Properties

Label 1170.2.bp.b.289.2
Level $1170$
Weight $2$
Character 1170.289
Analytic conductor $9.342$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(289,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.bp (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,-8,0,0,0,0,-2,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 289.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 1170.289
Dual form 1170.2.bp.b.919.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(-2.00000 - 1.00000i) q^{5} +(4.33013 + 2.50000i) q^{7} -1.00000i q^{8} +(-2.23205 + 0.133975i) q^{10} +(1.50000 + 2.59808i) q^{11} +(-2.59808 + 2.50000i) q^{13} +5.00000 q^{14} +(-0.500000 - 0.866025i) q^{16} +(3.46410 + 2.00000i) q^{17} +(-0.500000 + 0.866025i) q^{19} +(-1.86603 + 1.23205i) q^{20} +(2.59808 + 1.50000i) q^{22} +(3.00000 + 4.00000i) q^{25} +(-1.00000 + 3.46410i) q^{26} +(4.33013 - 2.50000i) q^{28} +(-1.00000 - 1.73205i) q^{29} +4.00000 q^{31} +(-0.866025 - 0.500000i) q^{32} +4.00000 q^{34} +(-6.16025 - 9.33013i) q^{35} +(7.79423 - 4.50000i) q^{37} +1.00000i q^{38} +(-1.00000 + 2.00000i) q^{40} +(5.00000 + 8.66025i) q^{41} +(-10.3923 - 6.00000i) q^{43} +3.00000 q^{44} -7.00000i q^{47} +(9.00000 + 15.5885i) q^{49} +(4.59808 + 1.96410i) q^{50} +(0.866025 + 3.50000i) q^{52} +3.00000i q^{53} +(-0.401924 - 6.69615i) q^{55} +(2.50000 - 4.33013i) q^{56} +(-1.73205 - 1.00000i) q^{58} +(3.46410 - 2.00000i) q^{62} -1.00000 q^{64} +(7.69615 - 2.40192i) q^{65} +(-5.19615 + 3.00000i) q^{67} +(3.46410 - 2.00000i) q^{68} +(-10.0000 - 5.00000i) q^{70} +(6.00000 - 10.3923i) q^{71} -16.0000i q^{73} +(4.50000 - 7.79423i) q^{74} +(0.500000 + 0.866025i) q^{76} +15.0000i q^{77} +14.0000 q^{79} +(0.133975 + 2.23205i) q^{80} +(8.66025 + 5.00000i) q^{82} +10.0000i q^{83} +(-4.92820 - 7.46410i) q^{85} -12.0000 q^{86} +(2.59808 - 1.50000i) q^{88} +(0.500000 + 0.866025i) q^{89} +(-17.5000 + 4.33013i) q^{91} +(-3.50000 - 6.06218i) q^{94} +(1.86603 - 1.23205i) q^{95} +(-8.66025 - 5.00000i) q^{97} +(15.5885 + 9.00000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 8 q^{5} - 2 q^{10} + 6 q^{11} + 20 q^{14} - 2 q^{16} - 2 q^{19} - 4 q^{20} + 12 q^{25} - 4 q^{26} - 4 q^{29} + 16 q^{31} + 16 q^{34} + 10 q^{35} - 4 q^{40} + 20 q^{41} + 12 q^{44} + 36 q^{49}+ \cdots + 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −2.00000 1.00000i −0.894427 0.447214i
\(6\) 0 0
\(7\) 4.33013 + 2.50000i 1.63663 + 0.944911i 0.981981 + 0.188982i \(0.0605189\pi\)
0.654654 + 0.755929i \(0.272814\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −2.23205 + 0.133975i −0.705836 + 0.0423665i
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) 0 0
\(13\) −2.59808 + 2.50000i −0.720577 + 0.693375i
