Properties

Label 1170.2.bp.b.919.2
Level $1170$
Weight $2$
Character 1170.919
Analytic conductor $9.342$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(289,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.bp (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,-8,0,0,0,0,-2,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 919.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1170.919
Dual form 1170.2.bp.b.289.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(-2.00000 + 1.00000i) q^{5} +(4.33013 - 2.50000i) q^{7} +1.00000i q^{8} +(-2.23205 - 0.133975i) q^{10} +(1.50000 - 2.59808i) q^{11} +(-2.59808 - 2.50000i) q^{13} +5.00000 q^{14} +(-0.500000 + 0.866025i) q^{16} +(3.46410 - 2.00000i) q^{17} +(-0.500000 - 0.866025i) q^{19} +(-1.86603 - 1.23205i) q^{20} +(2.59808 - 1.50000i) q^{22} +(3.00000 - 4.00000i) q^{25} +(-1.00000 - 3.46410i) q^{26} +(4.33013 + 2.50000i) q^{28} +(-1.00000 + 1.73205i) q^{29} +4.00000 q^{31} +(-0.866025 + 0.500000i) q^{32} +4.00000 q^{34} +(-6.16025 + 9.33013i) q^{35} +(7.79423 + 4.50000i) q^{37} -1.00000i q^{38} +(-1.00000 - 2.00000i) q^{40} +(5.00000 - 8.66025i) q^{41} +(-10.3923 + 6.00000i) q^{43} +3.00000 q^{44} +7.00000i q^{47} +(9.00000 - 15.5885i) q^{49} +(4.59808 - 1.96410i) q^{50} +(0.866025 - 3.50000i) q^{52} -3.00000i q^{53} +(-0.401924 + 6.69615i) q^{55} +(2.50000 + 4.33013i) q^{56} +(-1.73205 + 1.00000i) q^{58} +(3.46410 + 2.00000i) q^{62} -1.00000 q^{64} +(7.69615 + 2.40192i) q^{65} +(-5.19615 - 3.00000i) q^{67} +(3.46410 + 2.00000i) q^{68} +(-10.0000 + 5.00000i) q^{70} +(6.00000 + 10.3923i) q^{71} +16.0000i q^{73} +(4.50000 + 7.79423i) q^{74} +(0.500000 - 0.866025i) q^{76} -15.0000i q^{77} +14.0000 q^{79} +(0.133975 - 2.23205i) q^{80} +(8.66025 - 5.00000i) q^{82} -10.0000i q^{83} +(-4.92820 + 7.46410i) q^{85} -12.0000 q^{86} +(2.59808 + 1.50000i) q^{88} +(0.500000 - 0.866025i) q^{89} +(-17.5000 - 4.33013i) q^{91} +(-3.50000 + 6.06218i) q^{94} +(1.86603 + 1.23205i) q^{95} +(-8.66025 + 5.00000i) q^{97} +(15.5885 - 9.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 8 q^{5} - 2 q^{10} + 6 q^{11} + 20 q^{14} - 2 q^{16} - 2 q^{19} - 4 q^{20} + 12 q^{25} - 4 q^{26} - 4 q^{29} + 16 q^{31} + 16 q^{34} + 10 q^{35} - 4 q^{40} + 20 q^{41} + 12 q^{44} + 36 q^{49}+ \cdots + 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −2.00000 + 1.00000i −0.894427 + 0.447214i
\(6\) 0 0
\(7\) 4.33013 2.50000i 1.63663 0.944911i 0.654654 0.755929i \(-0.272814\pi\)
0.981981 0.188982i \(-0.0605189\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −2.23205 0.133975i −0.705836 0.0423665i
\(11\) 1.50000 2.59808i 0.452267 0.783349i −0.546259 0.837616i \(-0.683949\pi\)
0.998526 + 0.0542666i \(0.0172821\pi\)
\(12\) 0 0
\(13\) −2.59808 2.50000i −0.720577 0.693375i
\(14\) 5.00000 1.33631
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.46410 2.00000i 0.840168 0.485071i −0.0171533 0.999853i \(-0.505460\pi\)
0.857321 + 0.514782i \(0.172127\pi\)
\(18\) 0 0
\(19\) −0.500000 0.866025i −0.114708 0.198680i 0.802955 0.596040i \(-0.203260\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) −1.86603 1.23205i −0.417256 0.275495i
\(21\) 0 0
\(22\) 2.59808 1.50000i 0.553912 0.319801i
\(23\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(24\) 0 0
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) −1.00000 3.46410i −0.196116 0.679366i
\(27\) 0 0
\(28\) 4.33013 + 2.50000i 0.818317 + 0.472456i
\(29\) −1.00000 + 1.73205i −0.185695 + 0.321634i −0.943811 0.330487i \(-0.892787\pi\)
0.758115 + 0.652121i \(0.226120\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 4.00000 0.685994
\(35\) −6.16025 + 9.33013i −1.04127 + 1.57708i
\(36\) 0 0
\(37\) 7.79423 + 4.50000i 1.28136 + 0.739795i 0.977098 0.212792i \(-0.0682556\pi\)
0.304266 + 0.952587i \(0.401589\pi\)
\(38\) 1.00000i 0.162221i
\(39\) 0 0
\(40\) −1.00000 2.00000i −0.158114 0.316228i
\(41\) 5.00000 8.66025i 0.780869 1.35250i −0.150567 0.988600i \(-0.548110\pi\)
0.931436 0.363905i \(-0.118557\pi\)
\(42\) 0 0
\(43\) −10.3923 + 6.00000i −1.58481 + 0.914991i −0.590669 + 0.806914i \(0.701136\pi\)
−0.994142 + 0.108078i \(0.965531\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) 0 0
\(47\) 7.00000i 1.02105i 0.859861 + 0.510527i \(0.170550\pi\)
−0.859861 + 0.510527i \(0.829450\pi\)
\(48\) 0 0
\(49\) 9.00000 15.5885i 1.28571 2.22692i
\(50\) 4.59808 1.96410i 0.650266 0.277766i
\(51\) 0 0
\(52\) 0.866025 3.50000i 0.120096 0.485363i
\(53\) 3.00000i 0.412082i −0.978543 0.206041i \(-0.933942\pi\)
0.978543 0.206041i \(-0.0660580\pi\)
\(54\) 0 0
\(55\) −0.401924 + 6.69615i −0.0541954 + 0.902909i
\(56\) 2.50000 + 4.33013i 0.334077 + 0.578638i
\(57\) 0 0
\(58\) −1.73205 + 1.00000i −0.227429 + 0.131306i
\(59\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(60\) 0 0
\(61\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(62\) 3.46410 + 2.00000i 0.439941 + 0.254000i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 7.69615 + 2.40192i 0.954590 + 0.297922i
\(66\) 0 0
\(67\) −5.19615 3.00000i −0.634811 0.366508i 0.147802 0.989017i \(-0.452780\pi\)
−0.782613 + 0.622509i \(0.786114\pi\)
\(68\) 3.46410 + 2.00000i 0.420084 + 0.242536i
\(69\) 0 0
\(70\) −10.0000 + 5.00000i −1.19523 + 0.597614i
\(71\) 6.00000 + 10.3923i 0.712069 + 1.23334i 0.964079 + 0.265615i \(0.0855750\pi\)
−0.252010 + 0.967725i \(0.581092\pi\)
\(72\) 0 0
\(73\) 16.0000i 1.87266i 0.351123 + 0.936329i \(0.385800\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 4.50000 + 7.79423i 0.523114 + 0.906061i
\(75\) 0 0
\(76\) 0.500000 0.866025i 0.0573539 0.0993399i
\(77\) 15.0000i 1.70941i
\(78\) 0 0
\(79\) 14.0000 1.57512 0.787562 0.616236i \(-0.211343\pi\)
