Properties

Label 1170.2.q.c.359.6
Level $1170$
Weight $2$
Character 1170.359
Analytic conductor $9.342$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(359,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.359"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.q (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,0,0,0,0,0,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 359.6
Character \(\chi\) \(=\) 1170.359
Dual form 1170.2.q.c.629.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{2} +1.00000i q^{4} +(1.15322 + 1.91575i) q^{5} +(-1.83222 - 1.83222i) q^{7} +(0.707107 - 0.707107i) q^{8} +(0.539189 - 2.17009i) q^{10} +(-0.354163 - 0.354163i) q^{11} +(-2.54346 + 2.55555i) q^{13} +2.59114i q^{14} -1.00000 q^{16} -7.26066i q^{17} +(-0.706974 - 0.706974i) q^{19} +(-1.91575 + 1.15322i) q^{20} +0.500863i q^{22} -6.38553i q^{23} +(-2.34017 + 4.41855i) q^{25} +(3.60554 - 0.00854890i) q^{26} +(1.83222 - 1.83222i) q^{28} -5.05475i q^{29} +(5.80828 + 5.80828i) q^{31} +(0.707107 + 0.707107i) q^{32} +(-5.13406 + 5.13406i) q^{34} +(1.39712 - 5.62301i) q^{35} +(-6.17738 - 6.17738i) q^{37} +0.999812i q^{38} +(2.17009 + 0.539189i) q^{40} +(-0.648903 + 0.648903i) q^{41} +4.80832 q^{43} +(0.354163 - 0.354163i) q^{44} +(-4.51525 + 4.51525i) q^{46} +(5.03434 - 5.03434i) q^{47} -0.285975i q^{49} +(4.77914 - 1.46963i) q^{50} +(-2.55555 - 2.54346i) q^{52} +1.69186 q^{53} +(0.270060 - 1.08692i) q^{55} -2.59114 q^{56} +(-3.57425 + 3.57425i) q^{58} +(0.280424 + 0.280424i) q^{59} +0.831932 q^{61} -8.21415i q^{62} -1.00000i q^{64} +(-7.82895 - 1.92552i) q^{65} +(9.27168 - 9.27168i) q^{67} +7.26066 q^{68} +(-4.96398 + 2.98816i) q^{70} +(8.91541 - 8.91541i) q^{71} +(-8.01342 - 8.01342i) q^{73} +8.73614i q^{74} +(0.706974 - 0.706974i) q^{76} +1.29781i q^{77} -5.27178 q^{79} +(-1.15322 - 1.91575i) q^{80} +0.917688 q^{82} +(1.93946 + 1.93946i) q^{83} +(13.9096 - 8.37313i) q^{85} +(-3.39999 - 3.39999i) q^{86} -0.500863 q^{88} +(7.14378 + 7.14378i) q^{89} +(9.34247 - 0.0221514i) q^{91} +6.38553 q^{92} -7.11963 q^{94} +(0.539087 - 2.16968i) q^{95} +(-4.75163 + 4.75163i) q^{97} +(-0.202215 + 0.202215i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 20 q^{13} - 24 q^{16} - 48 q^{19} + 32 q^{25} - 8 q^{31} + 16 q^{34} - 32 q^{37} + 8 q^{40} + 80 q^{43} + 8 q^{46} - 12 q^{52} + 16 q^{55} - 24 q^{58} - 16 q^{61} - 8 q^{67} - 24 q^{70} + 48 q^{73}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 0.707107i −0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 1.15322 + 1.91575i 0.515735 + 0.856748i
\(6\) 0 0
\(7\) −1.83222 1.83222i −0.692512 0.692512i 0.270272 0.962784i \(-0.412886\pi\)
−0.962784 + 0.270272i \(0.912886\pi\)
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) 0 0
\(10\) 0.539189 2.17009i 0.170506 0.686242i
\(11\) −0.354163 0.354163i −0.106784 0.106784i 0.651696 0.758480i \(-0.274058\pi\)
−0.758480 + 0.651696i \(0.774058\pi\)
\(12\) 0 0
\(13\) −2.54346 + 2.55555i −0.705428 + 0.708781i
\(14\) 2.59114i 0.692512i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) 7.26066i 1.76097i −0.474075 0.880484i \(-0.657218\pi\)
0.474075 0.880484i \(-0.342782\pi\)
\(18\) 0 0
\(19\) −0.706974 0.706974i −0.162191 0.162191i 0.621346 0.783537i \(-0.286586\pi\)
−0.783537 + 0.621346i \(0.786586\pi\)
\(20\) −1.91575 + 1.15322i −0.428374 + 0.257868i
\(21\) 0 0
\(22\) 0.500863i 0.106784i
\(23\) 6.38553i 1.33148i −0.746186 0.665738i \(-0.768117\pi\)
0.746186 0.665738i \(-0.231883\pi\)
\(24\) 0 0
\(25\) −2.34017 + 4.41855i −0.468035 + 0.883710i
\(26\) 3.60554 0.00854890i 0.707105 0.00167658i
\(27\) 0 0
\(28\) 1.83222 1.83222i 0.346256 0.346256i
\(29\) 5.05475i 0.938643i −0.883027 0.469321i \(-0.844499\pi\)
0.883027 0.469321i \(-0.155501\pi\)
\(30\) 0 0
\(31\) 5.80828 + 5.80828i 1.04320 + 1.04320i 0.999024 + 0.0441741i \(0.0140656\pi\)
0.0441741 + 0.999024i \(0.485934\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) −5.13406 + 5.13406i −0.880484 + 0.880484i
\(35\) 1.39712 5.62301i 0.236156 0.950461i
\(36\) 0 0
\(37\) −6.17738 6.17738i −1.01556 1.01556i −0.999877 0.0156784i \(-0.995009\pi\)
−0.0156784 0.999877i \(-0.504991\pi\)
\(38\) 0.999812i 0.162191i
\(39\) 0 0
\(40\) 2.17009 + 0.539189i 0.343121 + 0.0852532i
\(41\) −0.648903 + 0.648903i −0.101342 + 0.101342i −0.755960 0.654618i \(-0.772829\pi\)
0.654618 + 0.755960i \(0.272829\pi\)
\(42\) 0 0
\(43\) 4.80832 0.733262 0.366631 0.930367i \(-0.380511\pi\)
0.366631 + 0.930367i \(0.380511\pi\)
\(44\) 0.354163 0.354163i 0.0533921 0.0533921i
\(45\) 0 0
\(46\) −4.51525 + 4.51525i −0.665738 + 0.665738i
\(47\) 5.03434 5.03434i 0.734334 0.734334i −0.237141 0.971475i \(-0.576210\pi\)
0.971475 + 0.237141i \(0.0762104\pi\)
\(48\) 0 0
\(49\) 0.285975i 0.0408536i
\(50\) 4.77914 1.46963i 0.675872 0.207838i
\(51\) 0 0
\(52\) −2.55555 2.54346i −0.354391 0.352714i
\(53\) 1.69186 0.232394 0.116197 0.993226i \(-0.462930\pi\)
0.116197 + 0.993226i \(0.462930\pi\)
\(54\) 0 0
\(55\) 0.270060 1.08692i 0.0364148 0.146560i
\(56\) −2.59114 −0.346256
\(57\) 0 0
\(58\) −3.57425 + 3.57425i −0.469321 + 0.469321i
\(59\) 0.280424 + 0.280424i 0.0365081 + 0.0365081i 0.725125 0.688617i \(-0.241782\pi\)
−0.688617 + 0.725125i \(0.741782\pi\)
\(60\) 0 0
\(61\) 0.831932 0.106518 0.0532590 0.998581i \(-0.483039\pi\)
0.0532590 + 0.998581i \(0.483039\pi\)
\(62\) 8.21415i 1.04320i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −7.82895 1.92552i −0.971061 0.238831i
\(66\) 0 0
\(67\) 9.27168 9.27168i 1.13272 1.13272i 0.142992 0.989724i \(-0.454328\pi\)
0.989724 0.142992i \(-0.0456722\pi\)
\(68\) 7.26066 0.880484
\(69\) 0 0
\(70\) −4.96398 + 2.98816i −0.593309 + 0.357153i
\(71\) 8.91541 8.91541i 1.05806 1.05806i 0.0598578 0.998207i \(-0.480935\pi\)
0.998207 0.0598578i \(-0.0190647\pi\)
\(72\) 0 0