\(14\) 5.00000 1.33631
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.46410 + 2.00000i 0.840168 + 0.485071i 0.857321 0.514782i \(-0.172127\pi\)
−0.0171533 + 0.999853i \(0.505460\pi\)
\(18\) 0 0
\(19\) −0.500000 + 0.866025i −0.114708 + 0.198680i −0.917663 0.397360i \(-0.869927\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) −1.86603 + 1.23205i −0.417256 + 0.275495i
\(21\) 0 0
\(22\) 2.59808 + 1.50000i 0.553912 + 0.319801i
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) 0 0
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) −1.00000 + 3.46410i −0.196116 + 0.679366i
\(27\) 0 0
\(28\) 4.33013 2.50000i 0.818317 0.472456i
\(29\) −1.00000 1.73205i −0.185695 0.321634i 0.758115 0.652121i \(-0.226120\pi\)
−0.943811 + 0.330487i \(0.892787\pi\)
\(30\) 0 0
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0 0
\(34\) 4.00000 0.685994
\(35\) −6.16025 9.33013i −1.04127 1.57708i
\(36\) 0 0
\(37\) 7.79423 4.50000i 1.28136 0.739795i 0.304266 0.952587i \(-0.401589\pi\)
0.977098 + 0.212792i \(0.0682556\pi\)
\(38\) 1.00000i 0.162221i
\(39\) 0 0
\(40\) −1.00000 + 2.00000i −0.158114 + 0.316228i
\(41\) 5.00000 + 8.66025i 0.780869 + 1.35250i 0.931436 + 0.363905i \(0.118557\pi\)
−0.150567 + 0.988600i \(0.548110\pi\)
\(42\) 0 0
\(43\) −10.3923 6.00000i −1.58481 0.914991i −0.994142 0.108078i \(-0.965531\pi\)
−0.590669 0.806914i \(-0.701136\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) 0 0
\(47\) 7.00000i 1.02105i −0.859861 0.510527i \(-0.829450\pi\)
0.859861 0.510527i \(-0.170550\pi\)
\(48\) 0 0
\(49\) 9.00000 + 15.5885i 1.28571 + 2.22692i
\(50\) 4.59808 + 1.96410i 0.650266 + 0.277766i
\(51\) 0 0
\(52\) 0.866025 + 3.50000i 0.120096 + 0.485363i
\(53\) 3.00000i 0.412082i 0.978543 + 0.206041i \(0.0660580\pi\)
−0.978543 + 0.206041i \(0.933942\pi\)
\(54\) 0 0
\(55\) −0.401924 6.69615i −0.0541954 0.902909i
\(56\) 2.50000 4.33013i 0.334077 0.578638i
\(57\) 0 0
\(58\) −1.73205 1.00000i −0.227429 0.131306i
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(62\) 3.46410 2.00000i 0.439941 0.254000i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 7.69615 2.40192i 0.954590 0.297922i
\(66\) 0 0
\(67\) −5.19615 + 3.00000i −0.634811 + 0.366508i −0.782613 0.622509i \(-0.786114\pi\)
0.147802 + 0.989017i \(0.452780\pi\)
\(68\) 3.46410 2.00000i 0.420084 0.242536i
\(69\) 0 0
\(70\) −10.0000 5.00000i −1.19523 0.597614i
\(71\) 6.00000 10.3923i 0.712069 1.23334i −0.252010 0.967725i \(-0.581092\pi\)
0.964079 0.265615i \(-0.0855750\pi\)
\(72\) 0 0
\(73\) 16.0000i 1.87266i −0.351123 0.936329i \(-0.614200\pi\)
0.351123 0.936329i \(-0.385800\pi\)
\(74\) 4.50000 7.79423i 0.523114 0.906061i
\(75\) 0 0
\(76\) 0.500000 + 0.866025i 0.0573539 + 0.0993399i