0.787562 + 0.616236i \(0.211343\pi\)
\(80\) 0.133975 2.23205i 0.0149788 0.249551i
\(81\) 0 0
\(82\) 8.66025 5.00000i 0.956365 0.552158i
\(83\) 10.0000i 1.09764i −0.835940 0.548821i \(-0.815077\pi\)
0.835940 0.548821i \(-0.184923\pi\)
\(84\) 0 0
\(85\) −4.92820 + 7.46410i −0.534539 + 0.809595i
\(86\) −12.0000 −1.29399
\(87\) 0 0
\(88\) 2.59808 + 1.50000i 0.276956 + 0.159901i
\(89\) 0.500000 0.866025i 0.0529999 0.0917985i −0.838308 0.545197i \(-0.816455\pi\)
0.891308 + 0.453398i \(0.149788\pi\)
\(90\) 0 0
\(91\) −17.5000 4.33013i −1.83450 0.453921i
\(92\) 0 0
\(93\) 0 0
\(94\) −3.50000 + 6.06218i −0.360997 + 0.625266i
\(95\) 1.86603 + 1.23205i 0.191450 + 0.126406i
\(96\) 0 0
\(97\) −8.66025 + 5.00000i −0.879316 + 0.507673i −0.870433 0.492287i \(-0.836161\pi\)
−0.00888289 + 0.999961i \(0.502828\pi\)
\(98\) 15.5885 9.00000i 1.57467 0.909137i
\(99\) 0 0
\(100\) 4.96410 + 0.598076i 0.496410 + 0.0598076i
\(101\) 5.00000 8.66025i 0.497519 0.861727i −0.502477 0.864590i \(-0.667578\pi\)
0.999996 + 0.00286291i \(0.000911295\pi\)
\(102\) 0 0
\(103\) 7.00000i 0.689730i −0.938652 0.344865i \(-0.887925\pi\)
0.938652 0.344865i \(-0.112075\pi\)
\(104\) 2.50000 2.59808i 0.245145 0.254762i
\(105\) 0 0
\(106\) 1.50000 2.59808i 0.145693 0.252347i
\(107\) 10.3923 + 6.00000i 1.00466 + 0.580042i 0.909624 0.415432i \(-0.136370\pi\)
0.0950377 + 0.995474i \(0.469703\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) −3.69615 + 5.59808i −0.352414 + 0.533756i
\(111\) 0 0
\(112\) 5.00000i 0.472456i
\(113\) −3.46410 + 2.00000i −0.325875 + 0.188144i −0.654008 0.756487i \(-0.726914\pi\)
0.328133 + 0.944632i \(0.393581\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.00000 −0.185695
\(117\) 0 0
\(118\) 0 0
\(119\) 10.0000 17.3205i 0.916698 1.58777i
\(120\) 0 0
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 2.00000 + 3.46410i 0.179605 + 0.311086i
\(125\) −2.00000 + 11.0000i −0.178885 + 0.983870i
\(126\) 0 0
\(127\) −14.7224 8.50000i −1.30640 0.754253i −0.324910 0.945745i \(-0.605334\pi\)
−0.981494 + 0.191492i \(0.938667\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) 5.46410 + 5.92820i 0.479233 + 0.519938i
\(131\) −7.00000 −0.611593 −0.305796 0.952097i \(-0.598923\pi\)
−0.305796 + 0.952097i \(0.598923\pi\)
\(132\) 0 0
\(133\) −4.33013 2.50000i −0.375470 0.216777i
\(134\) −3.00000 5.19615i −0.259161 0.448879i
\(135\) 0 0
\(136\) 2.00000 + 3.46410i 0.171499 + 0.297044i
\(137\) −8.66025 + 5.00000i −0.739895 + 0.427179i −0.822031 0.569442i \(-0.807159\pi\)
0.0821359 + 0.996621i \(0.473826\pi\)
\(138\) 0 0
\(139\) −2.50000 4.33013i −0.212047 0.367277i 0.740308 0.672268i \(-0.234680\pi\)
−0.952355 + 0.304991i \(0.901346\pi\)
\(140\) −11.1603 0.669873i −0.943214 0.0566146i
\(141\) 0 0
\(142\) 12.0000i 1.00702i
\(143\) −10.3923 + 3.00000i −0.869048 + 0.250873i
\(144\) 0 0
\(145\) 0.267949 4.46410i 0.0222520 0.370723i
\(146\) −8.00000 + 13.8564i −0.662085 + 1.14676i
\(147\) 0 0
\(148\) 9.00000i 0.739795i
\(149\) −8.00000 13.8564i −0.655386 1.13516i −0.981797 0.189933i \(-0.939173\pi\)
0.326411 0.945228i \(-0.394160\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0.866025 0.500000i 0.0702439 0.0405554i
\(153\) 0 0
\(154\) 7.50000 12.9904i 0.604367 1.04679i
\(155\) −8.00000 + 4.00000i −0.642575 + 0.321288i
\(156\) 0 0
\(157\) 3.00000i 0.239426i −0.992809 0.119713i \(-0.961803\pi\)
0.992809 0.119713i \(-0.0381975\pi\)
\(158\) 12.1244 + 7.00000i 0.964562 + 0.556890i
\(159\) 0 0
\(160\) 1.23205 1.86603i 0.0974022 0.147522i
\(161\) 0 0
\(162\) 0 0
\(163\) −6.92820 + 4.00000i −0.542659 + 0.313304i −0.746156 0.665771i \(-0.768103\pi\)
0.203497 + 0.979076i \(0.434769\pi\)
\(164\) 10.0000 0.780869
\(165\) 0 0
\(166\) 5.00000 8.66025i 0.388075 0.672166i
\(167\) −16.4545 9.50000i −1.27329 0.735132i −0.297681 0.954665i \(-0.596213\pi\)
−0.975605 + 0.219533i \(0.929547\pi\)
\(168\) 0 0
\(169\) 0.500000 + 12.9904i 0.0384615 + 0.999260i
\(170\) −8.00000 + 4.00000i −0.613572 + 0.306786i
\(171\) 0 0
\(172\) −10.3923 6.00000i −0.792406 0.457496i
\(173\) −6.06218 + 3.50000i −0.460899 + 0.266100i −0.712422 0.701751i \(-0.752402\pi\)
0.251523 + 0.967851i \(0.419068\pi\)
\(174\) 0 0
\(175\) 2.99038 24.8205i 0.226052 1.87625i
\(176\) 1.50000 + 2.59808i 0.113067 + 0.195837i
\(177\) 0 0
\(178\) 0.866025 0.500000i 0.0649113 0.0374766i
\(179\) −6.00000 + 10.3923i −0.448461 + 0.776757i −0.998286 0.0585225i \(-0.981361\pi\)
0.549825 + 0.835280i \(0.314694\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) −12.9904 12.5000i −0.962911 0.926562i
\(183\) 0 0
\(184\) 0 0
\(185\) −20.0885 1.20577i −1.47693 0.0886501i
\(186\) 0 0
\(187\) 12.0000i 0.877527i
\(188\) −6.06218 + 3.50000i −0.442130 + 0.255264i
\(189\) 0 0
\(190\) 1.00000 + 2.00000i 0.0725476 + 0.145095i
\(191\) 6.00000 + 10.3923i 0.434145 + 0.751961i 0.997225 0.0744412i \(-0.0237173\pi\)
−0.563081 + 0.826402i \(0.690384\pi\)
\(192\) 0 0
\(193\) 3.46410 + 2.00000i 0.249351 + 0.143963i 0.619467 0.785022i \(-0.287349\pi\)
−0.370116 + 0.928986i \(0.620682\pi\)
\(194\) −10.0000 −0.717958
\(195\) 0 0
\(196\) 18.0000 1.28571
\(197\) 12.9904 + 7.50000i 0.925526 + 0.534353i 0.885394 0.464841i \(-0.153889\pi\)
0.0401324 + 0.999194i \(0.487222\pi\)
\(198\) 0 0
\(199\) −7.00000 12.1244i −0.496217 0.859473i 0.503774 0.863836i \(-0.331945\pi\)
−0.999990 + 0.00436292i \(0.998611\pi\)
\(200\) 4.00000 + 3.00000i 0.282843 + 0.212132i
\(201\) 0 0
\(202\) 8.66025 5.00000i 0.609333 0.351799i
\(203\) 10.0000i 0.701862i
\(204\) 0 0
\(205\) −1.33975 + 22.3205i −0.0935719 + 1.55893i
\(206\) 3.50000 6.06218i 0.243857 0.422372i
\(207\) 0 0
\(208\) 3.46410 1.00000i 0.240192 0.0693375i
\(209\) −3.00000 −0.207514
\(210\) 0 0