\(73\) −8.01342 8.01342i −0.937900 0.937900i 0.0602811 0.998181i \(-0.480800\pi\)
−0.998181 + 0.0602811i \(0.980800\pi\)
\(74\) 8.73614i 1.01556i
\(75\) 0 0
\(76\) 0.706974 0.706974i 0.0810954 0.0810954i
\(77\) 1.29781i 0.147899i
\(78\) 0 0
\(79\) −5.27178 −0.593122 −0.296561 0.955014i \(-0.595840\pi\)
−0.296561 + 0.955014i \(0.595840\pi\)
\(80\) −1.15322 1.91575i −0.128934 0.214187i
\(81\) 0 0
\(82\) 0.917688 0.101342
\(83\) 1.93946 + 1.93946i 0.212883 + 0.212883i 0.805491 0.592608i \(-0.201902\pi\)
−0.592608 + 0.805491i \(0.701902\pi\)
\(84\) 0 0
\(85\) 13.9096 8.37313i 1.50871 0.908193i
\(86\) −3.39999 3.39999i −0.366631 0.366631i
\(87\) 0 0
\(88\) −0.500863 −0.0533921
\(89\) 7.14378 + 7.14378i 0.757239 + 0.757239i 0.975819 0.218580i \(-0.0701424\pi\)
−0.218580 + 0.975819i \(0.570142\pi\)
\(90\) 0 0
\(91\) 9.34247 0.0221514i 0.979357 0.00232210i
\(92\) 6.38553 0.665738
\(93\) 0 0
\(94\) −7.11963 −0.734334
\(95\) 0.539087 2.16968i 0.0553092 0.222604i
\(96\) 0 0
\(97\) −4.75163 + 4.75163i −0.482455 + 0.482455i −0.905915 0.423460i \(-0.860815\pi\)
0.423460 + 0.905915i \(0.360815\pi\)
\(98\) −0.202215 + 0.202215i −0.0204268 + 0.0204268i
\(99\) 0 0
\(100\) −4.41855 2.34017i −0.441855 0.234017i
\(101\) −13.7859 −1.37174 −0.685872 0.727722i \(-0.740579\pi\)
−0.685872 + 0.727722i \(0.740579\pi\)
\(102\) 0 0
\(103\) −9.99607 −0.984942 −0.492471 0.870329i \(-0.663906\pi\)
−0.492471 + 0.870329i \(0.663906\pi\)
\(104\) 0.00854890 + 3.60554i 0.000838289 + 0.353552i
\(105\) 0 0
\(106\) −1.19632 1.19632i −0.116197 0.116197i
\(107\) 6.51985 0.630298 0.315149 0.949042i \(-0.397946\pi\)
0.315149 + 0.949042i \(0.397946\pi\)
\(108\) 0 0
\(109\) −3.20780 3.20780i −0.307251 0.307251i 0.536591 0.843842i \(-0.319712\pi\)
−0.843842 + 0.536591i \(0.819712\pi\)
\(110\) −0.959526 + 0.577604i −0.0914872 + 0.0550724i
\(111\) 0 0
\(112\) 1.83222 + 1.83222i 0.173128 + 0.173128i
\(113\) −19.2771 −1.81344 −0.906720 0.421733i \(-0.861422\pi\)
−0.906720 + 0.421733i \(0.861422\pi\)
\(114\) 0 0
\(115\) 12.2331 7.36392i 1.14074 0.686689i
\(116\) 5.05475 0.469321
\(117\) 0 0
\(118\) 0.396580i 0.0365081i
\(119\) −13.3031 + 13.3031i −1.21949 + 1.21949i
\(120\) 0 0
\(121\) 10.7491i 0.977194i
\(122\) −0.588265 0.588265i −0.0532590 0.0532590i
\(123\) 0 0
\(124\) −5.80828 + 5.80828i −0.521599 + 0.521599i
\(125\) −11.1636 + 0.612376i −0.998499 + 0.0547726i
\(126\) 0 0
\(127\) −15.3792 −1.36469 −0.682343 0.731033i \(-0.739039\pi\)
−0.682343 + 0.731033i \(0.739039\pi\)
\(128\) −0.707107 + 0.707107i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 4.17436 + 6.89745i 0.366115 + 0.604946i
\(131\) 12.6532i 1.10551i −0.833343 0.552756i \(-0.813576\pi\)
0.833343 0.552756i \(-0.186424\pi\)
\(132\) 0 0
\(133\) 2.59066i 0.224638i
\(134\) −13.1121 −1.13272
\(135\) 0 0
\(136\) −5.13406 5.13406i −0.440242 0.440242i
\(137\) 0.760088 0.760088i 0.0649387 0.0649387i −0.673892 0.738830i \(-0.735379\pi\)
0.738830 + 0.673892i \(0.235379\pi\)
\(138\) 0 0
\(139\) −14.2793 −1.21115 −0.605576 0.795788i \(-0.707057\pi\)
−0.605576 + 0.795788i \(0.707057\pi\)
\(140\) 5.62301 + 1.39712i 0.475231 + 0.118078i
\(141\) 0 0
\(142\) −12.6083 −1.05806
\(143\) 1.80588 0.00428182i 0.151015 0.000358064i
\(144\) 0 0
\(145\) 9.68362 5.82923i 0.804180 0.484091i
\(146\) 11.3327i 0.937900i
\(147\) 0 0
\(148\) 6.17738 6.17738i 0.507778 0.507778i
\(149\) 1.92914 1.92914i 0.158041 0.158041i −0.623657 0.781698i \(-0.714354\pi\)
0.781698 + 0.623657i \(0.214354\pi\)
\(150\) 0 0
\(151\) −3.21224 + 3.21224i −0.261408 + 0.261408i −0.825626 0.564218i \(-0.809178\pi\)
0.564218 + 0.825626i \(0.309178\pi\)
\(152\) −0.999812 −0.0810954
\(153\) 0 0
\(154\) 0.917688 0.917688i 0.0739494 0.0739494i
\(155\) −4.42898 + 17.8254i −0.355744 + 1.43177i
\(156\) 0 0
\(157\) 19.0790i 1.52267i 0.648357 + 0.761337i \(0.275457\pi\)
−0.648357 + 0.761337i \(0.724543\pi\)
\(158\) 3.72771 + 3.72771i 0.296561 + 0.296561i
\(159\) 0 0
\(160\) −0.539189 + 2.17009i −0.0426266 + 0.171560i
\(161\) −11.6997 + 11.6997i −0.922063 + 0.922063i
\(162\) 0 0
\(163\) 11.1149 + 11.1149i 0.870588 + 0.870588i 0.992536 0.121949i \(-0.0389143\pi\)
−0.121949 + 0.992536i \(0.538914\pi\)
\(164\) −0.648903 0.648903i −0.0506708 0.0506708i
\(165\) 0 0
\(166\) 2.74281i 0.212883i
\(167\) 4.82453 4.82453i 0.373333 0.373333i −0.495357 0.868690i \(-0.664963\pi\)
0.868690 + 0.495357i \(0.164963\pi\)
\(168\) 0 0
\(169\) −0.0616468 12.9999i −0.00474206 0.999989i
\(170\) −15.7563 3.91487i −1.20845 0.300257i
\(171\) 0 0
\(172\) 4.80832i 0.366631i
\(173\) 3.67792i 0.279627i 0.990178 + 0.139814i \(0.0446503\pi\)
−0.990178 + 0.139814i \(0.955350\pi\)
\(174\) 0 0
\(175\) 12.3834 3.80804i 0.936100 0.287860i
\(176\) 0.354163 + 0.354163i 0.0266961 + 0.0266961i
\(177\) 0 0
\(178\) 10.1028i 0.757239i
\(179\) 25.9594 1.94030 0.970150 0.242506i \(-0.0779693\pi\)
0.970150 + 0.242506i \(0.0779693\pi\)
\(180\) 0 0
\(181\) 5.14332i 0.382300i −0.981561 0.191150i \(-0.938778\pi\)
0.981561 0.191150i \(-0.0612217\pi\)
\(182\) −6.62179 6.59046i −0.490840 0.488518i
\(183\) 0 0
\(184\) −4.51525 4.51525i −0.332869 0.332869i
\(185\) 4.71043 18.9582i 0.346318 1.39383i
\(186\) 0 0
\(187\) −2.57146 + 2.57146i −0.188044 + 0.188044i
\(188\) 5.03434 + 5.03434i 0.367167 + 0.367167i
\(189\) 0 0
\(190\) −1.91539 + 1.15300i −0.138957 + 0.0836475i
\(191\) 23.4969i 1.70018i −0.526639 0.850089i \(-0.676548\pi\)
0.526639 0.850089i \(-0.323452\pi\)
\(192\) 0 0
\(193\) 13.7670 + 13.7670i 0.990969 + 0.990969i 0.999960 0.00899081i \(-0.00286190\pi\)
−0.00899081 + 0.999960i \(0.502862\pi\)
\(194\) 6.71982 0.482455
\(195\) 0 0
\(196\) 0.285975 0.0204268
\(197\) −3.99829 3.99829i −0.284867 0.284867i 0.550180 0.835046i \(-0.314559\pi\)
−0.835046 + 0.550180i \(0.814559\pi\)
\(198\) 0 0