\(77\) 15.0000i 1.70941i
\(78\) 0 0
\(79\) 14.0000 1.57512 0.787562 0.616236i \(-0.211343\pi\)
0.787562 + 0.616236i \(0.211343\pi\)
\(80\) 0.133975 + 2.23205i 0.0149788 + 0.249551i
\(81\) 0 0
\(82\) 8.66025 + 5.00000i 0.956365 + 0.552158i
\(83\) 10.0000i 1.09764i 0.835940 + 0.548821i \(0.184923\pi\)
−0.835940 + 0.548821i \(0.815077\pi\)
\(84\) 0 0
\(85\) −4.92820 7.46410i −0.534539 0.809595i
\(86\) −12.0000 −1.29399
\(87\) 0 0
\(88\) 2.59808 1.50000i 0.276956 0.159901i
\(89\) 0.500000 + 0.866025i 0.0529999 + 0.0917985i 0.891308 0.453398i \(-0.149788\pi\)
−0.838308 + 0.545197i \(0.816455\pi\)
\(90\) 0 0
\(91\) −17.5000 + 4.33013i −1.83450 + 0.453921i
\(92\) 0 0
\(93\) 0 0
\(94\) −3.50000 6.06218i −0.360997 0.625266i
\(95\) 1.86603 1.23205i 0.191450 0.126406i
\(96\) 0 0
\(97\) −8.66025 5.00000i −0.879316 0.507673i −0.00888289 0.999961i \(-0.502828\pi\)
−0.870433 + 0.492287i \(0.836161\pi\)
\(98\) 15.5885 + 9.00000i 1.57467 + 0.909137i
\(99\) 0 0
\(100\) 4.96410 0.598076i 0.496410 0.0598076i
\(101\) 5.00000 + 8.66025i 0.497519 + 0.861727i 0.999996 0.00286291i \(-0.000911295\pi\)
−0.502477 + 0.864590i \(0.667578\pi\)
\(102\) 0 0
\(103\) 7.00000i 0.689730i 0.938652 + 0.344865i \(0.112075\pi\)
−0.938652 + 0.344865i \(0.887925\pi\)
\(104\) 2.50000 + 2.59808i 0.245145 + 0.254762i
\(105\) 0 0
\(106\) 1.50000 + 2.59808i 0.145693 + 0.252347i
\(107\) 10.3923 6.00000i 1.00466 0.580042i 0.0950377 0.995474i \(-0.469703\pi\)
0.909624 + 0.415432i \(0.136370\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) −3.69615 5.59808i −0.352414 0.533756i
\(111\) 0 0
\(112\) 5.00000i 0.472456i
\(113\) −3.46410 2.00000i −0.325875 0.188144i 0.328133 0.944632i \(-0.393581\pi\)
−0.654008 + 0.756487i \(0.726914\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.00000 −0.185695
\(117\) 0 0
\(118\) 0 0
\(119\) 10.0000 + 17.3205i 0.916698 + 1.58777i
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 0 0
\(123\) 0 0
\(124\) 2.00000 3.46410i 0.179605 0.311086i
\(125\) −2.00000 11.0000i −0.178885 0.983870i
\(126\) 0 0
\(127\) −14.7224 + 8.50000i −1.30640 + 0.754253i −0.981494 0.191492i \(-0.938667\pi\)
−0.324910 + 0.945745i \(0.605334\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 5.46410 5.92820i 0.479233 0.519938i
\(131\) −7.00000 −0.611593 −0.305796 0.952097i \(-0.598923\pi\)
−0.305796 + 0.952097i \(0.598923\pi\)
\(132\) 0 0
\(133\) −4.33013 + 2.50000i −0.375470 + 0.216777i
\(134\) −3.00000 + 5.19615i −0.259161 + 0.448879i
\(135\) 0 0
\(136\) 2.00000 3.46410i 0.171499 0.297044i
\(137\) −8.66025 5.00000i −0.739895 0.427179i 0.0821359 0.996621i \(-0.473826\pi\)
−0.822031 + 0.569442i \(0.807159\pi\)
\(138\) 0 0