\(211\) −6.50000 + 11.2583i −0.447478 + 0.775055i −0.998221 0.0596196i \(-0.981011\pi\)
0.550743 + 0.834675i \(0.314345\pi\)
\(212\) 2.59808 1.50000i 0.178437 0.103020i
\(213\) 0 0
\(214\) 6.00000 + 10.3923i 0.410152 + 0.710403i
\(215\) 14.7846 22.3923i 1.00830 1.52714i
\(216\) 0 0
\(217\) 17.3205 10.0000i 1.17579 0.678844i
\(218\) −8.66025 5.00000i −0.586546 0.338643i
\(219\) 0 0
\(220\) −6.00000 + 3.00000i −0.404520 + 0.202260i
\(221\) −14.0000 3.46410i −0.941742 0.233021i
\(222\) 0 0
\(223\) −0.866025 0.500000i −0.0579934 0.0334825i 0.470723 0.882281i \(-0.343993\pi\)
−0.528716 + 0.848799i \(0.677326\pi\)
\(224\) −2.50000 + 4.33013i −0.167038 + 0.289319i
\(225\) 0 0
\(226\) −4.00000 −0.266076
\(227\) −1.73205 + 1.00000i −0.114960 + 0.0663723i −0.556378 0.830930i \(-0.687809\pi\)
0.441417 + 0.897302i \(0.354476\pi\)
\(228\) 0 0
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.73205 1.00000i −0.113715 0.0656532i
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) −7.00000 14.0000i −0.456630 0.913259i
\(236\) 0 0
\(237\) 0 0
\(238\) 17.3205 10.0000i 1.12272 0.648204i
\(239\) 14.0000 0.905585 0.452792 0.891616i \(-0.350428\pi\)
0.452792 + 0.891616i \(0.350428\pi\)
\(240\) 0 0
\(241\) −1.50000 2.59808i −0.0966235 0.167357i 0.813662 0.581339i \(-0.197471\pi\)
−0.910285 + 0.413982i \(0.864138\pi\)
\(242\) 2.00000i 0.128565i
\(243\) 0 0
\(244\) 0 0
\(245\) −2.41154 + 40.1769i −0.154068 + 2.56681i
\(246\) 0 0
\(247\) −0.866025 + 3.50000i −0.0551039 + 0.222700i
\(248\) 4.00000i 0.254000i
\(249\) 0 0
\(250\) −7.23205 + 8.52628i −0.457395 + 0.539249i
\(251\) 6.50000 + 11.2583i 0.410276 + 0.710620i 0.994920 0.100671i \(-0.0320989\pi\)
−0.584643 + 0.811290i \(0.698766\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −8.50000 14.7224i −0.533337 0.923768i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 8.66025 + 5.00000i 0.540212 + 0.311891i 0.745165 0.666880i \(-0.232371\pi\)
−0.204953 + 0.978772i \(0.565704\pi\)
\(258\) 0 0
\(259\) 45.0000 2.79616
\(260\) 1.76795 + 7.86603i 0.109644 + 0.487830i
\(261\) 0 0
\(262\) −6.06218 3.50000i −0.374523 0.216231i
\(263\) 6.06218 + 3.50000i 0.373810 + 0.215819i 0.675122 0.737706i \(-0.264091\pi\)
−0.301312 + 0.953526i \(0.597424\pi\)
\(264\) 0 0
\(265\) 3.00000 + 6.00000i 0.184289 + 0.368577i
\(266\) −2.50000 4.33013i −0.153285 0.265497i
\(267\) 0 0
\(268\) 6.00000i 0.366508i
\(269\) 4.00000 + 6.92820i 0.243884 + 0.422420i 0.961817 0.273692i \(-0.0882449\pi\)
−0.717933 + 0.696112i \(0.754912\pi\)
\(270\) 0 0
\(271\) 1.00000 1.73205i 0.0607457 0.105215i −0.834053 0.551684i \(-0.813985\pi\)
0.894799 + 0.446469i \(0.147319\pi\)
\(272\) 4.00000i 0.242536i
\(273\) 0 0
\(274\) −10.0000 −0.604122
\(275\) −5.89230 13.7942i −0.355319 0.831823i
\(276\) 0 0
\(277\) −14.7224 + 8.50000i −0.884585 + 0.510716i −0.872167 0.489207i \(-0.837286\pi\)
−0.0124177 + 0.999923i \(0.503953\pi\)
\(278\) 5.00000i 0.299880i
\(279\) 0 0
\(280\) −9.33013 6.16025i −0.557582 0.368146i
\(281\) −30.0000 −1.78965 −0.894825 0.446417i \(-0.852700\pi\)
−0.894825 + 0.446417i \(0.852700\pi\)
\(282\) 0 0
\(283\) 5.19615 + 3.00000i 0.308879 + 0.178331i 0.646425 0.762978i \(-0.276263\pi\)
−0.337546 + 0.941309i \(0.609597\pi\)
\(284\) −6.00000 + 10.3923i −0.356034 + 0.616670i
\(285\) 0 0
\(286\) −10.5000 2.59808i −0.620878 0.153627i
\(287\) 50.0000i 2.95141i
\(288\) 0 0
\(289\) −0.500000 + 0.866025i −0.0294118 + 0.0509427i
\(290\) 2.46410 3.73205i 0.144697 0.219154i
\(291\) 0 0
\(292\) −13.8564 + 8.00000i −0.810885 + 0.468165i
\(293\) 2.59808 1.50000i 0.151781 0.0876309i −0.422186 0.906509i \(-0.638737\pi\)
0.573967 + 0.818878i \(0.305404\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.50000 + 7.79423i −0.261557 + 0.453030i
\(297\) 0 0
\(298\) 16.0000i 0.926855i
\(299\) 0 0
\(300\) 0 0
\(301\) −30.0000 + 51.9615i −1.72917 + 2.99501i
\(302\) −6.92820 4.00000i −0.398673 0.230174i
\(303\) 0 0
\(304\) 1.00000 0.0573539
\(305\) 0 0
\(306\) 0 0
\(307\) 4.00000i 0.228292i −0.993464 0.114146i \(-0.963587\pi\)
0.993464 0.114146i \(-0.0364132\pi\)
\(308\) 12.9904 7.50000i 0.740196 0.427352i
\(309\) 0 0
\(310\) −8.92820 0.535898i −0.507088 0.0304370i
\(311\) 20.0000 1.13410 0.567048 0.823685i \(-0.308085\pi\)
0.567048 + 0.823685i \(0.308085\pi\)
\(312\) 0 0
\(313\) 14.0000i 0.791327i 0.918396 + 0.395663i \(0.129485\pi\)
−0.918396 + 0.395663i \(0.870515\pi\)
\(314\) 1.50000 2.59808i 0.0846499 0.146618i
\(315\) 0 0
\(316\) 7.00000 + 12.1244i 0.393781 + 0.682048i
\(317\) 7.00000i 0.393159i 0.980488 + 0.196580i \(0.0629834\pi\)
−0.980488 + 0.196580i \(0.937017\pi\)
\(318\) 0 0
\(319\) 3.00000 + 5.19615i 0.167968 + 0.290929i
\(320\) 2.00000 1.00000i 0.111803 0.0559017i
\(321\) 0 0
\(322\) 0 0
\(323\) −3.46410 2.00000i −0.192748 0.111283i
\(324\) 0 0
\(325\) −17.7942 + 2.89230i −0.987046 + 0.160436i
\(326\) −8.00000 −0.443079
\(327\) 0 0
\(328\) 8.66025 + 5.00000i 0.478183 + 0.276079i
\(329\) 17.5000 + 30.3109i 0.964806 + 1.67109i
\(330\) 0 0
\(331\) 2.00000 + 3.46410i 0.109930 + 0.190404i 0.915742 0.401768i \(-0.131604\pi\)
−0.805812 + 0.592172i \(0.798271\pi\)
\(332\) 8.66025 5.00000i 0.475293 0.274411i
\(333\) 0 0
\(334\) −9.50000 16.4545i −0.519817 0.900349i
\(335\) 13.3923 + 0.803848i 0.731700 + 0.0439189i
\(336\) 0 0
\(337\) 10.0000i 0.544735i 0.962193 + 0.272367i \(0.0878066\pi\)
−0.962193 + 0.272367i \(0.912193\pi\)
\(338\) −6.06218 + 11.5000i −0.329739 + 0.625518i
\(339\) 0 0
\(340\) −8.92820 0.535898i −0.484200 0.0290632i
\(341\) 6.00000 10.3923i 0.324918 0.562775i
\(342\) 0 0
\(343\) 55.0000i 2.96972i
\(344\) −6.00000 10.3923i −0.323498 0.560316i
\(345\) 0 0
\(346\) −7.00000 −0.376322
