0.290352 0.290352i
\(393\) 0 0
\(394\) 0.505771i 0.0254804i
\(395\) 5.43617 4.09681i 0.273524 0.206133i
\(396\) 0 0
\(397\) 11.4614 + 11.4614i 0.575230 + 0.575230i 0.933585 0.358355i \(-0.116662\pi\)
−0.358355 + 0.933585i \(0.616662\pi\)
\(398\) −15.7650 + 15.7650i −0.790229 + 0.790229i
\(399\) 0 0
\(400\) −1.37778 + 4.80642i −0.0688892 + 0.240321i
\(401\) 13.7266 + 13.7266i 0.685475 + 0.685475i 0.961228 0.275754i \(-0.0889274\pi\)
−0.275754 + 0.961228i \(0.588927\pi\)
\(402\) 0 0
\(403\) 1.07133 + 18.3565i 0.0533668 + 0.914401i
\(404\) 15.2866i 0.760537i
\(405\) 0 0
\(406\) −22.1926 −1.10140
\(407\) 26.0575i 1.29162i
\(408\) 0 0
\(409\) 15.7819 + 15.7819i 0.780364 + 0.780364i 0.979892 0.199528i \(-0.0639409\pi\)
−0.199528 + 0.979892i \(0.563941\pi\)
\(410\) 21.9042 16.5074i 1.08177 0.815243i
\(411\) 0 0
\(412\) 8.69475i 0.428360i
\(413\) 47.2587i 2.32545i
\(414\) 0 0
\(415\) −26.4158 3.71137i −1.29670 0.182184i
\(416\) 0.210072 + 3.59943i 0.0102996 + 0.176476i
\(417\) 0 0
\(418\) 11.3103 11.3103i 0.553205 0.553205i
\(419\) 0.452702i 0.0221160i −0.999939 0.0110580i \(-0.996480\pi\)
0.999939 0.0110580i \(-0.00351994\pi\)
\(420\) 0 0
\(421\) −16.8812 16.8812i −0.822739 0.822739i 0.163761 0.986500i \(-0.447637\pi\)
−0.986500 + 0.163761i \(0.947637\pi\)
\(422\) 11.5255 + 11.5255i 0.561054 + 0.561054i
\(423\) 0 0
\(424\) −2.27254 + 2.27254i −0.110364 + 0.110364i
\(425\) 24.1018 + 6.90889i 1.16911 + 0.335130i
\(426\) 0 0
\(427\) −7.60966 7.60966i −0.368257 0.368257i
\(428\) 13.0857i 0.632519i
\(429\) 0 0
\(430\) −20.9176 2.93889i −1.00874 0.141726i
\(431\) −16.1075 + 16.1075i −0.775869 + 0.775869i −0.979126 0.203256i \(-0.934848\pi\)
0.203256 + 0.979126i \(0.434848\pi\)
\(432\) 0 0
\(433\) −22.0933 −1.06174 −0.530869 0.847454i \(-0.678134\pi\)
−0.530869 + 0.847454i \(0.678134\pi\)
\(434\) 14.0268 14.0268i 0.673307 0.673307i
\(435\) 0 0
\(436\) −5.05685 + 5.05685i −0.242179 + 0.242179i
\(437\) −11.0109 + 11.0109i −0.526724 + 0.526724i
\(438\) 0 0
\(439\) 28.6601i 1.36787i −0.729542 0.683936i \(-0.760267\pi\)
0.729542 0.683936i \(-0.239733\pi\)
\(440\) 7.96387 6.00173i 0.379663 0.286121i
\(441\) 0 0
\(442\) 18.0493 1.05340i 0.858517 0.0501053i
\(443\) −7.84995 −0.372962 −0.186481 0.982459i \(-0.559708\pi\)
−0.186481 + 0.982459i \(0.559708\pi\)
\(444\) 0 0
\(445\) 26.8658 + 3.77460i 1.27356 + 0.178933i
\(446\) −25.1336 −1.19011
\(447\) 0 0
\(448\) 2.75044 2.75044i 0.129946 0.129946i
\(449\) −1.32444 1.32444i −0.0625041 0.0625041i 0.675164 0.737668i \(-0.264073\pi\)
−0.737668 + 0.675164i \(0.764073\pi\)
\(450\) 0 0
\(451\) −54.7030 −2.57587
\(452\) 3.80322i 0.178888i
\(453\) 0 0
\(454\) 14.9984i 0.703909i
\(455\) 20.3010 + 23.9021i 0.951725 + 1.12055i
\(456\) 0 0
\(457\) 26.4926 26.4926i 1.23927 1.23927i 0.278969 0.960300i \(-0.410007\pi\)
0.960300 0.278969i \(-0.0899928\pi\)
\(458\) 1.65929 0.0775336
\(459\) 0 0
\(460\) −7.75307 + 5.84287i −0.361489 + 0.272425i
\(461\) 25.6328 25.6328i 1.19384 1.19384i 0.217858 0.975981i \(-0.430093\pi\)
0.975981 0.217858i \(-0.0699069\pi\)
\(462\) 0 0
\(463\) −1.94829 1.94829i −0.0905447 0.0905447i 0.660384 0.750928i \(-0.270394\pi\)
−0.750928 + 0.660384i \(0.770394\pi\)
\(464\) 5.70547i 0.264870i
\(465\) 0 0
\(466\) 12.7411 12.7411i 0.590221 0.590221i
