L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (1.15 + 1.91i)5-s + (−1.83 − 1.83i)7-s + (0.707 − 0.707i)8-s + (0.539 − 2.17i)10-s + (−0.354 − 0.354i)11-s + (−2.54 + 2.55i)13-s + 2.59i·14-s − 1.00·16-s − 7.26i·17-s + (−0.706 − 0.706i)19-s + (−1.91 + 1.15i)20-s + 0.500i·22-s − 6.38i·23-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + 0.500i·4-s + (0.515 + 0.856i)5-s + (−0.692 − 0.692i)7-s + (0.250 − 0.250i)8-s + (0.170 − 0.686i)10-s + (−0.106 − 0.106i)11-s + (−0.705 + 0.708i)13-s + 0.692i·14-s − 0.250·16-s − 1.76i·17-s + (−0.162 − 0.162i)19-s + (−0.428 + 0.257i)20-s + 0.106i·22-s − 1.33i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.357 + 0.934i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1170 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.357 + 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8413521410\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8413521410\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.15 - 1.91i)T \) |
| 13 | \( 1 + (2.54 - 2.55i)T \) |
good | 7 | \( 1 + (1.83 + 1.83i)T + 7iT^{2} \) |
| 11 | \( 1 + (0.354 + 0.354i)T + 11iT^{2} \) |
| 17 | \( 1 + 7.26iT - 17T^{2} \) |
| 19 | \( 1 + (0.706 + 0.706i)T + 19iT^{2} \) |
| 23 | \( 1 + 6.38iT - 23T^{2} \) |
| 29 | \( 1 + 5.05iT - 29T^{2} \) |
| 31 | \( 1 + (-5.80 - 5.80i)T + 31iT^{2} \) |
| 37 | \( 1 + (6.17 + 6.17i)T + 37iT^{2} \) |
| 41 | \( 1 + (0.648 - 0.648i)T - 41iT^{2} \) |
| 43 | \( 1 - 4.80T + 43T^{2} \) |
| 47 | \( 1 + (-5.03 + 5.03i)T - 47iT^{2} \) |
| 53 | \( 1 - 1.69T + 53T^{2} \) |
| 59 | \( 1 + (-0.280 - 0.280i)T + 59iT^{2} \) |
| 61 | \( 1 - 0.831T + 61T^{2} \) |
| 67 | \( 1 + (-9.27 + 9.27i)T - 67iT^{2} \) |
| 71 | \( 1 + (-8.91 + 8.91i)T - 71iT^{2} \) |
| 73 | \( 1 + (8.01 + 8.01i)T + 73iT^{2} \) |
| 79 | \( 1 + 5.27T + 79T^{2} \) |
| 83 | \( 1 + (-1.93 - 1.93i)T + 83iT^{2} \) |
| 89 | \( 1 + (-7.14 - 7.14i)T + 89iT^{2} \) |
| 97 | \( 1 + (4.75 - 4.75i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.603549444172257210907327292790, −9.057785336336760746846579814749, −7.82153127348090029399535390664, −6.87975432130645032915471951227, −6.65423859622923220596254746643, −5.18245480005011851309547281459, −4.08322084987769562318933311382, −2.94888386208289451821967264288, −2.25848804346170170889088958715, −0.43811628893240232362208149454,
1.36272056053268679284479549933, 2.60580633334568042637898588629, 4.03385278346730848100730843869, 5.30063657319291765241361190907, 5.77966055519010049032605403296, 6.61156885142729995270331540716, 7.76892608684527849431663389020, 8.444386382683915337052618436352, 9.156656719185353929997524670958, 9.923166811273907143621638756753