\(347\) −19.0526 + 11.0000i −1.02279 + 0.590511i −0.914912 0.403653i \(-0.867740\pi\)
−0.107883 + 0.994164i \(0.534407\pi\)
\(348\) 0 0
\(349\) −5.00000 + 8.66025i −0.267644 + 0.463573i −0.968253 0.249973i \(-0.919578\pi\)
0.700609 + 0.713545i \(0.252912\pi\)
\(350\) 15.0000 20.0000i 0.801784 1.06904i
\(351\) 0 0
\(352\) 3.00000i 0.159901i
\(353\) −29.4449 17.0000i −1.56719 0.904819i −0.996495 0.0836583i \(-0.973340\pi\)
−0.570697 0.821160i \(-0.693327\pi\)
\(354\) 0 0
\(355\) −22.3923 14.7846i −1.18846 0.784686i
\(356\) 1.00000 0.0529999
\(357\) 0 0
\(358\) −10.3923 + 6.00000i −0.549250 + 0.317110i
\(359\) −20.0000 −1.05556 −0.527780 0.849381i \(-0.676975\pi\)
−0.527780 + 0.849381i \(0.676975\pi\)
\(360\) 0 0
\(361\) 9.00000 15.5885i 0.473684 0.820445i
\(362\) −5.19615 3.00000i −0.273104 0.157676i
\(363\) 0 0
\(364\) −5.00000 17.3205i −0.262071 0.907841i
\(365\) −16.0000 32.0000i −0.837478 1.67496i
\(366\) 0 0
\(367\) 20.7846 + 12.0000i 1.08495 + 0.626395i 0.932227 0.361874i \(-0.117863\pi\)
0.152721 + 0.988269i \(0.451196\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −16.7942 11.0885i −0.873090 0.576461i
\(371\) −7.50000 12.9904i −0.389381 0.674427i
\(372\) 0 0
\(373\) −5.19615 + 3.00000i −0.269047 + 0.155334i −0.628454 0.777847i \(-0.716312\pi\)
0.359408 + 0.933181i \(0.382979\pi\)
\(374\) 6.00000 10.3923i 0.310253 0.537373i
\(375\) 0 0
\(376\) −7.00000 −0.360997
\(377\) 6.92820 2.00000i 0.356821 0.103005i
\(378\) 0 0
\(379\) 9.50000 16.4545i 0.487982 0.845210i −0.511922 0.859032i \(-0.671066\pi\)
0.999904 + 0.0138218i \(0.00439975\pi\)
\(380\) −0.133975 + 2.23205i −0.00687275 + 0.114502i
\(381\) 0 0
\(382\) 12.0000i 0.613973i
\(383\) −13.8564 + 8.00000i −0.708029 + 0.408781i −0.810331 0.585973i \(-0.800713\pi\)
0.102302 + 0.994753i \(0.467379\pi\)
\(384\) 0 0
\(385\) 15.0000 + 30.0000i 0.764471 + 1.52894i
\(386\) 2.00000 + 3.46410i 0.101797 + 0.176318i
\(387\) 0 0
\(388\) −8.66025 5.00000i −0.439658 0.253837i
\(389\) 24.0000 1.21685 0.608424 0.793612i \(-0.291802\pi\)
0.608424 + 0.793612i \(0.291802\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 15.5885 + 9.00000i 0.787336 + 0.454569i
\(393\) 0 0
\(394\) 7.50000 + 12.9904i 0.377845 + 0.654446i
\(395\) −28.0000 + 14.0000i −1.40883 + 0.704416i
\(396\) 0 0
\(397\) 19.9186 11.5000i 0.999685 0.577168i 0.0915300 0.995802i \(-0.470824\pi\)
0.908155 + 0.418634i \(0.137491\pi\)
\(398\) 14.0000i 0.701757i
\(399\) 0 0
\(400\) 1.96410 + 4.59808i 0.0982051 + 0.229904i
\(401\) −10.5000 + 18.1865i −0.524345 + 0.908192i 0.475253 + 0.879849i \(0.342356\pi\)
−0.999598 + 0.0283431i \(0.990977\pi\)
\(402\) 0 0
\(403\) −10.3923 10.0000i −0.517678 0.498135i
\(404\) 10.0000 0.497519
\(405\) 0 0
\(406\) −5.00000 + 8.66025i −0.248146 + 0.429801i
\(407\) 23.3827 13.5000i 1.15904 0.669170i
\(408\) 0 0
\(409\) −9.50000 16.4545i −0.469745 0.813622i 0.529657 0.848212i \(-0.322321\pi\)
−0.999402 + 0.0345902i \(0.988987\pi\)
\(410\) −12.3205 + 18.6603i −0.608467 + 0.921564i
\(411\) 0 0
\(412\) 6.06218 3.50000i 0.298662 0.172433i
\(413\) 0 0
\(414\) 0 0
\(415\) 10.0000 + 20.0000i 0.490881 + 0.981761i
\(416\) 3.50000 + 0.866025i 0.171602 + 0.0424604i
\(417\) 0 0
\(418\) −2.59808 1.50000i −0.127076 0.0733674i
\(419\) 14.0000 24.2487i 0.683945 1.18463i −0.289822 0.957080i \(-0.593596\pi\)
0.973767 0.227547i \(-0.0730704\pi\)
\(420\) 0 0
\(421\) 16.0000 0.779792 0.389896 0.920859i \(-0.372511\pi\)
0.389896 + 0.920859i \(0.372511\pi\)
\(422\) −11.2583 + 6.50000i −0.548047 + 0.316415i
\(423\) 0 0
\(424\) 3.00000 0.145693
\(425\) 2.39230 19.8564i 0.116044 0.963177i
\(426\) 0 0
\(427\) 0 0
\(428\) 12.0000i 0.580042i
\(429\) 0 0
\(430\) 24.0000 12.0000i 1.15738 0.578691i
\(431\) −20.0000 + 34.6410i −0.963366 + 1.66860i −0.249424 + 0.968394i \(0.580241\pi\)
−0.713942 + 0.700205i \(0.753092\pi\)
\(432\) 0 0
\(433\) 6.92820 4.00000i 0.332948 0.192228i −0.324201 0.945988i \(-0.605095\pi\)
0.657149 + 0.753760i \(0.271762\pi\)
\(434\) 20.0000 0.960031
\(435\) 0 0
\(436\) −5.00000 8.66025i −0.239457 0.414751i
\(437\) 0 0
\(438\) 0 0
\(439\) 8.00000 13.8564i 0.381819 0.661330i −0.609503 0.792784i \(-0.708631\pi\)
0.991322 + 0.131453i \(0.0419644\pi\)
\(440\) −6.69615 0.401924i −0.319227 0.0191610i
\(441\) 0 0
\(442\) −10.3923 10.0000i −0.494312 0.475651i
\(443\) 24.0000i 1.14027i −0.821549 0.570137i \(-0.806890\pi\)
0.821549 0.570137i \(-0.193110\pi\)
\(444\) 0 0
\(445\) −0.133975 + 2.23205i −0.00635100 + 0.105809i
\(446\) −0.500000 0.866025i −0.0236757 0.0410075i
\(447\) 0 0
\(448\) −4.33013 + 2.50000i −0.204579 + 0.118114i
\(449\) 6.50000 + 11.2583i 0.306754 + 0.531313i 0.977650 0.210238i \(-0.0674238\pi\)
−0.670896 + 0.741551i \(0.734090\pi\)
\(450\) 0 0
\(451\) −15.0000 25.9808i −0.706322 1.22339i
\(452\) −3.46410 2.00000i −0.162938 0.0940721i
\(453\) 0 0
\(454\) −2.00000 −0.0938647
\(455\) 39.3301 8.83975i 1.84382 0.414414i
\(456\) 0 0
\(457\) 24.2487 + 14.0000i 1.13431 + 0.654892i 0.945015 0.327028i \(-0.106047\pi\)
0.189292 + 0.981921i \(0.439381\pi\)
\(458\) 19.0526 + 11.0000i 0.890268 + 0.513996i
\(459\) 0 0
\(460\) 0 0
\(461\) −11.0000 19.0526i −0.512321 0.887366i −0.999898 0.0142861i \(-0.995452\pi\)
0.487577 0.873080i \(-0.337881\pi\)
\(462\) 0 0
\(463\) 8.00000i 0.371792i 0.982569 + 0.185896i \(0.0595187\pi\)
−0.982569 + 0.185896i \(0.940481\pi\)
\(464\) −1.00000 1.73205i −0.0464238 0.0804084i
\(465\) 0 0
\(466\) 0 0
\(467\) 34.0000i 1.57333i 0.617379 + 0.786666i \(0.288195\pi\)
−0.617379 + 0.786666i \(0.711805\pi\)
\(468\) 0 0
\(469\) −30.0000 −1.38527
\(470\) 0.937822 15.6244i 0.0432585 0.720698i
\(471\) 0 0
\(472\) 0 0
\(473\) 36.0000i 1.65528i
\(474\) 0 0
\(475\) −4.96410 0.598076i −0.227769 0.0274416i
\(476\) 20.0000 0.916698