\(467\) 23.3069i 1.07852i 0.842141 + 0.539258i \(0.181295\pi\)
−0.842141 + 0.539258i \(0.818705\pi\)
\(468\) 0 0
\(469\) −26.4861 −1.22301
\(470\) 5.39798 4.06802i 0.248990 0.187644i
\(471\) 0 0
\(472\) 12.1497 0.559234
\(473\) 29.7894 + 29.7894i 1.36972 + 1.36972i
\(474\) 0 0
\(475\) −15.6839 + 8.69545i −0.719627 + 0.398975i
\(476\) −13.7921 13.7921i −0.632158 0.632158i
\(477\) 0 0
\(478\) 11.7274 0.536400
\(479\) −6.77616 6.77616i −0.309610 0.309610i 0.535148 0.844758i \(-0.320256\pi\)
−0.844758 + 0.535148i \(0.820256\pi\)
\(480\) 0 0
\(481\) −1.22743 21.0311i −0.0559659 0.958935i
\(482\) −28.0506 −1.27767
\(483\) 0 0
\(484\) −8.88882 −0.404037
\(485\) −2.24262 + 15.9619i −0.101832 + 0.724793i
\(486\) 0 0
\(487\) −25.9766 + 25.9766i −1.17711 + 1.17711i −0.196638 + 0.980476i \(0.563002\pi\)
−0.980476 + 0.196638i \(0.936998\pi\)
\(488\) 1.95635 1.95635i 0.0885600 0.0885600i
\(489\) 0 0
\(490\) 2.52926 18.0021i 0.114260 0.813252i
\(491\) −32.4284 −1.46347 −0.731737 0.681587i \(-0.761290\pi\)
−0.731737 + 0.681587i \(0.761290\pi\)
\(492\) 0 0
\(493\) −28.6100 −1.28853
\(494\) −8.59582 + 9.66135i −0.386744 + 0.434685i
\(495\) 0 0
\(496\) 3.60613 + 3.60613i 0.161920 + 0.161920i
\(497\) −22.2250 −0.996925
\(498\) 0 0
\(499\) 2.06919 + 2.06919i 0.0926295 + 0.0926295i 0.751903 0.659274i \(-0.229136\pi\)
−0.659274 + 0.751903i \(0.729136\pi\)
\(500\) −10.4372 + 4.00799i −0.466768 + 0.179243i
\(501\) 0 0
\(502\) 0.565028 + 0.565028i 0.0252184 + 0.0252184i
\(503\) 4.56318 0.203462 0.101731 0.994812i \(-0.467562\pi\)
0.101731 + 0.994812i \(0.467562\pi\)
\(504\) 0 0
\(505\) −27.2980 + 20.5723i −1.21475 + 0.915456i
\(506\) 19.3624 0.860762
\(507\) 0 0
\(508\) 2.29829i 0.101970i
\(509\) −3.80809 + 3.80809i −0.168791 + 0.168791i −0.786448 0.617657i \(-0.788082\pi\)
0.617657 + 0.786448i \(0.288082\pi\)
\(510\) 0 0
\(511\) 0.254816i 0.0112724i
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) −3.72857 + 3.72857i −0.164460 + 0.164460i
\(515\) −15.5266 + 11.7012i −0.684185 + 0.515615i
\(516\) 0 0
\(517\) −13.4808 −0.592885
\(518\) −16.0706 + 16.0706i −0.706100 + 0.706100i
\(519\) 0 0
\(520\) −6.14496 + 5.21915i −0.269474 + 0.228875i
\(521\) 37.3410i 1.63594i 0.575260 + 0.817970i \(0.304901\pi\)
−0.575260 + 0.817970i \(0.695099\pi\)
\(522\) 0 0
\(523\) 19.5269i 0.853850i −0.904287 0.426925i \(-0.859597\pi\)
0.904287 0.426925i \(-0.140403\pi\)
\(524\) −1.82711 −0.0798175
\(525\) 0 0
\(526\) −6.07177 6.07177i −0.264742 0.264742i
\(527\) 18.0829 18.0829i 0.787703 0.787703i
\(528\) 0 0
\(529\) 4.15015 0.180442
\(530\) −7.11651 0.999857i −0.309122 0.0434310i
\(531\) 0 0
\(532\) 13.9509 0.604849
\(533\) 44.1510 2.57676i 1.91239 0.111612i
\(534\) 0 0
\(535\) −23.3677 + 17.6103i −1.01027 + 0.761361i
\(536\) 6.80927i 0.294115i
\(537\) 0 0
\(538\) −14.7261 + 14.7261i −0.634888 + 0.634888i
\(539\) −25.6373 + 25.6373i −1.10428 + 1.10428i
\(540\) 0 0
\(541\) −12.1877 + 12.1877i −0.523991 + 0.523991i −0.918774 0.394783i \(-0.870820\pi\)
0.394783 + 0.918774i \(0.370820\pi\)
\(542\) 18.1809 0.780935
\(543\) 0 0
\(544\) 3.54578 3.54578i 0.152024 0.152024i
\(545\) −15.8356 2.22488i −0.678324 0.0953033i
\(546\) 0 0
\(547\) 6.83555i 0.292267i 0.989265 + 0.146133i \(0.0466829\pi\)
−0.989265 + 0.146133i \(0.953317\pi\)