\(139\) −2.50000 + 4.33013i −0.212047 + 0.367277i −0.952355 0.304991i \(-0.901346\pi\)
0.740308 + 0.672268i \(0.234680\pi\)
\(140\) −11.1603 + 0.669873i −0.943214 + 0.0566146i
\(141\) 0 0
\(142\) 12.0000i 1.00702i
\(143\) −10.3923 3.00000i −0.869048 0.250873i
\(144\) 0 0
\(145\) 0.267949 + 4.46410i 0.0222520 + 0.370723i
\(146\) −8.00000 13.8564i −0.662085 1.14676i
\(147\) 0 0
\(148\) 9.00000i 0.739795i
\(149\) −8.00000 + 13.8564i −0.655386 + 1.13516i 0.326411 + 0.945228i \(0.394160\pi\)
−0.981797 + 0.189933i \(0.939173\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0.866025 + 0.500000i 0.0702439 + 0.0405554i
\(153\) 0 0
\(154\) 7.50000 + 12.9904i 0.604367 + 1.04679i
\(155\) −8.00000 4.00000i −0.642575 0.321288i
\(156\) 0 0
\(157\) 3.00000i 0.239426i 0.992809 + 0.119713i \(0.0381975\pi\)
−0.992809 + 0.119713i \(0.961803\pi\)
\(158\) 12.1244 7.00000i 0.964562 0.556890i
\(159\) 0 0
\(160\) 1.23205 + 1.86603i 0.0974022 + 0.147522i
\(161\) 0 0
\(162\) 0 0
\(163\) −6.92820 4.00000i −0.542659 0.313304i 0.203497 0.979076i \(-0.434769\pi\)
−0.746156 + 0.665771i \(0.768103\pi\)
\(164\) 10.0000 0.780869
\(165\) 0 0
\(166\) 5.00000 + 8.66025i 0.388075 + 0.672166i
\(167\) −16.4545 + 9.50000i −1.27329 + 0.735132i −0.975605 0.219533i \(-0.929547\pi\)
−0.297681 + 0.954665i \(0.596213\pi\)
\(168\) 0 0
\(169\) 0.500000 12.9904i 0.0384615 0.999260i
\(170\) −8.00000 4.00000i −0.613572 0.306786i
\(171\) 0 0
\(172\) −10.3923 + 6.00000i −0.792406 + 0.457496i
\(173\) −6.06218 3.50000i −0.460899 0.266100i 0.251523 0.967851i \(-0.419068\pi\)
−0.712422 + 0.701751i \(0.752402\pi\)
\(174\) 0 0
\(175\) 2.99038 + 24.8205i 0.226052 + 1.87625i
\(176\) 1.50000 2.59808i 0.113067 0.195837i
\(177\) 0 0
\(178\) 0.866025 + 0.500000i 0.0649113 + 0.0374766i
\(179\) −6.00000 10.3923i −0.448461 0.776757i 0.549825 0.835280i \(-0.314694\pi\)
−0.998286 + 0.0585225i \(0.981361\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) −12.9904 + 12.5000i −0.962911 + 0.926562i
\(183\) 0 0
\(184\) 0 0
\(185\) −20.0885 + 1.20577i −1.47693 + 0.0886501i
\(186\) 0 0
\(187\) 12.0000i 0.877527i
\(188\) −6.06218 3.50000i −0.442130 0.255264i
\(189\) 0 0
\(190\) 1.00000 2.00000i 0.0725476 0.145095i
\(191\) 6.00000 10.3923i 0.434145 0.751961i −0.563081 0.826402i \(-0.690384\pi\)
0.997225 + 0.0744412i \(0.0237173\pi\)
\(192\) 0 0
\(193\) 3.46410 2.00000i 0.249351 0.143963i −0.370116 0.928986i \(-0.620682\pi\)
0.619467 + 0.785022i \(0.287349\pi\)
\(194\) −10.0000 −0.717958
\(195\) 0 0
\(196\) 18.0000 1.28571
\(197\) 12.9904 7.50000i 0.925526 0.534353i 0.0401324 0.999194i \(-0.487222\pi\)
0.885394 + 0.464841i \(0.153889\pi\)
\(198\) 0 0
\(199\) −7.00000 + 12.1244i −0.496217 + 0.859473i −0.999990 0.00436292i \(-0.998611\pi\)