\(477\) 0 0
\(478\) 12.1244 + 7.00000i 0.554555 + 0.320173i
\(479\) −5.00000 + 8.66025i −0.228456 + 0.395697i −0.957351 0.288929i \(-0.906701\pi\)
0.728895 + 0.684626i \(0.240034\pi\)
\(480\) 0 0
\(481\) −9.00000 31.1769i −0.410365 1.42154i
\(482\) 3.00000i 0.136646i
\(483\) 0 0
\(484\) −1.00000 + 1.73205i −0.0454545 + 0.0787296i
\(485\) 12.3205 18.6603i 0.559445 0.847318i
\(486\) 0 0
\(487\) −0.866025 + 0.500000i −0.0392434 + 0.0226572i −0.519493 0.854475i \(-0.673879\pi\)
0.480250 + 0.877132i \(0.340546\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −22.1769 + 33.5885i −1.00185 + 1.51737i
\(491\) 7.50000 12.9904i 0.338470 0.586248i −0.645675 0.763612i \(-0.723424\pi\)
0.984145 + 0.177365i \(0.0567572\pi\)
\(492\) 0 0
\(493\) 8.00000i 0.360302i
\(494\) −2.50000 + 2.59808i −0.112480 + 0.116893i
\(495\) 0 0
\(496\) −2.00000 + 3.46410i −0.0898027 + 0.155543i
\(497\) 51.9615 + 30.0000i 2.33079 + 1.34568i
\(498\) 0 0
\(499\) 24.0000 1.07439 0.537194 0.843459i \(-0.319484\pi\)
0.537194 + 0.843459i \(0.319484\pi\)
\(500\) −10.5263 + 3.76795i −0.470750 + 0.168508i
\(501\) 0 0
\(502\) 13.0000i 0.580218i
\(503\) −9.52628 + 5.50000i −0.424756 + 0.245233i −0.697110 0.716964i \(-0.745531\pi\)
0.272354 + 0.962197i \(0.412198\pi\)
\(504\) 0 0
\(505\) −1.33975 + 22.3205i −0.0596179 + 0.993250i
\(506\) 0 0
\(507\) 0 0
\(508\) 17.0000i 0.754253i
\(509\) 1.00000 1.73205i 0.0443242 0.0767718i −0.843012 0.537895i \(-0.819220\pi\)
0.887336 + 0.461123i \(0.152553\pi\)
\(510\) 0 0
\(511\) 40.0000 + 69.2820i 1.76950 + 3.06486i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 5.00000 + 8.66025i 0.220541 + 0.381987i
\(515\) 7.00000 + 14.0000i 0.308457 + 0.616914i
\(516\) 0 0
\(517\) 18.1865 + 10.5000i 0.799843 + 0.461789i
\(518\) 38.9711 + 22.5000i 1.71229 + 0.988593i
\(519\) 0 0
\(520\) −2.40192 + 7.69615i −0.105331 + 0.337499i
\(521\) 45.0000 1.97149 0.985743 0.168259i \(-0.0538144\pi\)
0.985743 + 0.168259i \(0.0538144\pi\)
\(522\) 0 0
\(523\) 13.8564 + 8.00000i 0.605898 + 0.349816i 0.771358 0.636401i \(-0.219578\pi\)
−0.165460 + 0.986216i \(0.552911\pi\)
\(524\) −3.50000 6.06218i −0.152898 0.264827i
\(525\) 0 0
\(526\) 3.50000 + 6.06218i 0.152607 + 0.264324i
\(527\) 13.8564 8.00000i 0.603595 0.348485i
\(528\) 0 0
\(529\) −11.5000 19.9186i −0.500000 0.866025i
\(530\) −0.401924 + 6.69615i −0.0174585 + 0.290862i
\(531\) 0 0
\(532\) 5.00000i 0.216777i
\(533\) −34.6410 + 10.0000i −1.50047 + 0.433148i
\(534\) 0 0
\(535\) −26.7846 1.60770i −1.15800 0.0695067i
\(536\) 3.00000 5.19615i 0.129580 0.224440i
\(537\) 0 0
\(538\) 8.00000i 0.344904i
\(539\) −27.0000 46.7654i −1.16297 2.01433i
\(540\) 0 0
\(541\) −8.00000 −0.343947 −0.171973 0.985102i \(-0.555014\pi\)
−0.171973 + 0.985102i \(0.555014\pi\)
\(542\) 1.73205 1.00000i 0.0743980 0.0429537i
\(543\) 0 0
\(544\) −2.00000 + 3.46410i −0.0857493 + 0.148522i
\(545\) 20.0000 10.0000i 0.856706 0.428353i
\(546\) 0 0
\(547\) 6.00000i 0.256541i 0.991739 + 0.128271i \(0.0409426\pi\)
−0.991739 + 0.128271i \(0.959057\pi\)
\(548\) −8.66025 5.00000i −0.369948 0.213589i
\(549\) 0 0
\(550\) 1.79423 14.8923i 0.0765062 0.635010i
\(551\) 2.00000 0.0852029
\(552\) 0 0
\(553\) 60.6218 35.0000i 2.57790 1.48835i
\(554\) −17.0000 −0.722261
\(555\) 0 0
\(556\) 2.50000 4.33013i 0.106024 0.183638i
\(557\) 33.7750 + 19.5000i 1.43109 + 0.826242i 0.997204 0.0747252i \(-0.0238080\pi\)
0.433888 + 0.900967i \(0.357141\pi\)
\(558\) 0 0
\(559\) 42.0000 + 10.3923i 1.77641 + 0.439548i
\(560\) −5.00000 10.0000i −0.211289 0.422577i
\(561\) 0 0
\(562\) −25.9808 15.0000i −1.09593 0.632737i
\(563\) −15.5885 + 9.00000i −0.656975 + 0.379305i −0.791123 0.611656i \(-0.790503\pi\)
0.134148 + 0.990961i \(0.457170\pi\)
\(564\) 0 0
\(565\) 4.92820 7.46410i 0.207331 0.314017i
\(566\) 3.00000 + 5.19615i 0.126099 + 0.218411i
\(567\) 0 0
\(568\) −10.3923 + 6.00000i −0.436051 + 0.251754i
\(569\) −19.5000 + 33.7750i −0.817483 + 1.41592i 0.0900490 + 0.995937i \(0.471298\pi\)
−0.907532 + 0.419984i \(0.862036\pi\)
\(570\) 0 0
\(571\) 15.0000 0.627730 0.313865 0.949468i \(-0.398376\pi\)
0.313865 + 0.949468i \(0.398376\pi\)
\(572\) −7.79423 7.50000i −0.325893 0.313591i
\(573\) 0 0
\(574\) 25.0000 43.3013i 1.04348 1.80736i
\(575\) 0 0
\(576\) 0 0
\(577\) 32.0000i 1.33218i 0.745873 + 0.666089i \(0.232033\pi\)
−0.745873 + 0.666089i \(0.767967\pi\)
\(578\) −0.866025 + 0.500000i −0.0360219 + 0.0207973i
\(579\) 0 0
\(580\) 4.00000 2.00000i 0.166091 0.0830455i
\(581\) −25.0000 43.3013i −1.03717 1.79644i
\(582\) 0 0
\(583\) −7.79423 4.50000i −0.322804 0.186371i
\(584\) −16.0000 −0.662085
\(585\) 0 0
\(586\) 3.00000 0.123929
\(587\) −29.4449 17.0000i −1.21532 0.701665i −0.251406 0.967882i \(-0.580893\pi\)
−0.963913 + 0.266217i \(0.914226\pi\)
\(588\) 0 0
\(589\) −2.00000 3.46410i −0.0824086 0.142736i
\(590\) 0 0
\(591\) 0 0
\(592\) −7.79423 + 4.50000i −0.320341 + 0.184949i
\(593\) 20.0000i 0.821302i 0.911793 + 0.410651i \(0.134698\pi\)
−0.911793 + 0.410651i \(0.865302\pi\)
\(594\) 0 0
\(595\) −2.67949 + 44.6410i −0.109848 + 1.83010i
\(596\) 8.00000 13.8564i 0.327693 0.567581i
\(597\) 0 0
\(598\) 0 0
\(599\) 10.0000 0.408589 0.204294 0.978909i \(-0.434510\pi\)
0.204294 + 0.978909i \(0.434510\pi\)
\(600\) 0 0
\(601\) 17.5000 30.3109i 0.713840 1.23641i −0.249565 0.968358i \(-0.580288\pi\)
0.963405 0.268049i \(-0.0863789\pi\)
\(602\) −51.9615 + 30.0000i −2.11779 + 1.22271i
\(603\) 0 0
\(604\) −4.00000 6.92820i −0.162758 0.281905i
\(605\) −3.73205 2.46410i −0.151729 0.100180i
\(606\) 0 0
\(607\) −2.59808 + 1.50000i −0.105453 + 0.0608831i −0.551799 0.833977i \(-0.686058\pi\)
0.446346 + 0.894860i \(0.352725\pi\)
\(608\) 0.866025 + 0.500000i 0.0351220 + 0.0202777i