\(548\) 14.3312 + 14.3312i 0.612199 + 0.612199i
\(549\) 0 0
\(550\) 21.4351 + 6.14449i 0.913998 + 0.262002i
\(551\) 14.4698 14.4698i 0.616433 0.616433i
\(552\) 0 0
\(553\) −8.37290 8.37290i −0.356052 0.356052i
\(554\) −19.3220 19.3220i −0.820915 0.820915i
\(555\) 0 0
\(556\) 21.6325i 0.917423i
\(557\) 24.2541 24.2541i 1.02768 1.02768i 0.0280755 0.999606i \(-0.491062\pi\)
0.999606 0.0280755i \(-0.00893788\pi\)
\(558\) 0 0
\(559\) −25.4463 22.6399i −1.07627 0.957566i
\(560\) 8.61307 + 1.21012i 0.363968 + 0.0511369i
\(561\) 0 0
\(562\) 11.7428i 0.495338i
\(563\) 17.1720i 0.723712i 0.932234 + 0.361856i \(0.117857\pi\)
−0.932234 + 0.361856i \(0.882143\pi\)
\(564\) 0 0
\(565\) 6.79159 5.11827i 0.285724 0.215327i
\(566\) 17.3757 + 17.3757i 0.730355 + 0.730355i
\(567\) 0 0
\(568\) 5.71378i 0.239745i
\(569\) −24.1483 −1.01235 −0.506174 0.862431i \(-0.668941\pi\)
−0.506174 + 0.862431i \(0.668941\pi\)
\(570\) 0 0
\(571\) 27.6629i 1.15765i 0.815450 + 0.578827i \(0.196489\pi\)
−0.815450 + 0.578827i \(0.803511\pi\)
\(572\) 16.0523 0.936854i 0.671181 0.0391718i
\(573\) 0 0
\(574\) −33.7372 33.7372i −1.40816 1.40816i
\(575\) −20.8678 5.98184i −0.870246 0.249460i
\(576\) 0 0
\(577\) −24.6548 + 24.6548i −1.02639 + 1.02639i −0.0267515 + 0.999642i \(0.508516\pi\)
−0.999642 + 0.0267515i \(0.991484\pi\)
\(578\) −5.75948 5.75948i −0.239563 0.239563i
\(579\) 0 0
\(580\) 10.1885 7.67827i 0.423055 0.318823i
\(581\) 46.4024i 1.92510i
\(582\) 0 0
\(583\) 10.1348 + 10.1348i 0.419742 + 0.419742i
\(584\) −0.0655102 −0.00271083
\(585\) 0 0
\(586\) 25.6169 1.05822
\(587\) −16.7940 16.7940i −0.693164 0.693164i 0.269763 0.962927i \(-0.413055\pi\)
−0.962927 + 0.269763i \(0.913055\pi\)
\(588\) 0 0
\(589\) 18.2911i 0.753674i
\(590\) 16.3507 + 21.6962i 0.673148 + 0.893220i
\(591\) 0 0
\(592\) −4.13155 4.13155i −0.169806 0.169806i
\(593\) 20.8963 20.8963i 0.858109 0.858109i −0.133006 0.991115i \(-0.542463\pi\)
0.991115 + 0.133006i \(0.0424630\pi\)
\(594\) 0 0
\(595\) 6.06814 43.1902i 0.248769 1.77062i
\(596\) −3.50428 3.50428i −0.143541 0.143541i
\(597\) 0 0
\(598\) −15.6274 + 0.912056i −0.639053 + 0.0372967i
\(599\) 0.794778i 0.0324737i −0.999868 0.0162369i \(-0.994831\pi\)
0.999868 0.0162369i \(-0.00516858\pi\)
\(600\) 0 0
\(601\) 10.9711 0.447520 0.223760 0.974644i \(-0.428167\pi\)
0.223760 + 0.974644i \(0.428167\pi\)
\(602\) 36.7443i 1.49759i
\(603\) 0 0
\(604\) −1.47277 1.47277i −0.0599263 0.0599263i
\(605\) −11.9623 15.8732i −0.486338 0.645336i
\(606\) 0 0
\(607\) 34.3813i 1.39549i −0.716345 0.697746i \(-0.754186\pi\)
0.716345 0.697746i \(-0.245814\pi\)
\(608\) 3.58662i 0.145457i
\(609\) 0 0
\(610\) 6.12637 + 0.860743i 0.248049 + 0.0348505i
\(611\) 10.8804 0.635007i 0.440173 0.0256896i
\(612\) 0 0
\(613\) 26.1862 26.1862i 1.05765 1.05765i 0.0594159 0.998233i \(-0.481076\pi\)
0.998233 0.0594159i \(-0.0189238\pi\)
\(614\) 8.22488i 0.331929i
\(615\) 0 0
\(616\) −12.2661 12.2661i −0.494216 0.494216i
\(617\) −34.4845 34.4845i −1.38829 1.38829i −0.828904 0.559390i \(-0.811035\pi\)
−0.559390 0.828904i \(-0.688965\pi\)
\(618\) 0 0
\(619\) 7.32352 7.32352i 0.294357 0.294357i −0.544442 0.838799i \(-0.683258\pi\)
0.838799 + 0.544442i \(0.183258\pi\)
\(620\) −1.58660 + 11.2927i −0.0637193 + 0.453524i
\(621\) 0 0