0.503774 + 0.863836i \(0.331945\pi\)
\(200\) 4.00000 3.00000i 0.282843 0.212132i
\(201\) 0 0
\(202\) 8.66025 + 5.00000i 0.609333 + 0.351799i
\(203\) 10.0000i 0.701862i
\(204\) 0 0
\(205\) −1.33975 22.3205i −0.0935719 1.55893i
\(206\) 3.50000 + 6.06218i 0.243857 + 0.422372i
\(207\) 0 0
\(208\) 3.46410 + 1.00000i 0.240192 + 0.0693375i
\(209\) −3.00000 −0.207514
\(210\) 0 0
\(211\) −6.50000 11.2583i −0.447478 0.775055i 0.550743 0.834675i \(-0.314345\pi\)
−0.998221 + 0.0596196i \(0.981011\pi\)
\(212\) 2.59808 + 1.50000i 0.178437 + 0.103020i
\(213\) 0 0
\(214\) 6.00000 10.3923i 0.410152 0.710403i
\(215\) 14.7846 + 22.3923i 1.00830 + 1.52714i
\(216\) 0 0
\(217\) 17.3205 + 10.0000i 1.17579 + 0.678844i
\(218\) −8.66025 + 5.00000i −0.586546 + 0.338643i
\(219\) 0 0
\(220\) −6.00000 3.00000i −0.404520 0.202260i
\(221\) −14.0000 + 3.46410i −0.941742 + 0.233021i
\(222\) 0 0
\(223\) −0.866025 + 0.500000i −0.0579934 + 0.0334825i −0.528716 0.848799i \(-0.677326\pi\)
0.470723 + 0.882281i \(0.343993\pi\)
\(224\) −2.50000 4.33013i −0.167038 0.289319i
\(225\) 0 0
\(226\) −4.00000 −0.266076
\(227\) −1.73205 1.00000i −0.114960 0.0663723i 0.441417 0.897302i \(-0.354476\pi\)
−0.556378 + 0.830930i \(0.687809\pi\)
\(228\) 0 0
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −1.73205 + 1.00000i −0.113715 + 0.0656532i
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) −7.00000 + 14.0000i −0.456630 + 0.913259i
\(236\) 0 0
\(237\) 0 0
\(238\) 17.3205 + 10.0000i 1.12272 + 0.648204i
\(239\) 14.0000 0.905585 0.452792 0.891616i \(-0.350428\pi\)
0.452792 + 0.891616i \(0.350428\pi\)
\(240\) 0 0
\(241\) −1.50000 + 2.59808i −0.0966235 + 0.167357i −0.910285 0.413982i \(-0.864138\pi\)
0.813662 + 0.581339i \(0.197471\pi\)
\(242\) 2.00000i 0.128565i
\(243\) 0 0
\(244\) 0 0
\(245\) −2.41154 40.1769i −0.154068 2.56681i
\(246\) 0 0
\(247\) −0.866025 3.50000i −0.0551039 0.222700i
\(248\) 4.00000i 0.254000i
\(249\) 0 0
\(250\) −7.23205 8.52628i −0.457395 0.539249i
\(251\) 6.50000 11.2583i 0.410276 0.710620i −0.584643 0.811290i \(-0.698766\pi\)
0.994920 + 0.100671i \(0.0320989\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −8.50000 + 14.7224i −0.533337 + 0.923768i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 8.66025 5.00000i 0.540212 0.311891i −0.204953 0.978772i \(-0.565704\pi\)
0.745165 + 0.666880i \(0.232371\pi\)
\(258\) 0 0
\(259\) 45.0000 2.79616
\(260\) 1.76795 7.86603i 0.109644 0.487830i
\(261\) 0 0
\(262\) −6.06218 + 3.50000i −0.374523 + 0.216231i
\(263\) 6.06218 3.50000i 0.373810 0.215819i −0.301312 0.953526i \(-0.597424\pi\)
0.675122 + 0.737706i \(0.264091\pi\)
\(264\) 0 0
\(265\) 3.00000 6.00000i 0.184289 0.368577i
\(266\) −2.50000 + 4.33013i −0.153285 + 0.265497i