\(609\) 0 0
\(610\) 0 0
\(611\) 17.5000 18.1865i 0.707974 0.735748i
\(612\) 0 0
\(613\) −25.1147 14.5000i −1.01437 0.585649i −0.101905 0.994794i \(-0.532494\pi\)
−0.912470 + 0.409145i \(0.865827\pi\)
\(614\) 2.00000 3.46410i 0.0807134 0.139800i
\(615\) 0 0
\(616\) 15.0000 0.604367
\(617\) −41.5692 + 24.0000i −1.67351 + 0.966204i −0.707867 + 0.706346i \(0.750342\pi\)
−0.965647 + 0.259858i \(0.916324\pi\)
\(618\) 0 0
\(619\) −5.00000 −0.200967 −0.100483 0.994939i \(-0.532039\pi\)
−0.100483 + 0.994939i \(0.532039\pi\)
\(620\) −7.46410 4.92820i −0.299766 0.197921i
\(621\) 0 0
\(622\) 17.3205 + 10.0000i 0.694489 + 0.400963i
\(623\) 5.00000i 0.200321i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) −7.00000 + 12.1244i −0.279776 + 0.484587i
\(627\) 0 0
\(628\) 2.59808 1.50000i 0.103675 0.0598565i
\(629\) 36.0000 1.43541
\(630\) 0 0
\(631\) −14.0000 24.2487i −0.557331 0.965326i −0.997718 0.0675178i \(-0.978492\pi\)
0.440387 0.897808i \(-0.354841\pi\)
\(632\) 14.0000i 0.556890i
\(633\) 0 0
\(634\) −3.50000 + 6.06218i −0.139003 + 0.240760i
\(635\) 37.9449 + 2.27757i 1.50580 + 0.0903825i
\(636\) 0 0
\(637\) −62.3538 + 18.0000i −2.47055 + 0.713186i
\(638\) 6.00000i 0.237542i
\(639\) 0 0
\(640\) 2.23205 + 0.133975i 0.0882296 + 0.00529581i
\(641\) 10.5000 + 18.1865i 0.414725 + 0.718325i 0.995400 0.0958109i \(-0.0305444\pi\)
−0.580674 + 0.814136i \(0.697211\pi\)
\(642\) 0 0
\(643\) −13.8564 + 8.00000i −0.546443 + 0.315489i −0.747686 0.664052i \(-0.768835\pi\)
0.201243 + 0.979541i \(0.435502\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2.00000 3.46410i −0.0786889 0.136293i
\(647\) −28.5788 16.5000i −1.12355 0.648682i −0.181245 0.983438i \(-0.558013\pi\)
−0.942305 + 0.334756i \(0.891346\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −16.8564 6.39230i −0.661163 0.250727i
\(651\) 0 0
\(652\) −6.92820 4.00000i −0.271329 0.156652i
\(653\) 11.2583 + 6.50000i 0.440573 + 0.254365i 0.703840 0.710358i \(-0.251467\pi\)
−0.263268 + 0.964723i \(0.584800\pi\)
\(654\) 0 0
\(655\) 14.0000 7.00000i 0.547025 0.273513i
\(656\) 5.00000 + 8.66025i 0.195217 + 0.338126i
\(657\) 0 0
\(658\) 35.0000i 1.36444i
\(659\) 10.0000 + 17.3205i 0.389545 + 0.674711i 0.992388 0.123148i \(-0.0392990\pi\)
−0.602844 + 0.797859i \(0.705966\pi\)
\(660\) 0 0
\(661\) −5.00000 + 8.66025i −0.194477 + 0.336845i −0.946729 0.322031i \(-0.895634\pi\)
0.752252 + 0.658876i \(0.228968\pi\)
\(662\) 4.00000i 0.155464i
\(663\) 0 0
\(664\) 10.0000 0.388075
\(665\) 11.1603 + 0.669873i 0.432776 + 0.0259766i
\(666\) 0 0
\(667\) 0 0
\(668\) 19.0000i 0.735132i
\(669\) 0 0
\(670\) 11.1962 + 7.39230i 0.432545 + 0.285590i
\(671\) 0 0
\(672\) 0 0
\(673\) 6.92820 + 4.00000i 0.267063 + 0.154189i 0.627552 0.778575i \(-0.284057\pi\)
−0.360489 + 0.932763i \(0.617390\pi\)
\(674\) −5.00000 + 8.66025i −0.192593 + 0.333581i
\(675\) 0 0
\(676\) −11.0000 + 6.92820i −0.423077 + 0.266469i
\(677\) 42.0000i 1.61419i 0.590421 + 0.807096i \(0.298962\pi\)
−0.590421 + 0.807096i \(0.701038\pi\)
\(678\) 0 0
\(679\) −25.0000 + 43.3013i −0.959412 + 1.66175i
\(680\) −7.46410 4.92820i −0.286235 0.188988i
\(681\) 0 0
\(682\) 10.3923 6.00000i 0.397942 0.229752i
\(683\) 13.8564 8.00000i 0.530201 0.306111i −0.210898 0.977508i \(-0.567639\pi\)
0.741098 + 0.671397i \(0.234305\pi\)
\(684\) 0 0
\(685\) 12.3205 18.6603i 0.470742 0.712972i
\(686\) 27.5000 47.6314i 1.04995 1.81858i
\(687\) 0 0
\(688\) 12.0000i 0.457496i
\(689\) −7.50000 + 7.79423i −0.285727 + 0.296936i
\(690\) 0 0
\(691\) −4.50000 + 7.79423i −0.171188 + 0.296506i −0.938835 0.344366i \(-0.888094\pi\)
0.767647 + 0.640872i \(0.221427\pi\)
\(692\) −6.06218 3.50000i −0.230449 0.133050i
\(693\) 0 0
\(694\) −22.0000 −0.835109
\(695\) 9.33013 + 6.16025i 0.353912 + 0.233672i
\(696\) 0 0
\(697\) 40.0000i 1.51511i
\(698\) −8.66025 + 5.00000i −0.327795 + 0.189253i
\(699\) 0 0
\(700\) 22.9904 9.82051i 0.868955 0.371180i
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) 9.00000i 0.339441i
\(704\) −1.50000 + 2.59808i −0.0565334 + 0.0979187i
\(705\) 0 0
\(706\) −17.0000 29.4449i −0.639803 1.10817i
\(707\) 50.0000i 1.88044i
\(708\) 0 0
\(709\) 5.00000 + 8.66025i 0.187779 + 0.325243i 0.944509 0.328484i \(-0.106538\pi\)
−0.756730 + 0.653727i \(0.773204\pi\)
\(710\) −12.0000 24.0000i −0.450352 0.900704i
\(711\) 0 0
\(712\) 0.866025 + 0.500000i 0.0324557 + 0.0187383i
\(713\) 0 0
\(714\) 0 0
\(715\) 17.7846 16.3923i 0.665107 0.613037i
\(716\) −12.0000 −0.448461
\(717\) 0 0
\(718\) −17.3205 10.0000i −0.646396 0.373197i
\(719\) −16.0000 27.7128i −0.596699 1.03351i −0.993305 0.115524i \(-0.963145\pi\)
0.396605 0.917989i \(-0.370188\pi\)
\(720\) 0 0
\(721\) −17.5000 30.3109i −0.651734 1.12884i
\(722\) 15.5885 9.00000i 0.580142 0.334945i
\(723\) 0 0
\(724\) −3.00000 5.19615i −0.111494 0.193113i
\(725\) 3.92820 + 9.19615i 0.145890 + 0.341537i
\(726\) 0 0
\(727\) 37.0000i 1.37225i −0.727482 0.686127i \(-0.759309\pi\)
0.727482 0.686127i \(-0.240691\pi\)
\(728\) 4.33013 17.5000i 0.160485 0.648593i
\(729\) 0 0
\(730\) 2.14359 35.7128i 0.0793380 1.32179i
\(731\) −24.0000 + 41.5692i −0.887672 + 1.53749i
\(732\) 0 0
\(733\) 45.0000i 1.66211i 0.556188 + 0.831056i \(0.312263\pi\)
−0.556188 + 0.831056i \(0.687737\pi\)
\(734\) 12.0000 + 20.7846i 0.442928 + 0.767174i
\(735\) 0 0
\(736\) 0 0
\(737\) −15.5885 + 9.00000i −0.574208 + 0.331519i
\(738\) 0 0
\(739\) −14.5000 + 25.1147i −0.533391 + 0.923861i 0.465848 + 0.884865i \(0.345749\pi\)
−0.999239 + 0.0389959i \(0.987584\pi\)
\(740\) −9.00000 18.0000i −0.330847 0.661693i
\(741\) 0 0
\(742\) 15.0000i 0.550667i
\(743\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(744\) 0 0
\(745\) 29.8564 + 19.7128i 1.09385 + 0.722222i