\(622\) −8.09506 8.09506i −0.324582 0.324582i
\(623\) 47.1929i 1.89075i
\(624\) 0 0
\(625\) −21.2034 13.2444i −0.848137 0.529777i
\(626\) −11.4901 + 11.4901i −0.459237 + 0.459237i
\(627\) 0 0
\(628\) 18.0021 0.718360
\(629\) −20.7176 + 20.7176i −0.826066 + 0.826066i
\(630\) 0 0
\(631\) 0.00180587 0.00180587i 7.18905e−5 7.18905e-5i −0.707071 0.707143i \(-0.749984\pi\)
0.707143 + 0.707071i \(0.249984\pi\)
\(632\) 2.15258 2.15258i 0.0856248 0.0856248i
\(633\) 0 0
\(634\) 1.74464i 0.0692886i
\(635\) 4.10417 3.09298i 0.162869 0.122741i
\(636\) 0 0
\(637\) 19.4843 21.8996i 0.771997 0.867693i
\(638\) −25.4446 −1.00736
\(639\) 0 0
\(640\) −0.311108 + 2.21432i −0.0122976 + 0.0875287i
\(641\) 9.37820 0.370417 0.185208 0.982699i \(-0.440704\pi\)
0.185208 + 0.982699i \(0.440704\pi\)
\(642\) 0 0
\(643\) −24.4684 + 24.4684i −0.964941 + 0.964941i −0.999406 0.0344651i \(-0.989027\pi\)
0.0344651 + 0.999406i \(0.489027\pi\)
\(644\) 11.9414 + 11.9414i 0.470558 + 0.470558i
\(645\) 0 0
\(646\) 17.9851 0.707613
\(647\) 48.7901i 1.91814i −0.283174 0.959069i \(-0.591387\pi\)
0.283174 0.959069i \(-0.408613\pi\)
\(648\) 0 0
\(649\) 54.1837i 2.12690i
\(650\) −17.5898 3.94954i −0.689929 0.154914i
\(651\) 0 0
\(652\) −8.04240 + 8.04240i −0.314965 + 0.314965i
\(653\) 10.6839 0.418094 0.209047 0.977906i \(-0.432964\pi\)
0.209047 + 0.977906i \(0.432964\pi\)
\(654\) 0 0
\(655\) −2.45887 3.26275i −0.0960761 0.127486i
\(656\) 8.67345 8.67345i 0.338641 0.338641i
\(657\) 0 0
\(658\) −8.31407 8.31407i −0.324116 0.324116i
\(659\) 14.9799i 0.583533i −0.956490 0.291767i \(-0.905757\pi\)
0.956490 0.291767i \(-0.0942431\pi\)
\(660\) 0 0
\(661\) 30.0075 30.0075i 1.16715 1.16715i 0.184281 0.982874i \(-0.441004\pi\)
0.982874 0.184281i \(-0.0589958\pi\)
\(662\) 21.1609i 0.822443i
\(663\) 0 0
\(664\) −11.9295 −0.462955
\(665\) 18.7748 + 24.9128i 0.728055 + 0.966077i
\(666\) 0 0
\(667\) 24.7711 0.959141
\(668\) 3.84580 + 3.84580i 0.148799 + 0.148799i
\(669\) 0 0
\(670\) 12.1596 9.16373i 0.469767 0.354026i
\(671\) −8.72473 8.72473i −0.336815 0.336815i
\(672\) 0 0
\(673\) 31.2419 1.20428 0.602142 0.798389i \(-0.294314\pi\)
0.602142 + 0.798389i \(0.294314\pi\)
\(674\) 14.8118 + 14.8118i 0.570530 + 0.570530i
\(675\) 0 0
\(676\) −12.9117 + 1.51228i −0.496605 + 0.0581644i
\(677\) −44.2056 −1.69896 −0.849480 0.527621i \(-0.823084\pi\)
−0.849480 + 0.527621i \(0.823084\pi\)
\(678\) 0 0
\(679\) 28.0390 1.07604
\(680\) 11.1037 + 1.56005i 0.425807 + 0.0598251i
\(681\) 0 0
\(682\) 16.0822 16.0822i 0.615819 0.615819i
\(683\) −7.36452 + 7.36452i −0.281795 + 0.281795i −0.833825 0.552029i \(-0.813854\pi\)
0.552029 + 0.833825i \(0.313854\pi\)
\(684\) 0 0
\(685\) −6.30534 + 44.8785i −0.240915 + 1.71472i
\(686\) −4.39483 −0.167795
\(687\) 0 0
\(688\) −9.44654 −0.360146
\(689\) −8.65724 7.70245i −0.329815 0.293440i
\(690\) 0 0
\(691\) −14.0880 14.0880i −0.535932 0.535932i 0.386400 0.922331i \(-0.373718\pi\)
−0.922331 + 0.386400i \(0.873718\pi\)
\(692\) −5.52237 −0.209929
\(693\) 0 0
\(694\) −8.11722 8.11722i −0.308126 0.308126i
\(695\) −38.6302 + 29.1125i −1.46533 + 1.10430i
\(696\) 0 0
\(697\) −43.4930 43.4930i −1.64741 1.64741i
\(698\) 4.59680 0.173991
\(699\) 0 0
\(700\) 9.43027 + 17.0093i 0.356431 + 0.642891i