\(267\) 0 0
\(268\) 6.00000i 0.366508i
\(269\) 4.00000 6.92820i 0.243884 0.422420i −0.717933 0.696112i \(-0.754912\pi\)
0.961817 + 0.273692i \(0.0882449\pi\)
\(270\) 0 0
\(271\) 1.00000 + 1.73205i 0.0607457 + 0.105215i 0.894799 0.446469i \(-0.147319\pi\)
−0.834053 + 0.551684i \(0.813985\pi\)
\(272\) 4.00000i 0.242536i
\(273\) 0 0
\(274\) −10.0000 −0.604122
\(275\) −5.89230 + 13.7942i −0.355319 + 0.831823i
\(276\) 0 0
\(277\) −14.7224 8.50000i −0.884585 0.510716i −0.0124177 0.999923i \(-0.503953\pi\)
−0.872167 + 0.489207i \(0.837286\pi\)
\(278\) 5.00000i 0.299880i
\(279\) 0 0
\(280\) −9.33013 + 6.16025i −0.557582 + 0.368146i
\(281\) −30.0000 −1.78965 −0.894825 0.446417i \(-0.852700\pi\)
−0.894825 + 0.446417i \(0.852700\pi\)
\(282\) 0 0
\(283\) 5.19615 3.00000i 0.308879 0.178331i −0.337546 0.941309i \(-0.609597\pi\)
0.646425 + 0.762978i \(0.276263\pi\)
\(284\) −6.00000 10.3923i −0.356034 0.616670i
\(285\) 0 0
\(286\) −10.5000 + 2.59808i −0.620878 + 0.153627i
\(287\) 50.0000i 2.95141i
\(288\) 0 0
\(289\) −0.500000 0.866025i −0.0294118 0.0509427i
\(290\) 2.46410 + 3.73205i 0.144697 + 0.219154i
\(291\) 0 0
\(292\) −13.8564 8.00000i −0.810885 0.468165i
\(293\) 2.59808 + 1.50000i 0.151781 + 0.0876309i 0.573967 0.818878i \(-0.305404\pi\)
−0.422186 + 0.906509i \(0.638737\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.50000 7.79423i −0.261557 0.453030i
\(297\) 0 0
\(298\) 16.0000i 0.926855i
\(299\) 0 0
\(300\) 0 0
\(301\) −30.0000 51.9615i −1.72917 2.99501i
\(302\) −6.92820 + 4.00000i −0.398673 + 0.230174i
\(303\) 0 0
\(304\) 1.00000 0.0573539
\(305\) 0 0
\(306\) 0 0
\(307\) 4.00000i 0.228292i 0.993464 + 0.114146i \(0.0364132\pi\)
−0.993464 + 0.114146i \(0.963587\pi\)
\(308\) 12.9904 + 7.50000i 0.740196 + 0.427352i
\(309\) 0 0
\(310\) −8.92820 + 0.535898i −0.507088 + 0.0304370i
\(311\) 20.0000 1.13410 0.567048 0.823685i \(-0.308085\pi\)
0.567048 + 0.823685i \(0.308085\pi\)
\(312\) 0 0
\(313\) 14.0000i 0.791327i −0.918396 0.395663i \(-0.870515\pi\)
0.918396 0.395663i \(-0.129485\pi\)
\(314\) 1.50000 + 2.59808i 0.0846499 + 0.146618i
\(315\) 0 0
\(316\) 7.00000 12.1244i 0.393781 0.682048i
\(317\) 7.00000i 0.393159i −0.980488 0.196580i \(-0.937017\pi\)
0.980488 0.196580i \(-0.0629834\pi\)
\(318\) 0 0
\(319\) 3.00000 5.19615i 0.167968 0.290929i
\(320\) 2.00000 + 1.00000i 0.111803 + 0.0559017i
\(321\) 0 0
\(322\) 0 0
\(323\) −3.46410 + 2.00000i −0.192748 + 0.111283i
\(324\) 0 0
\(325\) −17.7942 2.89230i −0.987046 0.160436i
\(326\) −8.00000 −0.443079
\(327\) 0 0
\(328\) 8.66025 5.00000i 0.478183 0.276079i
\(329\) 17.5000 30.3109i 0.964806 1.67109i
\(330\) 0 0
\(331\) 2.00000 3.46410i 0.109930 0.190404i −0.805812 0.592172i \(-0.798271\pi\)