\(199\) 19.3636i 1.37265i 0.727296 + 0.686324i \(0.240777\pi\)
−0.727296 + 0.686324i \(0.759223\pi\)
\(200\) 1.46963 + 4.77914i 0.103919 + 0.337936i
\(201\) 0 0
\(202\) 9.74808 + 9.74808i 0.685872 + 0.685872i
\(203\) −9.26138 + 9.26138i −0.650022 + 0.650022i
\(204\) 0 0
\(205\) −1.99146 0.494807i −0.139090 0.0345588i
\(206\) 7.06829 + 7.06829i 0.492471 + 0.492471i
\(207\) 0 0
\(208\) 2.54346 2.55555i 0.176357 0.177195i
\(209\) 0.500768i 0.0346389i
\(210\) 0 0
\(211\) 21.2220 1.46098 0.730491 0.682923i \(-0.239291\pi\)
0.730491 + 0.682923i \(0.239291\pi\)
\(212\) 1.69186i 0.116197i
\(213\) 0 0
\(214\) −4.61023 4.61023i −0.315149 0.315149i
\(215\) 5.54504 + 9.21152i 0.378169 + 0.628221i
\(216\) 0 0
\(217\) 21.2840i 1.44485i
\(218\) 4.53651i 0.307251i
\(219\) 0 0
\(220\) 1.08692 + 0.270060i 0.0732798 + 0.0182074i
\(221\) 18.5550 + 18.4672i 1.24814 + 1.24224i
\(222\) 0 0
\(223\) 7.43025 7.43025i 0.497566 0.497566i −0.413113 0.910680i \(-0.635559\pi\)
0.910680 + 0.413113i \(0.135559\pi\)
\(224\) 2.59114i 0.173128i
\(225\) 0 0
\(226\) 13.6310 + 13.6310i 0.906720 + 0.906720i
\(227\) −0.320995 0.320995i −0.0213052 0.0213052i 0.696374 0.717679i \(-0.254796\pi\)
−0.717679 + 0.696374i \(0.754796\pi\)
\(228\) 0 0
\(229\) −8.52207 + 8.52207i −0.563154 + 0.563154i −0.930202 0.367048i \(-0.880368\pi\)
0.367048 + 0.930202i \(0.380368\pi\)
\(230\) −13.8572 3.44301i −0.913714 0.227025i
\(231\) 0 0
\(232\) −3.57425 3.57425i −0.234661 0.234661i
\(233\) 7.38750i 0.483971i 0.970280 + 0.241986i \(0.0777987\pi\)
−0.970280 + 0.241986i \(0.922201\pi\)
\(234\) 0 0
\(235\) 15.4502 + 3.83883i 1.00786 + 0.250417i
\(236\) −0.280424 + 0.280424i −0.0182541 + 0.0182541i
\(237\) 0 0
\(238\) 18.8134 1.21949
\(239\) −6.45533 + 6.45533i −0.417561 + 0.417561i −0.884362 0.466801i \(-0.845406\pi\)
0.466801 + 0.884362i \(0.345406\pi\)
\(240\) 0 0
\(241\) 14.0266 14.0266i 0.903531 0.903531i −0.0922086 0.995740i \(-0.529393\pi\)
0.995740 + 0.0922086i \(0.0293927\pi\)
\(242\) −7.60079 + 7.60079i −0.488597 + 0.488597i
\(243\) 0 0
\(244\) 0.831932i 0.0532590i
\(245\) 0.547856 0.329792i 0.0350012 0.0210696i
\(246\) 0 0
\(247\) 3.60486 0.00854729i 0.229372 0.000543851i
\(248\) 8.21415 0.521599
\(249\) 0 0
\(250\) 8.32684 + 7.46081i 0.526636 + 0.471863i
\(251\) −0.913999 −0.0576911 −0.0288455 0.999584i \(-0.509183\pi\)
−0.0288455 + 0.999584i \(0.509183\pi\)
\(252\) 0 0
\(253\) −2.26152 + 2.26152i −0.142181 + 0.142181i
\(254\) 10.8747 + 10.8747i 0.682343 + 0.682343i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 19.2222i 1.19905i 0.800357 + 0.599524i \(0.204643\pi\)
−0.800357 + 0.599524i \(0.795357\pi\)
\(258\) 0 0
\(259\) 22.6366i 1.40657i
\(260\) 1.92552 7.82895i 0.119415 0.485531i
\(261\) 0 0
\(262\) −8.94714 + 8.94714i −0.552756 + 0.552756i
\(263\) −28.0638 −1.73049 −0.865245 0.501350i \(-0.832837\pi\)
−0.865245 + 0.501350i \(0.832837\pi\)
\(264\) 0 0
\(265\) 1.95108 + 3.24117i 0.119854 + 0.199103i
\(266\) 1.83187 1.83187i 0.112319 0.112319i
\(267\) 0 0
\(268\) 9.27168 + 9.27168i 0.566358 + 0.566358i
\(269\) 16.7710i 1.02255i 0.859418 + 0.511273i \(0.170826\pi\)
−0.859418 + 0.511273i \(0.829174\pi\)
\(270\) 0 0
\(271\) −10.1913 + 10.1913i −0.619080 + 0.619080i −0.945295 0.326216i \(-0.894226\pi\)
0.326216 + 0.945295i \(0.394226\pi\)
\(272\) 7.26066i 0.440242i
\(273\) 0 0
\(274\) −1.07493 −0.0649387
\(275\) 2.39369 0.736085i 0.144345 0.0443876i
\(276\) 0 0
\(277\) 8.94647 0.537541 0.268771 0.963204i \(-0.413383\pi\)
0.268771 + 0.963204i \(0.413383\pi\)
\(278\) 10.0970 + 10.0970i 0.605576 + 0.605576i
\(279\) 0 0
\(280\) −2.98816 4.96398i −0.178576 0.296654i
\(281\) −14.6154 14.6154i −0.871879 0.871879i 0.120798 0.992677i \(-0.461455\pi\)
−0.992677 + 0.120798i \(0.961455\pi\)
\(282\) 0 0
\(283\) 3.17095 0.188494 0.0942468 0.995549i \(-0.469956\pi\)
0.0942468 + 0.995549i \(0.469956\pi\)
\(284\) 8.91541 + 8.91541i 0.529032 + 0.529032i
\(285\) 0 0
\(286\) −1.27998 1.27392i −0.0756867 0.0753286i
\(287\) 2.37786 0.140361
\(288\) 0 0
\(289\) −35.7172 −2.10101
\(290\) −10.9692 2.72546i −0.644136 0.160045i
\(291\) 0 0
\(292\) 8.01342 8.01342i 0.468950 0.468950i
\(293\) 15.5465 15.5465i 0.908237 0.908237i −0.0878932 0.996130i \(-0.528013\pi\)
0.996130 + 0.0878932i \(0.0280134\pi\)
\(294\) 0 0
\(295\) −0.213831 + 0.860612i −0.0124497 + 0.0501068i
\(296\) −8.73614 −0.507778
\(297\) 0 0
\(298\) −2.72822 −0.158041
\(299\) 16.3185 + 16.2413i 0.943725 + 0.939261i
\(300\) 0 0
\(301\) −8.80987 8.80987i −0.507793 0.507793i
\(302\) 4.54279 0.261408
\(303\) 0 0
\(304\) 0.706974 + 0.706974i 0.0405477 + 0.0405477i
\(305\) 0.959400 + 1.59377i 0.0549351 + 0.0912591i
\(306\) 0 0
\(307\) 2.32127 + 2.32127i 0.132482 + 0.132482i 0.770238 0.637756i \(-0.220137\pi\)
−0.637756 + 0.770238i \(0.720137\pi\)
\(308\) −1.29781 −0.0739494
\(309\) 0 0
\(310\) 15.7362 9.47271i 0.893758 0.538014i
\(311\) 12.0683 0.684331 0.342165 0.939640i \(-0.388840\pi\)
0.342165 + 0.939640i \(0.388840\pi\)
\(312\) 0 0
\(313\) 5.12431i 0.289643i 0.989458 + 0.144822i \(0.0462608\pi\)
−0.989458 + 0.144822i \(0.953739\pi\)
\(314\) 13.4909 13.4909i 0.761337 0.761337i
\(315\) 0 0
\(316\) 5.27178i 0.296561i
\(317\) 21.2033 + 21.2033i 1.19090 + 1.19090i 0.976816 + 0.214080i \(0.0686753\pi\)
0.214080 + 0.976816i \(0.431325\pi\)
\(318\) 0 0
\(319\) −1.79021 + 1.79021i −0.100232 + 0.100232i
\(320\) 1.91575 1.15322i 0.107094 0.0644669i
\(321\) 0 0
\(322\) 16.5458 0.922063
\(323\) −5.13310 + 5.13310i −0.285613 + 0.285613i
\(324\) 0 0
\(325\) −5.33969 17.2188i −0.296192 0.955128i
\(326\) 15.7189i 0.870588i
\(327\) 0 0
\(328\) 0.917688i 0.0506708i
\(329\) −18.4480 −1.01707
\(330\) 0 0
\(331\) 7.96572 + 7.96572i 0.437836 + 0.437836i 0.891283 0.453447i \(-0.149806\pi\)
−0.453447 + 0.891283i \(0.649806\pi\)
\(332\) −1.93946 + 1.93946i −0.106442 + 0.106442i