\(701\) −47.3805 −1.78954 −0.894769 0.446530i \(-0.852660\pi\)
−0.894769 + 0.446530i \(0.852660\pi\)
\(702\) 0 0
\(703\) 20.9562i 0.790380i
\(704\) 3.15348 3.15348i 0.118851 0.118851i
\(705\) 0 0
\(706\) 15.8632i 0.597019i
\(707\) 42.0449 + 42.0449i 1.58126 + 1.58126i
\(708\) 0 0
\(709\) −19.6171 + 19.6171i −0.736736 + 0.736736i −0.971945 0.235209i \(-0.924423\pi\)
0.235209 + 0.971945i \(0.424423\pi\)
\(710\) 10.2034 7.68945i 0.382925 0.288580i
\(711\) 0 0
\(712\) 12.1328 0.454694
\(713\) −15.6565 + 15.6565i −0.586341 + 0.586341i
\(714\) 0 0
\(715\) 23.2758 + 27.4046i 0.870465 + 1.02487i
\(716\) 7.38088i 0.275837i
\(717\) 0 0
\(718\) 9.54006i 0.356032i
\(719\) 12.4156 0.463022 0.231511 0.972832i \(-0.425633\pi\)
0.231511 + 0.972832i \(0.425633\pi\)
\(720\) 0 0
\(721\) 23.9144 + 23.9144i 0.890619 + 0.890619i
\(722\) 4.33893 4.33893i 0.161478 0.161478i
\(723\) 0 0
\(724\) 20.9149 0.777296
\(725\) 27.4229 + 7.86091i 1.01846 + 0.291947i
\(726\) 0 0
\(727\) −10.6658 −0.395571 −0.197786 0.980245i \(-0.563375\pi\)
−0.197786 + 0.980245i \(0.563375\pi\)
\(728\) 10.4778 + 9.32222i 0.388333 + 0.345505i
\(729\) 0 0
\(730\) −0.0881619 0.116985i −0.00326302 0.00432980i
\(731\) 47.3696i 1.75203i
\(732\) 0 0
\(733\) −15.1798 + 15.1798i −0.560679 + 0.560679i −0.929500 0.368821i \(-0.879761\pi\)
0.368821 + 0.929500i \(0.379761\pi\)
\(734\) −0.949529 + 0.949529i −0.0350477 + 0.0350477i
\(735\) 0 0
\(736\) −3.07000 + 3.07000i −0.113162 + 0.113162i
\(737\) −30.3672 −1.11859
\(738\) 0 0
\(739\) −24.7127 + 24.7127i −0.909071 + 0.909071i −0.996197 0.0871259i \(-0.972232\pi\)
0.0871259 + 0.996197i \(0.472232\pi\)
\(740\) 1.81777 12.9380i 0.0668226 0.475612i
\(741\) 0 0
\(742\) 12.5010i 0.458926i
\(743\) −3.04326 3.04326i −0.111646 0.111646i 0.649077 0.760723i \(-0.275155\pi\)
−0.760723 + 0.649077i \(0.775155\pi\)
\(744\) 0 0
\(745\) 1.54179 10.9737i 0.0564867 0.402046i
\(746\) −0.714012 + 0.714012i −0.0261418 + 0.0261418i
\(747\) 0 0
\(748\) −15.8131 15.8131i −0.578183 0.578183i
\(749\) 35.9913 + 35.9913i 1.31510 + 1.31510i
\(750\) 0 0
\(751\) 4.80106i 0.175193i −0.996156 0.0875965i \(-0.972081\pi\)
0.996156 0.0875965i \(-0.0279186\pi\)
\(752\) 2.13745 2.13745i 0.0779448 0.0779448i
\(753\) 0 0
\(754\) 20.5364 1.19856i 0.747892 0.0436489i
\(755\) 0.647980 4.61202i 0.0235824 0.167849i
\(756\) 0 0
\(757\) 28.0173i 1.01831i −0.860676 0.509154i \(-0.829959\pi\)
0.860676 0.509154i \(-0.170041\pi\)
\(758\) 33.2756i 1.20863i
\(759\) 0 0
\(760\) −6.40479 + 4.82678i −0.232326 + 0.175086i
\(761\) −13.1464 13.1464i −0.476555 0.476555i 0.427473 0.904028i \(-0.359404\pi\)
−0.904028 + 0.427473i \(0.859404\pi\)
\(762\) 0 0
\(763\) 27.8171i 1.00705i
\(764\) 14.3283 0.518379
\(765\) 0 0
\(766\) 28.8939i 1.04398i
\(767\) 2.55230 + 43.7318i 0.0921582 + 1.57906i
\(768\) 0 0
\(769\) 13.3941 + 13.3941i 0.483005 + 0.483005i 0.906090 0.423085i \(-0.139053\pi\)
−0.423085 + 0.906090i \(0.639053\pi\)
\(770\) 5.39676 38.4116i 0.194486 1.38426i
\(771\) 0 0
\(772\) −7.61561 + 7.61561i −0.274092 + 0.274092i
\(773\) −0.0474609 0.0474609i −0.00170705 0.00170705i 0.706253 0.707960i \(-0.250384\pi\)
−0.707960 + 0.706253i \(0.750384\pi\)
\(774\) 0 0
\(775\) −22.3010 + 12.3641i −0.801077 + 0.444132i
\(776\) 7.20850i 0.258770i
\(777\) 0 0