\(746\) −6.00000 −0.219676
\(747\) 0 0
\(748\) 10.3923 6.00000i 0.379980 0.219382i
\(749\) 60.0000 2.19235
\(750\) 0 0
\(751\) 15.0000 25.9808i 0.547358 0.948051i −0.451097 0.892475i \(-0.648967\pi\)
0.998454 0.0555764i \(-0.0176996\pi\)
\(752\) −6.06218 3.50000i −0.221065 0.127632i
\(753\) 0 0
\(754\) 7.00000 + 1.73205i 0.254925 + 0.0630776i
\(755\) 16.0000 8.00000i 0.582300 0.291150i
\(756\) 0 0
\(757\) 21.6506 + 12.5000i 0.786906 + 0.454320i 0.838872 0.544329i \(-0.183216\pi\)
−0.0519664 + 0.998649i \(0.516549\pi\)
\(758\) 16.4545 9.50000i 0.597654 0.345056i
\(759\) 0 0
\(760\) −1.23205 + 1.86603i −0.0446912 + 0.0676879i
\(761\) 13.5000 + 23.3827i 0.489375 + 0.847622i 0.999925 0.0122260i \(-0.00389175\pi\)
−0.510551 + 0.859848i \(0.670558\pi\)
\(762\) 0 0
\(763\) −43.3013 + 25.0000i −1.56761 + 0.905061i
\(764\) −6.00000 + 10.3923i −0.217072 + 0.375980i
\(765\) 0 0
\(766\) −16.0000 −0.578103
\(767\) 0 0
\(768\) 0 0
\(769\) −1.00000 + 1.73205i −0.0360609 + 0.0624593i −0.883493 0.468445i \(-0.844814\pi\)
0.847432 + 0.530904i \(0.178148\pi\)
\(770\) −2.00962 + 33.4808i −0.0724216 + 1.20656i
\(771\) 0 0
\(772\) 4.00000i 0.143963i
\(773\) 18.1865 10.5000i 0.654124 0.377659i −0.135910 0.990721i \(-0.543396\pi\)
0.790034 + 0.613062i \(0.210063\pi\)
\(774\) 0 0
\(775\) 12.0000 16.0000i 0.431053 0.574737i
\(776\) −5.00000 8.66025i −0.179490 0.310885i
\(777\) 0 0
\(778\) 20.7846 + 12.0000i 0.745164 + 0.430221i
\(779\) −10.0000 −0.358287
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) 0 0
\(784\) 9.00000 + 15.5885i 0.321429 + 0.556731i
\(785\) 3.00000 + 6.00000i 0.107075 + 0.214149i
\(786\) 0 0
\(787\) −36.3731 + 21.0000i −1.29656 + 0.748569i −0.979808 0.199939i \(-0.935925\pi\)
−0.316752 + 0.948509i \(0.602592\pi\)
\(788\) 15.0000i 0.534353i
\(789\) 0 0
\(790\) −31.2487 1.87564i −1.11178 0.0667324i
\(791\) −10.0000 + 17.3205i −0.355559 + 0.615846i
\(792\) 0 0
\(793\) 0 0
\(794\) 23.0000 0.816239
\(795\) 0 0
\(796\) 7.00000 12.1244i 0.248108 0.429736i
\(797\) 15.5885 9.00000i 0.552171 0.318796i −0.197826 0.980237i \(-0.563388\pi\)
0.749997 + 0.661441i \(0.230055\pi\)
\(798\) 0 0
\(799\) 14.0000 + 24.2487i 0.495284 + 0.857858i
\(800\) −0.598076 + 4.96410i −0.0211452 + 0.175507i
\(801\) 0 0
\(802\) −18.1865 + 10.5000i −0.642189 + 0.370768i
\(803\) 41.5692 + 24.0000i 1.46695 + 0.846942i
\(804\) 0 0
\(805\) 0 0
\(806\) −4.00000 13.8564i −0.140894 0.488071i
\(807\) 0 0
\(808\) 8.66025 + 5.00000i 0.304667 + 0.175899i
\(809\) −5.00000 + 8.66025i −0.175791 + 0.304478i −0.940435 0.339975i \(-0.889582\pi\)
0.764644 + 0.644453i \(0.222915\pi\)
\(810\) 0 0
\(811\) 13.0000 0.456492 0.228246 0.973604i \(-0.426701\pi\)
0.228246 + 0.973604i \(0.426701\pi\)
\(812\) −8.66025 + 5.00000i −0.303915 + 0.175466i
\(813\) 0 0
\(814\) 27.0000 0.946350
\(815\) 9.85641 14.9282i 0.345255 0.522912i
\(816\) 0 0
\(817\) 10.3923 + 6.00000i 0.363581 + 0.209913i
\(818\) 19.0000i 0.664319i
\(819\) 0 0
\(820\) −20.0000 + 10.0000i −0.698430 + 0.349215i
\(821\) −5.00000 + 8.66025i −0.174501 + 0.302245i −0.939989 0.341206i \(-0.889165\pi\)
0.765487 + 0.643451i \(0.222498\pi\)
\(822\) 0 0
\(823\) 35.5070 20.5000i 1.23770 0.714585i 0.269075 0.963119i \(-0.413282\pi\)
0.968623 + 0.248534i \(0.0799489\pi\)
\(824\) 7.00000 0.243857
\(825\) 0 0
\(826\) 0 0
\(827\) 2.00000i 0.0695468i 0.999395 + 0.0347734i \(0.0110710\pi\)
−0.999395 + 0.0347734i \(0.988929\pi\)
\(828\) 0 0
\(829\) 1.00000 1.73205i 0.0347314 0.0601566i −0.848137 0.529777i \(-0.822276\pi\)
0.882869 + 0.469620i \(0.155609\pi\)
\(830\) −1.33975 + 22.3205i −0.0465033 + 0.774756i
\(831\) 0 0
\(832\) 2.59808 + 2.50000i 0.0900721 + 0.0866719i
\(833\) 72.0000i 2.49465i
\(834\) 0 0
\(835\) 42.4090 + 2.54552i 1.46762 + 0.0880913i
\(836\) −1.50000 2.59808i −0.0518786 0.0898563i
\(837\) 0 0
\(838\) 24.2487 14.0000i 0.837658 0.483622i
\(839\) −23.0000 39.8372i −0.794048 1.37533i −0.923442 0.383738i \(-0.874636\pi\)
0.129394 0.991593i \(-0.458697\pi\)
\(840\) 0 0
\(841\) 12.5000 + 21.6506i 0.431034 + 0.746574i
\(842\) 13.8564 + 8.00000i 0.477523 + 0.275698i
\(843\) 0 0
\(844\) −13.0000 −0.447478
\(845\) −13.9904 25.4808i −0.481284 0.876565i
\(846\) 0 0
\(847\) 8.66025 + 5.00000i 0.297570 + 0.171802i
\(848\) 2.59808 + 1.50000i 0.0892183 + 0.0515102i
\(849\) 0 0
\(850\) 12.0000 16.0000i 0.411597 0.548795i
\(851\) 0 0
\(852\) 0 0
\(853\) 10.0000i 0.342393i −0.985237 0.171197i \(-0.945237\pi\)
0.985237 0.171197i \(-0.0547634\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −6.00000 + 10.3923i −0.205076 + 0.355202i
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) −55.0000 −1.87658 −0.938288 0.345855i \(-0.887589\pi\)
−0.938288 + 0.345855i \(0.887589\pi\)
\(860\) 26.7846 + 1.60770i 0.913348 + 0.0548219i
\(861\) 0 0
\(862\) −34.6410 + 20.0000i −1.17988 + 0.681203i
\(863\) 24.0000i 0.816970i 0.912765 + 0.408485i \(0.133943\pi\)
−0.912765 + 0.408485i \(0.866057\pi\)
\(864\) 0 0
\(865\) 8.62436 13.0622i 0.293237 0.444127i
\(866\) 8.00000 0.271851
\(867\) 0 0
\(868\) 17.3205 + 10.0000i 0.587896 + 0.339422i
\(869\) 21.0000 36.3731i 0.712376 1.23387i
\(870\) 0 0
\(871\) 6.00000 + 20.7846i 0.203302 + 0.704260i
\(872\) 10.0000i 0.338643i
\(873\) 0 0
\(874\) 0 0
\(875\) 18.8397 + 52.6314i 0.636900 + 1.77927i
\(876\) 0 0
\(877\) −15.5885 + 9.00000i −0.526385 + 0.303908i −0.739543 0.673109i \(-0.764958\pi\)
0.213158 + 0.977018i \(0.431625\pi\)
\(878\) 13.8564 8.00000i 0.467631 0.269987i
\(879\) 0 0
\(880\) −5.59808 3.69615i −0.188711 0.124597i
\(881\) 7.50000 12.9904i 0.252681 0.437657i −0.711582 0.702603i \(-0.752021\pi\)
0.964263 + 0.264946i \(0.0853542\pi\)
\(882\) 0 0