0.915742 + 0.401768i \(0.131604\pi\)
\(332\) 8.66025 + 5.00000i 0.475293 + 0.274411i
\(333\) 0 0
\(334\) −9.50000 + 16.4545i −0.519817 + 0.900349i
\(335\) 13.3923 0.803848i 0.731700 0.0439189i
\(336\) 0 0
\(337\) 10.0000i 0.544735i −0.962193 0.272367i \(-0.912193\pi\)
0.962193 0.272367i \(-0.0878066\pi\)
\(338\) −6.06218 11.5000i −0.329739 0.625518i
\(339\) 0 0
\(340\) −8.92820 + 0.535898i −0.484200 + 0.0290632i
\(341\) 6.00000 + 10.3923i 0.324918 + 0.562775i
\(342\) 0 0
\(343\) 55.0000i 2.96972i
\(344\) −6.00000 + 10.3923i −0.323498 + 0.560316i
\(345\) 0 0
\(346\) −7.00000 −0.376322
\(347\) −19.0526 11.0000i −1.02279 0.590511i −0.107883 0.994164i \(-0.534407\pi\)
−0.914912 + 0.403653i \(0.867740\pi\)
\(348\) 0 0
\(349\) −5.00000 8.66025i −0.267644 0.463573i 0.700609 0.713545i \(-0.252912\pi\)
−0.968253 + 0.249973i \(0.919578\pi\)
\(350\) 15.0000 + 20.0000i 0.801784 + 1.06904i
\(351\) 0 0
\(352\) 3.00000i 0.159901i
\(353\) −29.4449 + 17.0000i −1.56719 + 0.904819i −0.570697 + 0.821160i \(0.693327\pi\)
−0.996495 + 0.0836583i \(0.973340\pi\)
\(354\) 0 0
\(355\) −22.3923 + 14.7846i −1.18846 + 0.784686i
\(356\) 1.00000 0.0529999
\(357\) 0 0
\(358\) −10.3923 6.00000i −0.549250 0.317110i
\(359\) −20.0000 −1.05556 −0.527780 0.849381i \(-0.676975\pi\)
−0.527780 + 0.849381i \(0.676975\pi\)
\(360\) 0 0
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) −5.19615 + 3.00000i −0.273104 + 0.157676i
\(363\) 0 0
\(364\) −5.00000 + 17.3205i −0.262071 + 0.907841i
\(365\) −16.0000 + 32.0000i −0.837478 + 1.67496i
\(366\) 0 0
\(367\) 20.7846 12.0000i 1.08495 0.626395i 0.152721 0.988269i \(-0.451196\pi\)
0.932227 + 0.361874i \(0.117863\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −16.7942 + 11.0885i −0.873090 + 0.576461i
\(371\) −7.50000 + 12.9904i −0.389381 + 0.674427i
\(372\) 0 0
\(373\) −5.19615 3.00000i −0.269047 0.155334i 0.359408 0.933181i \(-0.382979\pi\)
−0.628454 + 0.777847i \(0.716312\pi\)
\(374\) 6.00000 + 10.3923i 0.310253 + 0.537373i
\(375\) 0 0
\(376\) −7.00000 −0.360997
\(377\) 6.92820 + 2.00000i 0.356821 + 0.103005i
\(378\) 0 0
\(379\) 9.50000 + 16.4545i 0.487982 + 0.845210i 0.999904 0.0138218i \(-0.00439975\pi\)
−0.511922 + 0.859032i \(0.671066\pi\)
\(380\) −0.133975 2.23205i −0.00687275 0.114502i
\(381\) 0 0
\(382\) 12.0000i 0.613973i
\(383\) −13.8564 8.00000i −0.708029 0.408781i 0.102302 0.994753i \(-0.467379\pi\)
−0.810331 + 0.585973i \(0.800713\pi\)
\(384\) 0 0
\(385\) 15.0000 30.0000i 0.764471 1.52894i
\(386\) 2.00000 3.46410i 0.101797 0.176318i
\(387\) 0 0
\(388\) −8.66025 + 5.00000i −0.439658 + 0.253837i
\(389\) 24.0000 1.21685 0.608424 0.793612i \(-0.291802\pi\)
0.608424 + 0.793612i \(0.291802\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 15.5885 9.00000i 0.787336 0.454569i