\(778\) 0.475876 + 0.475876i 0.0170610 + 0.0170610i
\(779\) 43.9939 1.57624
\(780\) 0 0
\(781\) −25.4817 −0.911806
\(782\) 15.3945 + 15.3945i 0.550507 + 0.550507i
\(783\) 0 0
\(784\) 8.12986i 0.290352i
\(785\) 24.2267 + 32.1471i 0.864688 + 1.14738i
\(786\) 0 0
\(787\) 29.8056 + 29.8056i 1.06246 + 1.06246i 0.997915 + 0.0645402i \(0.0205581\pi\)
0.0645402 + 0.997915i \(0.479442\pi\)
\(788\) −0.357634 + 0.357634i −0.0127402 + 0.0127402i
\(789\) 0 0
\(790\) 6.74083 + 0.947075i 0.239828 + 0.0336954i
\(791\) −10.4605 10.4605i −0.371934 0.371934i
\(792\) 0 0
\(793\) 7.45273 + 6.63078i 0.264654 + 0.235466i
\(794\) 16.2088i 0.575230i
\(795\) 0 0
\(796\) −22.2951 −0.790229
\(797\) 44.3374i 1.57051i −0.619173 0.785255i \(-0.712532\pi\)
0.619173 0.785255i \(-0.287468\pi\)
\(798\) 0 0
\(799\) −10.7182 10.7182i −0.379184 0.379184i
\(800\) −4.37290 + 2.42441i −0.154605 + 0.0857160i
\(801\) 0 0
\(802\) 19.4124i 0.685475i
\(803\) 0.292155i 0.0103099i
\(804\) 0 0
\(805\) −5.25391 + 37.3948i −0.185176 + 1.31799i
\(806\) −12.2224 + 13.7375i −0.430517 + 0.483884i
\(807\) 0 0
\(808\) −10.8093 + 10.8093i −0.380269 + 0.380269i
\(809\) 12.5026i 0.439567i −0.975549 0.219784i \(-0.929465\pi\)
0.975549 0.219784i \(-0.0705352\pi\)
\(810\) 0 0
\(811\) 21.4521 + 21.4521i 0.753287 + 0.753287i 0.975091 0.221804i \(-0.0711946\pi\)
−0.221804 + 0.975091i \(0.571195\pi\)
\(812\) −15.6926 15.6926i −0.550701 0.550701i
\(813\) 0 0
\(814\) −18.4254 + 18.4254i −0.645811 + 0.645811i
\(815\) −25.1849 3.53844i −0.882190 0.123946i
\(816\) 0 0
\(817\) −23.9576 23.9576i −0.838169 0.838169i
\(818\) 22.3190i 0.780364i
\(819\) 0 0
\(820\) 27.1611 + 3.81608i 0.948507 + 0.133263i
\(821\) −2.76036 + 2.76036i −0.0963373 + 0.0963373i −0.753633 0.657296i \(-0.771700\pi\)
0.657296 + 0.753633i \(0.271700\pi\)
\(822\) 0 0
\(823\) −6.80286 −0.237133 −0.118566 0.992946i \(-0.537830\pi\)
−0.118566 + 0.992946i \(0.537830\pi\)
\(824\) −6.14812 + 6.14812i −0.214180 + 0.214180i
\(825\) 0 0
\(826\) 33.4170 33.4170i 1.16272 1.16272i
\(827\) −14.1668 + 14.1668i −0.492627 + 0.492627i −0.909133 0.416506i \(-0.863254\pi\)
0.416506 + 0.909133i \(0.363254\pi\)
\(828\) 0 0
\(829\) 14.3887i 0.499741i −0.968279 0.249870i \(-0.919612\pi\)
0.968279 0.249870i \(-0.0803880\pi\)
\(830\) −16.0544 21.3031i −0.557258 0.739442i
\(831\) 0 0
\(832\) −2.39664 + 2.69372i −0.0830884 + 0.0933880i
\(833\) −40.7671 −1.41250
\(834\) 0 0
\(835\) −1.69205 + 12.0432i −0.0585558 + 0.416773i
\(836\) 15.9952 0.553205
\(837\) 0 0
\(838\) 0.320109 0.320109i 0.0110580 0.0110580i
\(839\) −18.3654 18.3654i −0.634045 0.634045i 0.315035 0.949080i \(-0.397984\pi\)
−0.949080 + 0.315035i \(0.897984\pi\)
\(840\) 0 0
\(841\) −3.55237 −0.122496
\(842\) 23.8736i 0.822739i
\(843\) 0 0
\(844\) 16.2996i 0.561054i
\(845\) −20.0768 21.0219i −0.690664 0.723176i
\(846\) 0 0
\(847\) −24.4482 + 24.4482i −0.840049 + 0.840049i
\(848\) −3.21386 −0.110364
\(849\) 0 0
\(850\) 12.1572 + 21.9279i 0.416989 + 0.752119i
\(851\) 17.9377 17.9377i 0.614897 0.614897i
\(852\) 0 0
\(853\) −12.3605 12.3605i −0.423215 0.423215i 0.463094 0.886309i \(-0.346739\pi\)
−0.886309 + 0.463094i \(0.846739\pi\)
\(854\) 10.7617i 0.368257i
\(855\) 0 0
\(856\) −9.25296 + 9.25296i −0.316260 + 0.316260i
\(857\) 27.0299i 0.923323i 0.887056 + 0.461661i \(0.152746\pi\)