\(883\) 50.0000i 1.68263i 0.540542 + 0.841317i \(0.318219\pi\)
−0.540542 + 0.841317i \(0.681781\pi\)
\(884\) −4.00000 13.8564i −0.134535 0.466041i
\(885\) 0 0
\(886\) 12.0000 20.7846i 0.403148 0.698273i
\(887\) 28.5788 + 16.5000i 0.959583 + 0.554016i 0.896045 0.443964i \(-0.146428\pi\)
0.0635387 + 0.997979i \(0.479761\pi\)
\(888\) 0 0
\(889\) −85.0000 −2.85081
\(890\) −1.23205 + 1.86603i −0.0412984 + 0.0625493i
\(891\) 0 0
\(892\) 1.00000i 0.0334825i
\(893\) 6.06218 3.50000i 0.202863 0.117123i
\(894\) 0 0
\(895\) 1.60770 26.7846i 0.0537393 0.895311i
\(896\) −5.00000 −0.167038
\(897\) 0 0
\(898\) 13.0000i 0.433816i
\(899\) −4.00000 + 6.92820i −0.133407 + 0.231069i
\(900\) 0 0
\(901\) −6.00000 10.3923i −0.199889 0.346218i
\(902\) 30.0000i 0.998891i
\(903\) 0 0
\(904\) −2.00000 3.46410i −0.0665190 0.115214i
\(905\) 12.0000 6.00000i 0.398893 0.199447i
\(906\) 0 0
\(907\) −13.8564 8.00000i −0.460094 0.265636i 0.251990 0.967730i \(-0.418915\pi\)
−0.712084 + 0.702094i \(0.752248\pi\)
\(908\) −1.73205 1.00000i −0.0574801 0.0331862i
\(909\) 0 0
\(910\) 38.4808 + 12.0096i 1.27562 + 0.398115i
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) 0 0
\(913\) −25.9808 15.0000i −0.859838 0.496428i
\(914\) 14.0000 + 24.2487i 0.463079 + 0.802076i
\(915\) 0 0
\(916\) 11.0000 + 19.0526i 0.363450 + 0.629514i
\(917\) −30.3109 + 17.5000i −1.00095 + 0.577901i
\(918\) 0 0
\(919\) 8.00000 + 13.8564i 0.263896 + 0.457081i 0.967274 0.253735i \(-0.0816592\pi\)
−0.703378 + 0.710816i \(0.748326\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 22.0000i 0.724531i
\(923\) 10.3923 42.0000i 0.342067 1.38245i
\(924\) 0 0
\(925\) 41.3827 17.6769i 1.36065 0.581213i
\(926\) −4.00000 + 6.92820i −0.131448 + 0.227675i
\(927\) 0 0
\(928\) 2.00000i 0.0656532i
\(929\) −17.0000 29.4449i −0.557752 0.966055i −0.997684 0.0680235i \(-0.978331\pi\)
0.439932 0.898031i \(-0.355003\pi\)
\(930\) 0 0
\(931\) −18.0000 −0.589926
\(932\) 0 0
\(933\) 0 0
\(934\) −17.0000 + 29.4449i −0.556257 + 0.963465i
\(935\) 12.0000 + 24.0000i 0.392442 + 0.784884i
\(936\) 0 0
\(937\) 36.0000i 1.17607i 0.808836 + 0.588034i \(0.200098\pi\)
−0.808836 + 0.588034i \(0.799902\pi\)
\(938\) −25.9808 15.0000i −0.848302 0.489767i
\(939\) 0 0
\(940\) 8.62436 13.0622i 0.281295 0.426041i
\(941\) −52.0000 −1.69515 −0.847576 0.530674i \(-0.821939\pi\)
−0.847576 + 0.530674i \(0.821939\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) −18.0000 + 31.1769i −0.585230 + 1.01365i
\(947\) 10.3923 + 6.00000i 0.337705 + 0.194974i 0.659256 0.751918i \(-0.270871\pi\)
−0.321552 + 0.946892i \(0.604204\pi\)
\(948\) 0 0
\(949\) 40.0000 41.5692i 1.29845 1.34939i
\(950\) −4.00000 3.00000i −0.129777 0.0973329i
\(951\) 0 0
\(952\) 17.3205 + 10.0000i 0.561361 + 0.324102i
\(953\) 25.9808 15.0000i 0.841599 0.485898i −0.0162081 0.999869i \(-0.505159\pi\)
0.857808 + 0.513971i \(0.171826\pi\)
\(954\) 0 0
\(955\) −22.3923 14.7846i −0.724598 0.478419i
\(956\) 7.00000 + 12.1244i 0.226396 + 0.392130i
\(957\) 0 0
\(958\) −8.66025 + 5.00000i −0.279800 + 0.161543i
\(959\) −25.0000 + 43.3013i −0.807292 + 1.39827i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 7.79423 31.5000i 0.251296 1.01560i
\(963\) 0 0
\(964\) 1.50000 2.59808i 0.0483117 0.0836784i
\(965\) −8.92820 0.535898i −0.287409 0.0172512i
\(966\) 0 0
\(967\) 37.0000i 1.18984i −0.803785 0.594920i \(-0.797184\pi\)
0.803785 0.594920i \(-0.202816\pi\)
\(968\) −1.73205 + 1.00000i −0.0556702 + 0.0321412i
\(969\) 0 0
\(970\) 20.0000 10.0000i 0.642161 0.321081i
\(971\) −25.5000 44.1673i −0.818334 1.41740i −0.906909 0.421326i \(-0.861565\pi\)
0.0885751 0.996070i \(-0.471769\pi\)
\(972\) 0 0
\(973\) −21.6506 12.5000i −0.694087 0.400732i
\(974\) −1.00000 −0.0320421
\(975\) 0 0
\(976\) 0 0
\(977\) −32.9090 19.0000i −1.05285 0.607864i −0.129405 0.991592i \(-0.541307\pi\)
−0.923446 + 0.383728i \(0.874640\pi\)
\(978\) 0 0
\(979\) −1.50000 2.59808i −0.0479402 0.0830349i
\(980\) −36.0000 + 18.0000i −1.14998 + 0.574989i
\(981\) 0 0
\(982\) 12.9904 7.50000i 0.414540 0.239335i
\(983\) 23.0000i 0.733586i 0.930303 + 0.366793i \(0.119544\pi\)
−0.930303 + 0.366793i \(0.880456\pi\)
\(984\) 0 0
\(985\) −33.4808 2.00962i −1.06679 0.0640318i
\(986\) −4.00000 + 6.92820i −0.127386 + 0.220639i
\(987\) 0 0
\(988\) −3.46410 + 1.00000i −0.110208 + 0.0318142i
\(989\) 0 0
\(990\) 0 0
\(991\) 16.0000 27.7128i 0.508257 0.880327i −0.491698 0.870766i \(-0.663623\pi\)
0.999954 0.00956046i \(-0.00304324\pi\)
\(992\) −3.46410 + 2.00000i −0.109985 + 0.0635001i
\(993\) 0 0
\(994\) 30.0000 + 51.9615i 0.951542 + 1.64812i
\(995\) 26.1244 + 17.2487i 0.828198 + 0.546821i
\(996\) 0 0
\(997\) 45.8993 26.5000i 1.45365 0.839263i 0.454961 0.890511i \(-0.349653\pi\)
0.998686 + 0.0512480i \(0.0163199\pi\)
\(998\) 20.7846 + 12.0000i 0.657925 + 0.379853i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.bp.b.919.2 4
3.2 odd 2 390.2.y.e.139.1 4
5.4 even 2 inner 1170.2.bp.b.919.1 4
13.3 even 3 inner 1170.2.bp.b.289.1 4
15.2 even 4 1950.2.i.x.451.1 2
15.8 even 4 1950.2.i.a.451.1 2
15.14 odd 2 390.2.y.e.139.2 yes 4
39.29 odd 6 390.2.y.e.289.2 yes 4
65.29 even 6 inner 1170.2.bp.b.289.2 4
195.29 odd 6 390.2.y.e.289.1 yes 4
195.68 even 12 1950.2.i.a.601.1 2
195.107 even 12 1950.2.i.x.601.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.y.e.139.1 4 3.2 odd 2
390.2.y.e.139.2 yes 4 15.14 odd 2
390.2.y.e.289.1 yes 4 195.29 odd 6
390.2.y.e.289.2 yes 4 39.29 odd 6
1170.2.bp.b.289.1 4 13.3 even 3 inner
1170.2.bp.b.289.2 4 65.29 even 6 inner
1170.2.bp.b.919.1 4 5.4 even 2 inner
1170.2.bp.b.919.2 4 1.1 even 1 trivial
1950.2.i.a.451.1 2 15.8 even 4
1950.2.i.a.601.1 2 195.68 even 12
1950.2.i.x.451.1 2 15.2 even 4
1950.2.i.x.601.1 2 195.107 even 12