\(333\) 0 0
\(334\) −6.82291 −0.373333
\(335\) 28.4545 + 7.06991i 1.55463 + 0.386271i
\(336\) 0 0
\(337\) 31.4402 1.71266 0.856329 0.516430i \(-0.172739\pi\)
0.856329 + 0.516430i \(0.172739\pi\)
\(338\) −9.14869 + 9.23588i −0.497623 + 0.502365i
\(339\) 0 0
\(340\) 8.37313 + 13.9096i 0.454097 + 0.754353i
\(341\) 4.11416i 0.222794i
\(342\) 0 0
\(343\) −13.3495 + 13.3495i −0.720804 + 0.720804i
\(344\) 3.39999 3.39999i 0.183315 0.183315i
\(345\) 0 0
\(346\) 2.60068 2.60068i 0.139814 0.139814i
\(347\) −31.4466 −1.68814 −0.844070 0.536233i \(-0.819847\pi\)
−0.844070 + 0.536233i \(0.819847\pi\)
\(348\) 0 0
\(349\) 4.21075 4.21075i 0.225396 0.225396i −0.585370 0.810766i \(-0.699051\pi\)
0.810766 + 0.585370i \(0.199051\pi\)
\(350\) −11.4491 6.06372i −0.611980 0.324120i
\(351\) 0 0
\(352\) 0.500863i 0.0266961i
\(353\) −13.2011 13.2011i −0.702622 0.702622i 0.262351 0.964973i \(-0.415502\pi\)
−0.964973 + 0.262351i \(0.915502\pi\)
\(354\) 0 0
\(355\) 27.3611 + 6.79825i 1.45218 + 0.360814i
\(356\) −7.14378 + 7.14378i −0.378620 + 0.378620i
\(357\) 0 0
\(358\) −18.3561 18.3561i −0.970150 0.970150i
\(359\) 1.18359 + 1.18359i 0.0624677 + 0.0624677i 0.737650 0.675183i \(-0.235935\pi\)
−0.675183 + 0.737650i \(0.735935\pi\)
\(360\) 0 0
\(361\) 18.0004i 0.947388i
\(362\) −3.63688 + 3.63688i −0.191150 + 0.191150i
\(363\) 0 0
\(364\) 0.0221514 + 9.34247i 0.00116105 + 0.489679i
\(365\) 6.11046 24.5929i 0.319836 1.28725i
\(366\) 0 0
\(367\) 7.64534i 0.399083i −0.979889 0.199542i \(-0.936055\pi\)
0.979889 0.199542i \(-0.0639453\pi\)
\(368\) 6.38553i 0.332869i
\(369\) 0 0
\(370\) −16.7362 + 10.0747i −0.870075 + 0.523758i
\(371\) −3.09984 3.09984i −0.160936 0.160936i
\(372\) 0 0
\(373\) 5.47536i 0.283503i 0.989902 + 0.141752i \(0.0452735\pi\)
−0.989902 + 0.141752i \(0.954727\pi\)
\(374\) 3.63659 0.188044
\(375\) 0 0
\(376\) 7.11963i 0.367167i
\(377\) 12.9176 + 12.8565i 0.665293 + 0.662145i
\(378\) 0 0
\(379\) 8.42587 + 8.42587i 0.432808 + 0.432808i 0.889583 0.456774i \(-0.150995\pi\)
−0.456774 + 0.889583i \(0.650995\pi\)
\(380\) 2.16968 + 0.539087i 0.111302 + 0.0276546i
\(381\) 0 0
\(382\) −16.6148 + 16.6148i −0.850089 + 0.850089i
\(383\) −6.57975 6.57975i −0.336210 0.336210i 0.518729 0.854939i \(-0.326405\pi\)
−0.854939 + 0.518729i \(0.826405\pi\)
\(384\) 0 0
\(385\) −2.48627 + 1.49666i −0.126712 + 0.0762766i
\(386\) 19.4694i 0.990969i
\(387\) 0 0
\(388\) −4.75163 4.75163i −0.241227 0.241227i
\(389\) −19.7122 −0.999446 −0.499723 0.866185i \(-0.666565\pi\)
−0.499723 + 0.866185i \(0.666565\pi\)
\(390\) 0 0
\(391\) −46.3632 −2.34469
\(392\) −0.202215 0.202215i −0.0102134 0.0102134i
\(393\) 0 0
\(394\) 5.65444i 0.284867i
\(395\) −6.07952 10.0994i −0.305894 0.508156i
\(396\) 0 0
\(397\) 5.60945 + 5.60945i 0.281530 + 0.281530i 0.833719 0.552189i \(-0.186207\pi\)
−0.552189 + 0.833719i \(0.686207\pi\)
\(398\) 13.6921 13.6921i 0.686324 0.686324i
\(399\) 0 0
\(400\) 2.34017 4.41855i 0.117009 0.220928i
\(401\) 13.7311 + 13.7311i 0.685697 + 0.685697i 0.961278 0.275581i \(-0.0888703\pi\)
−0.275581 + 0.961278i \(0.588870\pi\)
\(402\) 0 0
\(403\) −29.6165 + 0.0702219i −1.47530 + 0.00349800i
\(404\) 13.7859i 0.685872i
\(405\) 0 0
\(406\) 13.0976 0.650022
\(407\) 4.37561i 0.216891i
\(408\) 0 0
\(409\) −13.1325 13.1325i −0.649360 0.649360i 0.303478 0.952838i \(-0.401852\pi\)
−0.952838 + 0.303478i \(0.901852\pi\)
\(410\) 1.05830 + 1.75806i 0.0522655 + 0.0868243i
\(411\) 0 0
\(412\) 9.99607i 0.492471i
\(413\) 1.02759i 0.0505646i
\(414\) 0 0
\(415\) −1.47889 + 5.95213i −0.0725959 + 0.292179i
\(416\) −3.60554 + 0.00854890i −0.176776 + 0.000419144i
\(417\) 0 0
\(418\) 0.354097 0.354097i 0.0173194 0.0173194i
\(419\) 4.43719i 0.216771i 0.994109 + 0.108386i \(0.0345681\pi\)
−0.994109 + 0.108386i \(0.965432\pi\)
\(420\) 0 0
\(421\) 10.8256 + 10.8256i 0.527607 + 0.527607i 0.919858 0.392251i \(-0.128304\pi\)
−0.392251 + 0.919858i \(0.628304\pi\)
\(422\) −15.0062 15.0062i −0.730491 0.730491i
\(423\) 0 0
\(424\) 1.19632 1.19632i 0.0580986 0.0580986i
\(425\) 32.0816 + 16.9912i 1.55619 + 0.824194i
\(426\) 0 0
\(427\) −1.52428 1.52428i −0.0737650 0.0737650i
\(428\) 6.51985i 0.315149i
\(429\) 0 0
\(430\) 2.59259 10.4345i 0.125026 0.503195i
\(431\) −24.6265 + 24.6265i −1.18622 + 1.18622i −0.208112 + 0.978105i \(0.566732\pi\)
−0.978105 + 0.208112i \(0.933268\pi\)
\(432\) 0 0
\(433\) −6.93926 −0.333480 −0.166740 0.986001i \(-0.553324\pi\)
−0.166740 + 0.986001i \(0.553324\pi\)
\(434\) −15.0501 + 15.0501i −0.722427 + 0.722427i
\(435\) 0 0
\(436\) 3.20780 3.20780i 0.153626 0.153626i
\(437\) −4.51440 + 4.51440i −0.215953 + 0.215953i
\(438\) 0 0
\(439\) 10.1110i 0.482570i −0.970454 0.241285i \(-0.922431\pi\)
0.970454 0.241285i \(-0.0775689\pi\)
\(440\) −0.577604 0.959526i −0.0275362 0.0457436i
\(441\) 0 0
\(442\) −0.0620707 26.1786i −0.00295240 1.24519i
\(443\) −22.6212 −1.07476 −0.537382 0.843339i \(-0.680587\pi\)
−0.537382 + 0.843339i \(0.680587\pi\)
\(444\) 0 0
\(445\) −5.44733 + 21.9240i −0.258228 + 1.03930i
\(446\) −10.5080 −0.497566
\(447\) 0 0
\(448\) −1.83222 + 1.83222i −0.0865640 + 0.0865640i
\(449\) 11.7909 + 11.7909i 0.556445 + 0.556445i 0.928293 0.371849i \(-0.121276\pi\)
−0.371849 + 0.928293i \(0.621276\pi\)
\(450\) 0 0
\(451\) 0.459636 0.0216434
\(452\) 19.2771i 0.906720i
\(453\) 0 0
\(454\) 0.453955i 0.0213052i
\(455\) 10.8164 + 17.8723i 0.507078 + 0.837865i
\(456\) 0 0
\(457\) 4.16806 4.16806i 0.194974 0.194974i −0.602868 0.797841i \(-0.705975\pi\)
0.797841 + 0.602868i \(0.205975\pi\)
\(458\) 12.0520 0.563154
\(459\) 0 0
\(460\) 7.36392 + 12.2331i 0.343344 + 0.570370i
\(461\) 2.68524 2.68524i 0.125064 0.125064i −0.641804 0.766868i \(-0.721814\pi\)
0.766868 + 0.641804i \(0.221814\pi\)
\(462\) 0 0
\(463\) 25.0700 + 25.0700i 1.16510 + 1.16510i 0.983343 + 0.181759i \(0.0581792\pi\)