−0.887056 + 0.461661i \(0.847254\pi\)
\(858\) 0 0
\(859\) −9.73277 −0.332078 −0.166039 0.986119i \(-0.553098\pi\)
−0.166039 + 0.986119i \(0.553098\pi\)
\(860\) −12.7129 16.8691i −0.433506 0.575232i
\(861\) 0 0
\(862\) −22.7794 −0.775869
\(863\) −2.37807 2.37807i −0.0809503 0.0809503i 0.665472 0.746423i \(-0.268230\pi\)
−0.746423 + 0.665472i \(0.768230\pi\)
\(864\) 0 0
\(865\) −7.43186 9.86156i −0.252691 0.335303i
\(866\) −15.6223 15.6223i −0.530869 0.530869i
\(867\) 0 0
\(868\) 19.8369 0.673307
\(869\) −9.59981 9.59981i −0.325651 0.325651i
\(870\) 0 0
\(871\) 24.5095 1.43043i 0.830471 0.0484684i
\(872\) −7.15147 −0.242179
\(873\) 0 0
\(874\) −15.5718 −0.526724
\(875\) −17.6833 + 39.7308i −0.597805 + 1.34314i
\(876\) 0 0
\(877\) −0.650965 + 0.650965i −0.0219815 + 0.0219815i −0.718012 0.696031i \(-0.754948\pi\)
0.696031 + 0.718012i \(0.254948\pi\)
\(878\) 20.2658 20.2658i 0.683936 0.683936i
\(879\) 0 0
\(880\) 9.87517 + 1.38744i 0.332892 + 0.0467707i
\(881\) 11.5132 0.387891 0.193945 0.981012i \(-0.437872\pi\)
0.193945 + 0.981012i \(0.437872\pi\)
\(882\) 0 0
\(883\) −1.42033 −0.0477977 −0.0238989 0.999714i \(-0.507608\pi\)
−0.0238989 + 0.999714i \(0.507608\pi\)
\(884\) 13.5076 + 12.0179i 0.454311 + 0.404206i
\(885\) 0 0
\(886\) −5.55075 5.55075i −0.186481 0.186481i
\(887\) 33.3259 1.11897 0.559487 0.828839i \(-0.310998\pi\)
0.559487 + 0.828839i \(0.310998\pi\)
\(888\) 0 0
\(889\) −6.32132 6.32132i −0.212010 0.212010i
\(890\) 16.3280 + 21.6660i 0.547314 + 0.726247i
\(891\) 0 0
\(892\) −17.7721 17.7721i −0.595055 0.595055i
\(893\) 10.8417 0.362803
\(894\) 0 0
\(895\) −13.1804 + 9.93300i −0.440572 + 0.332024i
\(896\) 3.88971 0.129946
\(897\) 0 0
\(898\) 1.87304i 0.0625041i
\(899\) 20.5746 20.5746i 0.686203 0.686203i
\(900\) 0 0
\(901\) 16.1159i 0.536898i
\(902\) −38.6809 38.6809i −1.28793 1.28793i
\(903\) 0 0
\(904\) 2.68928 2.68928i 0.0894442 0.0894442i
\(905\) 28.1467 + 37.3487i 0.935629 + 1.24151i
\(906\) 0 0
\(907\) 47.4482 1.57549 0.787747 0.616000i \(-0.211248\pi\)
0.787747 + 0.616000i \(0.211248\pi\)
\(908\) −10.6055 + 10.6055i −0.351954 + 0.351954i
\(909\) 0 0
\(910\) −2.54638 + 31.2563i −0.0844115 + 1.03614i
\(911\) 15.7988i 0.523438i 0.965144 + 0.261719i \(0.0842893\pi\)
−0.965144 + 0.261719i \(0.915711\pi\)
\(912\) 0 0
\(913\) 53.2019i 1.76073i
\(914\) 37.4661 1.23927
\(915\) 0 0
\(916\) 1.17330 + 1.17330i 0.0387668 + 0.0387668i
\(917\) −5.02535 + 5.02535i −0.165952 + 0.165952i
\(918\) 0 0
\(919\) −1.84363 −0.0608156 −0.0304078 0.999538i \(-0.509681\pi\)
−0.0304078 + 0.999538i \(0.509681\pi\)
\(920\) −9.61378 1.35072i −0.316957 0.0445319i
\(921\) 0 0
\(922\) 36.2502 1.19384
\(923\) 20.5663 1.20030i 0.676949 0.0395085i
\(924\) 0 0
\(925\) 25.5504 14.1656i 0.840092 0.465762i
\(926\) 2.75530i 0.0905447i
\(927\) 0 0
\(928\) 4.03438 4.03438i 0.132435 0.132435i
\(929\) 18.3335 18.3335i 0.601502 0.601502i −0.339209 0.940711i \(-0.610159\pi\)
0.940711 + 0.339209i \(0.110159\pi\)
\(930\) 0 0
\(931\) 20.6183 20.6183i 0.675738 0.675738i
\(932\) 18.0187 0.590221
\(933\) 0 0
\(934\) −16.4805 + 16.4805i −0.539258 + 0.539258i
\(935\) 6.95733 49.5190i 0.227529 1.61944i
\(936\) 0 0
\(937\) 9.05077i 0.295676i −0.989012 0.147838i \(-0.952769\pi\)
0.989012 0.147838i \(-0.0472314\pi\)