0.181759 + 0.983343i \(0.441821\pi\)
\(464\) 5.05475i 0.234661i
\(465\) 0 0
\(466\) 5.22375 5.22375i 0.241986 0.241986i
\(467\) 27.9680i 1.29420i −0.762403 0.647102i \(-0.775981\pi\)
0.762403 0.647102i \(-0.224019\pi\)
\(468\) 0 0
\(469\) −33.9754 −1.56884
\(470\) −8.21049 13.6394i −0.378722 0.629139i
\(471\) 0 0
\(472\) 0.396580 0.0182541
\(473\) −1.70293 1.70293i −0.0783008 0.0783008i
\(474\) 0 0
\(475\) 4.77824 1.46936i 0.219241 0.0674188i
\(476\) −13.3031 13.3031i −0.609746 0.609746i
\(477\) 0 0
\(478\) 9.12922 0.417561
\(479\) 10.1126 + 10.1126i 0.462055 + 0.462055i 0.899328 0.437274i \(-0.144056\pi\)
−0.437274 + 0.899328i \(0.644056\pi\)
\(480\) 0 0
\(481\) 31.4985 0.0746844i 1.43621 0.00340531i
\(482\) −19.8366 −0.903531
\(483\) 0 0
\(484\) 10.7491 0.488597
\(485\) −14.5826 3.62325i −0.662161 0.164523i
\(486\) 0 0
\(487\) −5.25815 + 5.25815i −0.238270 + 0.238270i −0.816133 0.577864i \(-0.803887\pi\)
0.577864 + 0.816133i \(0.303887\pi\)
\(488\) 0.588265 0.588265i 0.0266295 0.0266295i
\(489\) 0 0
\(490\) −0.620591 0.154195i −0.0280354 0.00696580i
\(491\) 27.6899 1.24963 0.624813 0.780774i \(-0.285175\pi\)
0.624813 + 0.780774i \(0.285175\pi\)
\(492\) 0 0
\(493\) −36.7008 −1.65292
\(494\) −2.55507 2.54298i −0.114958 0.114414i
\(495\) 0 0
\(496\) −5.80828 5.80828i −0.260799 0.260799i
\(497\) −32.6699 −1.46545
\(498\) 0 0
\(499\) 17.3395 + 17.3395i 0.776220 + 0.776220i 0.979186 0.202965i \(-0.0650579\pi\)
−0.202965 + 0.979186i \(0.565058\pi\)
\(500\) −0.612376 11.1636i −0.0273863 0.499249i
\(501\) 0 0
\(502\) 0.646295 + 0.646295i 0.0288455 + 0.0288455i
\(503\) 30.5297 1.36125 0.680626 0.732631i \(-0.261708\pi\)
0.680626 + 0.732631i \(0.261708\pi\)
\(504\) 0 0
\(505\) −15.8981 26.4102i −0.707457 1.17524i
\(506\) 3.19828 0.142181
\(507\) 0 0
\(508\) 15.3792i 0.682343i
\(509\) −2.01041 + 2.01041i −0.0891099 + 0.0891099i −0.750257 0.661147i \(-0.770070\pi\)
0.661147 + 0.750257i \(0.270070\pi\)
\(510\) 0 0
\(511\) 29.3646i 1.29901i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 13.5921 13.5921i 0.599524 0.599524i
\(515\) −11.5277 19.1499i −0.507969 0.843847i
\(516\) 0 0
\(517\) −3.56596 −0.156831
\(518\) 16.0065 16.0065i 0.703285 0.703285i
\(519\) 0 0
\(520\) −6.89745 + 4.17436i −0.302473 + 0.183058i
\(521\) 1.70791i 0.0748248i −0.999300 0.0374124i \(-0.988088\pi\)
0.999300 0.0374124i \(-0.0119115\pi\)
\(522\) 0 0
\(523\) 13.1798i 0.576311i −0.957584 0.288155i \(-0.906958\pi\)
0.957584 0.288155i \(-0.0930419\pi\)
\(524\) 12.6532 0.552756
\(525\) 0 0
\(526\) 19.8441 + 19.8441i 0.865245 + 0.865245i
\(527\) 42.1719 42.1719i 1.83704 1.83704i
\(528\) 0 0
\(529\) −17.7750 −0.772828
\(530\) 0.912230 3.67147i 0.0396247 0.159479i
\(531\) 0 0
\(532\) −2.59066 −0.112319
\(533\) −0.00784522 3.30876i −0.000339814 0.143318i
\(534\) 0 0
\(535\) 7.51882 + 12.4904i 0.325067 + 0.540007i
\(536\) 13.1121i 0.566358i
\(537\) 0 0
\(538\) 11.8589 11.8589i 0.511273 0.511273i
\(539\) −0.101282 + 0.101282i −0.00436252 + 0.00436252i
\(540\) 0 0
\(541\) 4.98676 4.98676i 0.214398 0.214398i −0.591735 0.806133i \(-0.701557\pi\)
0.806133 + 0.591735i \(0.201557\pi\)
\(542\) 14.4127 0.619080
\(543\) 0 0
\(544\) 5.13406 5.13406i 0.220121 0.220121i
\(545\) 2.44604 9.84462i 0.104777 0.421697i
\(546\) 0 0
\(547\) 27.5714i 1.17887i −0.807817 0.589433i \(-0.799351\pi\)
0.807817 0.589433i \(-0.200649\pi\)
\(548\) 0.760088 + 0.760088i 0.0324694 + 0.0324694i
\(549\) 0 0
\(550\) −2.21309 1.17211i −0.0943663 0.0499787i
\(551\) −3.57357 + 3.57357i −0.152239 + 0.152239i
\(552\) 0 0
\(553\) 9.65904 + 9.65904i 0.410744 + 0.410744i
\(554\) −6.32611 6.32611i −0.268771 0.268771i
\(555\) 0 0
\(556\) 14.2793i 0.605576i
\(557\) −13.3493 + 13.3493i −0.565627 + 0.565627i −0.930900 0.365273i \(-0.880976\pi\)
0.365273 + 0.930900i \(0.380976\pi\)
\(558\) 0 0
\(559\) −12.2298 + 12.2879i −0.517263 + 0.519722i
\(560\) −1.39712 + 5.62301i −0.0590389 + 0.237615i
\(561\) 0 0
\(562\) 20.6692i 0.871879i
\(563\) 19.1342i 0.806410i −0.915110 0.403205i \(-0.867896\pi\)
0.915110 0.403205i \(-0.132104\pi\)
\(564\) 0 0
\(565\) −22.2307 36.9301i −0.935255 1.55366i
\(566\) −2.24220 2.24220i −0.0942468 0.0942468i
\(567\) 0 0
\(568\) 12.6083i 0.529032i
\(569\) 17.1664 0.719654 0.359827 0.933019i \(-0.382836\pi\)
0.359827 + 0.933019i \(0.382836\pi\)
\(570\) 0 0
\(571\) 36.0432i 1.50836i −0.656668 0.754180i \(-0.728035\pi\)
0.656668 0.754180i \(-0.271965\pi\)
\(572\) 0.00428182 + 1.80588i 0.000179032 + 0.0755077i
\(573\) 0 0
\(574\) −1.68140 1.68140i −0.0701804 0.0701804i
\(575\) 28.2148 + 14.9433i 1.17664 + 0.623177i
\(576\) 0 0
\(577\) −17.6716 + 17.6716i −0.735679 + 0.735679i −0.971739 0.236059i \(-0.924144\pi\)
0.236059 + 0.971739i \(0.424144\pi\)
\(578\) 25.2559 + 25.2559i 1.05051 + 1.05051i
\(579\) 0 0
\(580\) 5.82923 + 9.68362i 0.242046 + 0.402090i
\(581\) 7.10701i 0.294848i
\(582\) 0 0
\(583\) −0.599193 0.599193i −0.0248161 0.0248161i
\(584\) −11.3327 −0.468950
\(585\) 0 0
\(586\) −21.9861 −0.908237
\(587\) 2.44651 + 2.44651i 0.100978 + 0.100978i 0.755791 0.654813i \(-0.227253\pi\)
−0.654813 + 0.755791i \(0.727253\pi\)
\(588\) 0 0
\(589\) 8.21260i 0.338394i
\(590\) 0.759746 0.457343i 0.0312783 0.0188285i
\(591\) 0 0
\(592\) 6.17738 + 6.17738i 0.253889 + 0.253889i
\(593\) 2.25681 2.25681i 0.0926759 0.0926759i −0.659249 0.751925i \(-0.729126\pi\)
0.751925 + 0.659249i \(0.229126\pi\)
\(594\) 0 0
\(595\) −40.8267 10.1440i −1.67373 0.415863i
\(596\) 1.92914 + 1.92914i 0.0790206 + 0.0790206i
\(597\) 0 0
\(598\) −0.0545893 23.0233i −0.00223232 0.941493i
\(599\) 22.7673i 0.930246i −0.885246 0.465123i \(-0.846010\pi\)
0.885246 0.465123i \(-0.153990\pi\)
\(600\) 0 0
\(601\) −46.4603 −1.89515 −0.947577 0.319528i \(-0.896476\pi\)
−0.947577 + 0.319528i \(0.896476\pi\)
\(602\) 12.4590i 0.507793i
\(603\) 0 0
\(604\) −3.21224 3.21224i −0.130704 0.130704i
\(605\) 20.5926 12.3961i 0.837209 0.503973i
\(606\) 0 0
\(607\) 0.451739i 0.0183355i 0.999958 + 0.00916777i \(0.00291823\pi\)
−0.999958 + 0.00916777i \(0.997082\pi\)
\(608\) 0.999812i 0.0405477i
\(609\) 0 0
\(610\) 0.448569 1.80536i 0.0181620 0.0730971i
\(611\) 0.0608650 + 25.6701i 0.00246234 + 1.03850i
\(612\) 0 0
\(613\) 3.68562 3.68562i 0.148861 0.148861i −0.628748 0.777609i \(-0.716432\pi\)
0.777609 + 0.628748i \(0.216432\pi\)
\(614\) 3.28277i 0.132482i
\(615\) 0 0
\(616\) 0.917688 + 0.917688i 0.0369747 + 0.0369747i
\(617\) 11.4145 + 11.4145i 0.459531 + 0.459531i 0.898501 0.438971i \(-0.144657\pi\)
−0.438971 + 0.898501i \(0.644657\pi\)
\(618\) 0 0
\(619\) −29.3159 + 29.3159i −1.17831 + 1.17831i −0.198132 + 0.980175i \(0.563487\pi\)
−0.980175 + 0.198132i \(0.936513\pi\)
\(620\) −17.8254 4.42898i −0.715886 0.177872i
\(621\) 0 0
\(622\) −8.53358 8.53358i −0.342165 0.342165i
\(623\) 26.1779i 1.04879i
\(624\) 0 0
\(625\) −14.0472 20.6803i −0.561887 0.827214i
\(626\) 3.62344 3.62344i 0.144822 0.144822i
\(627\) 0 0
\(628\) −19.0790 −0.761337
\(629\) −44.8519 + 44.8519i −1.78836 + 1.78836i
\(630\) 0 0
\(631\) −12.2618 + 12.2618i −0.488133 + 0.488133i −0.907717 0.419584i \(-0.862176\pi\)
0.419584 + 0.907717i \(0.362176\pi\)
\(632\) −3.72771 + 3.72771i −0.148281 + 0.148281i
\(633\) 0 0
\(634\) 29.9860i 1.19090i
\(635\) −17.7356 29.4627i −0.703816 1.16919i
\(636\) 0 0
\(637\) 0.730823 + 0.727366i 0.0289563 + 0.0288193i
\(638\) 2.53173 0.100232
\(639\) 0 0
\(640\) −2.17009 0.539189i −0.0857802 0.0213133i
\(641\) −33.8547 −1.33718 −0.668590 0.743631i \(-0.733102\pi\)
−0.668590 + 0.743631i \(0.733102\pi\)
\(642\) 0 0
\(643\) 3.10245 3.10245i 0.122349 0.122349i −0.643281 0.765630i \(-0.722427\pi\)
0.765630 + 0.643281i \(0.222427\pi\)
\(644\) −11.6997 11.6997i −0.461032 0.461032i
\(645\) 0 0
\(646\) 7.25929 0.285613
\(647\) 17.2546i 0.678349i 0.940723 + 0.339175i \(0.110148\pi\)
−0.940723 + 0.339175i \(0.889852\pi\)
\(648\) 0 0
\(649\) 0.198632i 0.00779699i
\(650\) −8.39982 + 15.9513i −0.329468 + 0.625660i
\(651\) 0 0
\(652\) −11.1149 + 11.1149i −0.435294 + 0.435294i
\(653\) −12.8033 −0.501030 −0.250515 0.968113i \(-0.580600\pi\)
−0.250515 + 0.968113i \(0.580600\pi\)
\(654\) 0 0
\(655\) 24.2403 14.5919i 0.947145 0.570151i
\(656\) 0.648903 0.648903i 0.0253354 0.0253354i
\(657\) 0 0
\(658\) 13.0447 + 13.0447i 0.508535 + 0.508535i
\(659\) 34.7256i 1.35272i −0.736573 0.676358i \(-0.763557\pi\)
0.736573 0.676358i \(-0.236443\pi\)
\(660\) 0 0
\(661\) −4.42529 + 4.42529i −0.172124 + 0.172124i −0.787912 0.615788i \(-0.788838\pi\)
0.615788 + 0.787912i \(0.288838\pi\)
\(662\) 11.2652i 0.437836i
\(663\) 0 0
\(664\) 2.74281 0.106442
\(665\) −4.96304 + 2.98759i −0.192458 + 0.115854i
\(666\) 0 0
\(667\) −32.2773 −1.24978
\(668\) 4.82453 + 4.82453i 0.186667 + 0.186667i
\(669\) 0 0
\(670\) −15.1212 25.1195i −0.584181 0.970452i
\(671\) −0.294640 0.294640i −0.0113744 0.0113744i
\(672\) 0 0
\(673\) −51.3180 −1.97816 −0.989082 0.147366i \(-0.952920\pi\)
−0.989082 + 0.147366i \(0.952920\pi\)
\(674\) −22.2316 22.2316i −0.856329 0.856329i
\(675\) 0 0
\(676\) 12.9999 0.0616468i 0.499994 0.00237103i
\(677\) 9.74584 0.374563 0.187282 0.982306i \(-0.440032\pi\)
0.187282 + 0.982306i \(0.440032\pi\)
\(678\) 0 0
\(679\) 17.4120 0.668212
\(680\) 3.91487 15.7563i 0.150128 0.604225i
\(681\) 0 0
\(682\) −2.90915 + 2.90915i −0.111397 + 0.111397i
\(683\) 10.1828 10.1828i 0.389635 0.389635i −0.484922 0.874557i \(-0.661152\pi\)
0.874557 + 0.484922i \(0.161152\pi\)
\(684\) 0 0
\(685\) 2.33269 + 0.579589i 0.0891273 + 0.0221450i
\(686\) 18.8790 0.720804
\(687\) 0 0
\(688\) −4.80832 −0.183315
\(689\) −4.30316 + 4.32362i −0.163937 + 0.164717i
\(690\) 0 0
\(691\) −2.35261 2.35261i −0.0894975 0.0894975i 0.660941 0.750438i \(-0.270157\pi\)
−0.750438 + 0.660941i \(0.770157\pi\)
\(692\) −3.67792 −0.139814
\(693\) 0 0
\(694\) 22.2361 + 22.2361i 0.844070 + 0.844070i
\(695\) −16.4671 27.3555i −0.624633 1.03765i
\(696\) 0 0
\(697\) 4.71147 + 4.71147i 0.178460 + 0.178460i
\(698\) −5.95490 −0.225396
\(699\) 0 0
\(700\) 3.80804 + 12.3834i 0.143930 + 0.468050i
\(701\) −3.37586 −0.127504 −0.0637522 0.997966i \(-0.520307\pi\)
−0.0637522 + 0.997966i \(0.520307\pi\)
\(702\) 0 0
\(703\) 8.73449i 0.329428i
\(704\) −0.354163 + 0.354163i −0.0133480 + 0.0133480i
\(705\) 0 0
\(706\) 18.6691i 0.702622i
\(707\) 25.2587 + 25.2587i 0.949950 + 0.949950i
\(708\) 0 0
\(709\) 20.9010 20.9010i 0.784954 0.784954i −0.195708 0.980662i \(-0.562701\pi\)
0.980662 + 0.195708i \(0.0627005\pi\)
\(710\) −14.5401 24.1543i −0.545681 0.906495i
\(711\) 0 0
\(712\) 10.1028 0.378620
\(713\) 37.0890 37.0890i 1.38899 1.38899i
\(714\) 0 0
\(715\) 2.09078 + 3.45467i 0.0781907 + 0.129197i
\(716\) 25.9594i 0.970150i
\(717\) 0 0
\(718\) 1.67385i 0.0624677i
\(719\) 17.5314 0.653812 0.326906 0.945057i \(-0.393994\pi\)
0.326906 + 0.945057i \(0.393994\pi\)
\(720\) 0 0
\(721\) 18.3149 + 18.3149i 0.682084 + 0.682084i
\(722\) −12.7282 + 12.7282i −0.473694 + 0.473694i
\(723\) 0 0
\(724\) 5.14332 0.191150
\(725\) 22.3347 + 11.8290i 0.829488 + 0.439317i
\(726\) 0 0
\(727\) 46.6544 1.73031 0.865157 0.501501i \(-0.167219\pi\)
0.865157 + 0.501501i \(0.167219\pi\)
\(728\) 6.59046 6.62179i 0.244259 0.245420i
\(729\) 0 0
\(730\) −21.7106 + 13.0691i −0.803544 + 0.483708i
\(731\) 34.9116i 1.29125i
\(732\) 0 0
\(733\) 22.0546 22.0546i 0.814604 0.814604i −0.170716 0.985320i \(-0.554608\pi\)
0.985320 + 0.170716i \(0.0546080\pi\)
\(734\) −5.40607 + 5.40607i −0.199542 + 0.199542i
\(735\) 0 0
\(736\) 4.51525 4.51525i 0.166434 0.166434i
\(737\) −6.56738 −0.241912
\(738\) 0 0
\(739\) 19.4720 19.4720i 0.716287 0.716287i −0.251556 0.967843i \(-0.580942\pi\)