\(938\) −18.7285 18.7285i −0.611507 0.611507i
\(939\) 0 0
\(940\) 6.69347 + 0.940420i 0.218317 + 0.0306731i
\(941\) −22.6872 + 22.6872i −0.739581 + 0.739581i −0.972497 0.232916i \(-0.925173\pi\)
0.232916 + 0.972497i \(0.425173\pi\)
\(942\) 0 0
\(943\) 37.6570 + 37.6570i 1.22628 + 1.22628i
\(944\) 8.59111 + 8.59111i 0.279617 + 0.279617i
\(945\) 0 0
\(946\) 42.1286i 1.36972i
\(947\) 3.06685 3.06685i 0.0996593 0.0996593i −0.655519 0.755178i \(-0.727550\pi\)
0.755178 + 0.655519i \(0.227550\pi\)
\(948\) 0 0
\(949\) −0.0137618 0.235799i −0.000446728 0.00765436i
\(950\) −17.2388 4.94159i −0.559301 0.160326i
\(951\) 0 0
\(952\) 19.5049i 0.632158i
\(953\) 16.1232i 0.522283i −0.965301 0.261142i \(-0.915901\pi\)
0.965301 0.261142i \(-0.0840990\pi\)
\(954\) 0 0
\(955\) 19.2826 + 25.5867i 0.623971 + 0.827966i
\(956\) 8.29254 + 8.29254i 0.268200 + 0.268200i
\(957\) 0 0
\(958\) 9.58293i 0.309610i
\(959\) 78.8343 2.54569
\(960\) 0 0
\(961\) 4.99171i 0.161023i
\(962\) 14.0033 15.7391i 0.451484 0.507450i
\(963\) 0 0
\(964\) −19.8348 19.8348i −0.638835 0.638835i
\(965\) −23.8485 3.35066i −0.767709 0.107862i
\(966\) 0 0
\(967\) −41.8600 + 41.8600i −1.34613 + 1.34613i −0.456304 + 0.889824i \(0.650827\pi\)
−0.889824 + 0.456304i \(0.849173\pi\)
\(968\) −6.28534 6.28534i −0.202019 0.202019i
\(969\) 0 0
\(970\) −12.8726 + 9.70101i −0.413313 + 0.311481i
\(971\) 45.6574i 1.46522i −0.680651 0.732608i \(-0.738303\pi\)
0.680651 0.732608i \(-0.261697\pi\)
\(972\) 0 0
\(973\) 59.4990 + 59.4990i 1.90745 + 1.90745i
\(974\) −36.7365 −1.17711
\(975\) 0 0
\(976\) 2.76670 0.0885600
\(977\) −10.1014 10.1014i −0.323174 0.323174i 0.526809 0.849983i \(-0.323388\pi\)
−0.849983 + 0.526809i \(0.823388\pi\)
\(978\) 0 0
\(979\) 54.1083i 1.72931i
\(980\) 14.5179 10.9410i 0.463756 0.349496i
\(981\) 0 0
\(982\) −22.9303 22.9303i −0.731737 0.731737i
\(983\) −12.7136 + 12.7136i −0.405501 + 0.405501i −0.880166 0.474666i \(-0.842569\pi\)
0.474666 + 0.880166i \(0.342569\pi\)
\(984\) 0 0
\(985\) −1.11994 0.157349i −0.0356842 0.00501356i
\(986\) −20.2303 20.2303i −0.644265 0.644265i
\(987\) 0 0
\(988\) −12.9098 + 0.753447i −0.410714 + 0.0239703i
\(989\) 41.0135i 1.30415i
\(990\) 0 0
\(991\) −42.1864 −1.34009 −0.670047 0.742318i \(-0.733726\pi\)
−0.670047 + 0.742318i \(0.733726\pi\)
\(992\) 5.09983i 0.161920i
\(993\) 0 0
\(994\) −15.7154 15.7154i −0.498463 0.498463i
\(995\) −30.0042 39.8134i −0.951196 1.26217i
\(996\) 0 0
\(997\) 18.4366i 0.583892i −0.956435 0.291946i \(-0.905697\pi\)
0.956435 0.291946i \(-0.0943028\pi\)
\(998\) 2.92627i 0.0926295i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.q.c.359.7 yes 24
3.2 odd 2 inner 1170.2.q.c.359.3 24
5.4 even 2 1170.2.q.d.359.6 yes 24
13.5 odd 4 1170.2.q.d.629.10 yes 24
15.14 odd 2 1170.2.q.d.359.10 yes 24
39.5 even 4 1170.2.q.d.629.6 yes 24
65.44 odd 4 inner 1170.2.q.c.629.3 yes 24
195.44 even 4 inner 1170.2.q.c.629.7 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1170.2.q.c.359.3 24 3.2 odd 2 inner
1170.2.q.c.359.7 yes 24 1.1 even 1 trivial
1170.2.q.c.629.3 yes 24 65.44 odd 4 inner
1170.2.q.c.629.7 yes 24 195.44 even 4 inner
1170.2.q.d.359.6 yes 24 5.4 even 2
1170.2.q.d.359.10 yes 24 15.14 odd 2
1170.2.q.d.629.6 yes 24 39.5 even 4
1170.2.q.d.629.10 yes 24 13.5 odd 4