0.967843 + 0.251556i \(0.0809421\pi\)
\(740\) 18.9582 + 4.71043i 0.696916 + 0.173159i
\(741\) 0 0
\(742\) 4.38384i 0.160936i
\(743\) −8.02456 8.02456i −0.294392 0.294392i 0.544420 0.838813i \(-0.316750\pi\)
−0.838813 + 0.544420i \(0.816750\pi\)
\(744\) 0 0
\(745\) 5.92046 + 1.47102i 0.216909 + 0.0538941i
\(746\) 3.87166 3.87166i 0.141752 0.141752i
\(747\) 0 0
\(748\) −2.57146 2.57146i −0.0940219 0.0940219i
\(749\) −11.9458 11.9458i −0.436489 0.436489i
\(750\) 0 0
\(751\) 15.5966i 0.569127i −0.958657 0.284564i \(-0.908151\pi\)
0.958657 0.284564i \(-0.0918487\pi\)
\(752\) −5.03434 + 5.03434i −0.183584 + 0.183584i
\(753\) 0 0
\(754\) −0.0432125 18.2251i −0.00157371 0.663719i
\(755\) −9.85825 2.44942i −0.358778 0.0891436i
\(756\) 0 0
\(757\) 26.9241i 0.978573i −0.872123 0.489287i \(-0.837257\pi\)
0.872123 0.489287i \(-0.162743\pi\)
\(758\) 11.9160i 0.432808i
\(759\) 0 0
\(760\) −1.15300 1.91539i −0.0418238 0.0694784i
\(761\) −11.8366 11.8366i −0.429075 0.429075i 0.459238 0.888313i \(-0.348123\pi\)
−0.888313 + 0.459238i \(0.848123\pi\)
\(762\) 0 0
\(763\) 11.7548i 0.425551i
\(764\) 23.4969 0.850089
\(765\) 0 0
\(766\) 9.30517i 0.336210i
\(767\) −1.42988 + 0.00339032i −0.0516301 + 0.000122417i
\(768\) 0 0
\(769\) −2.00901 2.00901i −0.0724467 0.0724467i 0.669955 0.742402i \(-0.266313\pi\)
−0.742402 + 0.669955i \(0.766313\pi\)
\(770\) 2.81635 + 0.699763i 0.101494 + 0.0252177i
\(771\) 0 0
\(772\) −13.7670 + 13.7670i −0.495484 + 0.495484i
\(773\) −32.7629 32.7629i −1.17840 1.17840i −0.980152 0.198248i \(-0.936475\pi\)
−0.198248 0.980152i \(-0.563525\pi\)
\(774\) 0 0
\(775\) −39.2566 + 12.0718i −1.41014 + 0.433632i
\(776\) 6.71982i 0.241227i
\(777\) 0 0
\(778\) 13.9386 + 13.9386i 0.499723 + 0.499723i
\(779\) 0.917515 0.0328734
\(780\) 0 0
\(781\) −6.31502 −0.225969
\(782\) 32.7837 + 32.7837i 1.17234 + 1.17234i
\(783\) 0 0
\(784\) 0.285975i 0.0102134i
\(785\) −36.5506 + 22.0023i −1.30455 + 0.785296i
\(786\) 0 0
\(787\) 32.0175 + 32.0175i 1.14130 + 1.14130i 0.988212 + 0.153089i \(0.0489223\pi\)
0.153089 + 0.988212i \(0.451078\pi\)
\(788\) 3.99829 3.99829i 0.142433 0.142433i
\(789\) 0 0
\(790\) −2.84249 + 11.4402i −0.101131 + 0.407025i
\(791\) 35.3199 + 35.3199i 1.25583 + 1.25583i
\(792\) 0 0
\(793\) −2.11598 + 2.12604i −0.0751408 + 0.0754980i
\(794\) 7.93297i 0.281530i
\(795\) 0 0
\(796\) −19.3636 −0.686324
\(797\) 16.4460i 0.582547i 0.956640 + 0.291273i \(0.0940789\pi\)
−0.956640 + 0.291273i \(0.905921\pi\)
\(798\) 0 0
\(799\) −36.5526 36.5526i −1.29314 1.29314i
\(800\) −4.77914 + 1.46963i −0.168968 + 0.0519594i
\(801\) 0 0
\(802\) 19.4187i 0.685697i
\(803\) 5.67612i 0.200306i
\(804\) 0 0
\(805\) −35.9059 8.92133i −1.26552 0.314436i
\(806\) 20.9916 + 20.8923i 0.739399 + 0.735901i
\(807\) 0 0
\(808\) −9.74808 + 9.74808i −0.342936 + 0.342936i
\(809\) 15.8402i 0.556911i −0.960449 0.278455i \(-0.910178\pi\)
0.960449 0.278455i \(-0.0898224\pi\)
\(810\) 0 0
\(811\) 28.5680 + 28.5680i 1.00316 + 1.00316i 0.999995 + 0.00316183i \(0.00100644\pi\)
0.00316183 + 0.999995i \(0.498994\pi\)
\(812\) −9.26138 9.26138i −0.325011 0.325011i
\(813\) 0 0
\(814\) 3.09402 3.09402i 0.108445 0.108445i
\(815\) −8.47544 + 34.1113i −0.296882 + 1.19487i
\(816\) 0 0
\(817\) −3.39935 3.39935i −0.118928 0.118928i
\(818\) 18.5722i 0.649360i
\(819\) 0 0
\(820\) 0.494807 1.99146i 0.0172794 0.0695449i
\(821\) 31.5019 31.5019i 1.09942 1.09942i 0.104945 0.994478i \(-0.466533\pi\)
0.994478 0.104945i \(-0.0334665\pi\)
\(822\) 0 0
\(823\) −16.5588 −0.577204 −0.288602 0.957449i \(-0.593190\pi\)
−0.288602 + 0.957449i \(0.593190\pi\)
\(824\) −7.06829 + 7.06829i −0.246235 + 0.246235i
\(825\) 0 0
\(826\) −0.726619 + 0.726619i −0.0252823 + 0.0252823i
\(827\) 0.0668289 0.0668289i 0.00232387 0.00232387i −0.705944 0.708268i \(-0.749477\pi\)
0.708268 + 0.705944i \(0.249477\pi\)
\(828\) 0 0
\(829\) 25.0065i 0.868512i 0.900789 + 0.434256i \(0.142989\pi\)
−0.900789 + 0.434256i \(0.857011\pi\)
\(830\) 5.25453 3.16306i 0.182387 0.109791i
\(831\) 0 0
\(832\) 2.55555 + 2.54346i 0.0885977 + 0.0881785i
\(833\) −2.07637 −0.0719419
\(834\) 0 0
\(835\) 14.8063 + 3.67884i 0.512393 + 0.127311i
\(836\) −0.500768 −0.0173194
\(837\) 0 0
\(838\) 3.13757 3.13757i 0.108386 0.108386i
\(839\) 23.2100 + 23.2100i 0.801299 + 0.801299i 0.983299 0.181999i \(-0.0582568\pi\)
−0.181999 + 0.983299i \(0.558257\pi\)
\(840\) 0 0
\(841\) 3.44954 0.118950
\(842\) 15.3097i 0.527607i
\(843\) 0 0
\(844\) 21.2220i 0.730491i
\(845\) 24.8333 15.1098i 0.854293 0.519792i
\(846\) 0 0
\(847\) −19.6947 + 19.6947i −0.676719 + 0.676719i
\(848\) −1.69186 −0.0580986
\(849\) 0 0
\(850\) −10.6705 34.6997i −0.365996 1.19019i
\(851\) −39.4459 + 39.4459i −1.35219 + 1.35219i
\(852\) 0 0
\(853\) −25.1767 25.1767i −0.862034 0.862034i 0.129541 0.991574i \(-0.458650\pi\)
−0.991574 + 0.129541i \(0.958650\pi\)
\(854\) 2.15566i 0.0737650i
\(855\) 0 0
\(856\) 4.61023 4.61023i 0.157575 0.157575i
\(857\) 8.40369i 0.287065i 0.989646 + 0.143532i \(0.0458461\pi\)
−0.989646 + 0.143532i \(0.954154\pi\)
\(858\) 0 0
\(859\) 24.6372 0.840611 0.420306 0.907383i \(-0.361923\pi\)
0.420306 + 0.907383i \(0.361923\pi\)
\(860\) −9.21152 + 5.54504i −0.314110 + 0.189084i
\(861\) 0 0
\(862\) 34.8271 1.18622
\(863\) −22.7765 22.7765i −0.775321 0.775321i 0.203710 0.979031i \(-0.434700\pi\)
−0.979031 + 0.203710i \(0.934700\pi\)
\(864\) 0 0
\(865\) −7.04597 + 4.24145i −0.239570 + 0.144214i
\(866\) 4.90680 + 4.90680i 0.166740 + 0.166740i
\(867\) 0 0
\(868\) 21.2840 0.722427
\(869\) 1.86707 + 1.86707i 0.0633361 + 0.0633361i
\(870\) 0 0
\(871\) 0.112094 + 47.2763i 0.00379817 + 1.60190i
\(872\) −4.53651 −0.153626
\(873\) 0 0
\(874\) 6.38433 0.215953
\(875\) 21.5760 + 19.3320i 0.729403 + 0.653542i
\(876\) 0 0
\(877\) 14.0020 14.0020i 0.472815 0.472815i −0.430010 0.902824i \(-0.641490\pi\)
0.902824 + 0.430010i \(0.141490\pi\)
\(878\) −7.14953 + 7.14953i −0.241285 + 0.241285i
\(879\) 0 0
\(880\) −0.270060 + 1.08692i −0.00910371 + 0.0366399i
\(881\) 37.2299 1.25431 0.627153 0.778896i \(-0.284220\pi\)
0.627153 + 0.778896i \(0.284220\pi\)
\(882\) 0 0
\(883\) 34.4647 1.15983 0.579915 0.814677i \(-0.303086\pi\)
0.579915 + 0.814677i \(0.303086\pi\)
\(884\) −18.4672 + 18.5550i −0.621119 + 0.624071i
\(885\) 0 0
\(886\) 15.9956 + 15.9956i 0.537382 + 0.537382i
\(887\) 9.90737 0.332657 0.166328 0.986070i \(-0.446809\pi\)
0.166328 + 0.986070i \(0.446809\pi\)
\(888\) 0 0
\(889\) 28.1780 + 28.1780i 0.945061 + 0.945061i
\(890\) 19.3545 11.6508i 0.648763 0.390535i
\(891\) 0 0
\(892\) 7.43025 + 7.43025i 0.248783 + 0.248783i
\(893\) −7.11829 −0.238205
\(894\) 0 0
\(895\) 29.9369 + 49.7317i 1.00068 + 1.66235i
\(896\) 2.59114 0.0865640
\(897\) 0 0
\(898\) 16.6748i 0.556445i
\(899\) 29.3594 29.3594i 0.979190 0.979190i
\(900\) 0 0
\(901\) 12.2840i 0.409239i
\(902\) −0.325011 0.325011i −0.0108217 0.0108217i
\(903\) 0 0
\(904\) −13.6310 + 13.6310i −0.453360 + 0.453360i
\(905\) 9.85330 5.93138i 0.327535 0.197166i
\(906\) 0 0
\(907\) −47.9102 −1.59083 −0.795416 0.606064i \(-0.792748\pi\)
−0.795416 + 0.606064i \(0.792748\pi\)
\(908\) 0.320995 0.320995i 0.0106526 0.0106526i
\(909\) 0 0
\(910\) 4.98929 20.2859i 0.165393 0.672472i
\(911\) 56.7132i 1.87899i −0.342561 0.939496i \(-0.611294\pi\)
0.342561 0.939496i \(-0.388706\pi\)
\(912\) 0 0
\(913\) 1.37377i 0.0454652i
\(914\) −5.89452 −0.194974
\(915\) 0 0
\(916\) −8.52207 8.52207i −0.281577 0.281577i
\(917\) −23.1833 + 23.1833i −0.765580 + 0.765580i
\(918\) 0 0
\(919\) 30.6139 1.00986 0.504929 0.863161i \(-0.331519\pi\)
0.504929 + 0.863161i \(0.331519\pi\)
\(920\) 3.44301 13.8572i 0.113513 0.456857i
\(921\) 0 0
\(922\) −3.79750 −0.125064
\(923\) 0.107787 + 45.4597i 0.00354785 + 1.49633i
\(924\) 0 0
\(925\) 41.7512 12.8389i 1.37277 0.422142i
\(926\) 35.4544i 1.16510i
\(927\) 0 0
\(928\) 3.57425 3.57425i 0.117330 0.117330i
\(929\) 40.9956 40.9956i 1.34502 1.34502i 0.454045 0.890979i \(-0.349981\pi\)
0.890979 0.454045i \(-0.150019\pi\)
\(930\) 0 0
\(931\) −0.202177 + 0.202177i −0.00662608 + 0.00662608i
\(932\) −7.38750 −0.241986
\(933\) 0 0
\(934\) −19.7764 + 19.7764i −0.647102 + 0.647102i
\(935\) −7.89172 1.96081i −0.258087 0.0641254i
\(936\) 0 0
\(937\) 54.0419i 1.76547i 0.469868 + 0.882736i \(0.344301\pi\)
−0.469868 + 0.882736i \(0.655699\pi\)
\(938\) 24.0242 + 24.0242i 0.784419 + 0.784419i
\(939\) 0 0
\(940\) −3.83883 + 15.4502i −0.125209 + 0.503931i
\(941\) −22.3817 + 22.3817i −0.729621 + 0.729621i −0.970544 0.240923i \(-0.922550\pi\)
0.240923 + 0.970544i \(0.422550\pi\)
\(942\) 0 0
\(943\) 4.14360 + 4.14360i 0.134934 + 0.134934i
\(944\) −0.280424 0.280424i −0.00912703 0.00912703i
\(945\) 0 0
\(946\) 2.40831i 0.0783008i
\(947\) 2.33220 2.33220i 0.0757863 0.0757863i −0.668198 0.743984i \(-0.732934\pi\)
0.743984 + 0.668198i \(0.232934\pi\)
\(948\) 0 0
\(949\) 40.8605 0.0968820i 1.32639 0.00314492i
\(950\) −4.41772 2.33973i −0.143330 0.0759109i
\(951\) 0 0
\(952\) 18.8134i 0.609746i
\(953\) 35.2587i 1.14214i 0.820901 + 0.571070i \(0.193471\pi\)
−0.820901 + 0.571070i \(0.806529\pi\)
\(954\) 0 0
\(955\) 45.0142 27.0971i 1.45662 0.876841i
\(956\) −6.45533 6.45533i −0.208780 0.208780i
\(957\) 0 0
\(958\) 14.3013i 0.462055i
\(959\) −2.78529 −0.0899417
\(960\) 0 0
\(961\) 36.4722i 1.17652i
\(962\) −22.3256 22.2200i −0.719807 0.716402i
\(963\) 0 0
\(964\) 14.0266 + 14.0266i 0.451766 + 0.451766i
\(965\) −10.4977 + 42.2504i −0.337933 + 1.36009i
\(966\) 0 0
\(967\) 22.4885 22.4885i 0.723181 0.723181i −0.246071 0.969252i \(-0.579140\pi\)
0.969252 + 0.246071i \(0.0791396\pi\)
\(968\) −7.60079 7.60079i −0.244299 0.244299i
\(969\) 0 0
\(970\) 7.74942 + 12.8735i 0.248819 + 0.413342i
\(971\) 27.3073i 0.876333i −0.898894 0.438167i \(-0.855628\pi\)
0.898894 0.438167i \(-0.144372\pi\)
\(972\) 0 0
\(973\) 26.1627 + 26.1627i 0.838737 + 0.838737i
\(974\) 7.43615 0.238270
\(975\) 0 0
\(976\) −0.831932 −0.0266295
\(977\) −27.2827 27.2827i −0.872850 0.872850i 0.119932 0.992782i \(-0.461732\pi\)
−0.992782 + 0.119932i \(0.961732\pi\)
\(978\) 0 0
\(979\) 5.06013i 0.161722i
\(980\) 0.329792 + 0.547856i 0.0105348 + 0.0175006i
\(981\) 0 0
\(982\) −19.5797 19.5797i −0.624813 0.624813i
\(983\) −23.5964 + 23.5964i −0.752607 + 0.752607i −0.974965 0.222358i \(-0.928625\pi\)
0.222358 + 0.974965i \(0.428625\pi\)
\(984\) 0 0
\(985\) 3.04881 12.2706i 0.0971432 0.390975i
\(986\) 25.9514 + 25.9514i 0.826460 + 0.826460i
\(987\) 0 0
\(988\) 0.00854729 + 3.60486i 0.000271926 + 0.114686i
\(989\) 30.7037i 0.976320i
\(990\) 0 0
\(991\) −48.3091 −1.53459 −0.767294 0.641295i \(-0.778397\pi\)
−0.767294 + 0.641295i \(0.778397\pi\)
\(992\) 8.21415i 0.260799i
\(993\) 0 0
\(994\) 23.1011 + 23.1011i 0.732723 + 0.732723i
\(995\) −37.0957 + 22.3304i −1.17601 + 0.707923i
\(996\) 0 0
\(997\) 48.8044i 1.54565i 0.634619 + 0.772825i \(0.281157\pi\)
−0.634619 + 0.772825i \(0.718843\pi\)
\(998\) 24.5217i 0.776220i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.q.c.359.6 24
3.2 odd 2 inner 1170.2.q.c.359.11 yes 24
5.4 even 2 1170.2.q.d.359.7 yes 24
13.5 odd 4 1170.2.q.d.629.2 yes 24
15.14 odd 2 1170.2.q.d.359.2 yes 24
39.5 even 4 1170.2.q.d.629.7 yes 24
65.44 odd 4 inner 1170.2.q.c.629.11 yes 24
195.44 even 4 inner 1170.2.q.c.629.6 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1170.2.q.c.359.6 24 1.1 even 1 trivial
1170.2.q.c.359.11 yes 24 3.2 odd 2 inner
1170.2.q.c.629.6 yes 24 195.44 even 4 inner
1170.2.q.c.629.11 yes 24 65.44 odd 4 inner
1170.2.q.d.359.2 yes 24 15.14 odd 2
1170.2.q.d.359.7 yes 24 5.4 even 2
1170.2.q.d.629.2 yes 24 13.5 odd 4
1170.2.q.d.629.7 yes 24 39.5 even 4