\(393\) 0 0
\(394\) 7.50000 12.9904i 0.377845 0.654446i
\(395\) −28.0000 14.0000i −1.40883 0.704416i
\(396\) 0 0
\(397\) 19.9186 + 11.5000i 0.999685 + 0.577168i 0.908155 0.418634i \(-0.137491\pi\)
0.0915300 + 0.995802i \(0.470824\pi\)
\(398\) 14.0000i 0.701757i
\(399\) 0 0
\(400\) 1.96410 4.59808i 0.0982051 0.229904i
\(401\) −10.5000 18.1865i −0.524345 0.908192i −0.999598 0.0283431i \(-0.990977\pi\)
0.475253 0.879849i \(-0.342356\pi\)
\(402\) 0 0
\(403\) −10.3923 + 10.0000i −0.517678 + 0.498135i
\(404\) 10.0000 0.497519
\(405\) 0 0
\(406\) −5.00000 8.66025i −0.248146 0.429801i
\(407\) 23.3827 + 13.5000i 1.15904 + 0.669170i
\(408\) 0 0
\(409\) −9.50000 + 16.4545i −0.469745 + 0.813622i −0.999402 0.0345902i \(-0.988987\pi\)
0.529657 + 0.848212i \(0.322321\pi\)
\(410\) −12.3205 18.6603i −0.608467 0.921564i
\(411\) 0 0
\(412\) 6.06218 + 3.50000i 0.298662 + 0.172433i
\(413\) 0 0
\(414\) 0 0
\(415\) 10.0000 20.0000i 0.490881 0.981761i
\(416\) 3.50000 0.866025i 0.171602 0.0424604i
\(417\) 0 0
\(418\) −2.59808 + 1.50000i −0.127076 + 0.0733674i
\(419\) 14.0000 + 24.2487i 0.683945 + 1.18463i 0.973767 + 0.227547i \(0.0730704\pi\)
−0.289822 + 0.957080i \(0.593596\pi\)
\(420\) 0 0
\(421\) 16.0000 0.779792 0.389896 0.920859i \(-0.372511\pi\)
0.389896 + 0.920859i \(0.372511\pi\)
\(422\) −11.2583 6.50000i −0.548047 0.316415i
\(423\) 0 0
\(424\) 3.00000 0.145693
\(425\) 2.39230 + 19.8564i 0.116044 + 0.963177i
\(426\) 0 0
\(427\) 0 0
\(428\) 12.0000i 0.580042i
\(429\) 0 0
\(430\) 24.0000 + 12.0000i 1.15738 + 0.578691i
\(431\) −20.0000 34.6410i −0.963366 1.66860i −0.713942 0.700205i \(-0.753092\pi\)
−0.249424 0.968394i \(-0.580241\pi\)
\(432\) 0 0
\(433\) 6.92820 + 4.00000i 0.332948 + 0.192228i 0.657149 0.753760i \(-0.271762\pi\)
−0.324201 + 0.945988i \(0.605095\pi\)
\(434\) 20.0000 0.960031
\(435\) 0 0
\(436\) −5.00000 + 8.66025i −0.239457 + 0.414751i
\(437\) 0 0
\(438\) 0 0
\(439\) 8.00000 + 13.8564i 0.381819 + 0.661330i 0.991322 0.131453i \(-0.0419644\pi\)
−0.609503 + 0.792784i \(0.708631\pi\)
\(440\) −6.69615 + 0.401924i −0.319227 + 0.0191610i
\(441\) 0 0
\(442\) −10.3923 + 10.0000i −0.494312 + 0.475651i
\(443\) 24.0000i 1.14027i 0.821549 + 0.570137i \(0.193110\pi\)
−0.821549 + 0.570137i \(0.806890\pi\)
\(444\) 0 0
\(445\) −0.133975 2.23205i −0.00635100 0.105809i
\(446\) −0.500000 + 0.866025i −0.0236757 + 0.0410075i
\(447\) 0 0
\(448\) −4.33013 2.50000i −0.204579 0.118114i
\(449\) 6.50000 11.2583i 0.306754 0.531313i −0.670896 0.741551i \(-0.734090\pi\)
0.977650 + 0.210238i \(0.0674238\pi\)
\(450\) 0 0
\(451\) −15.0000 + 25.9808i −0.706322 + 1.22339i
\(452\) −3.46410 + 2.00000i −0.162938 + 0.0940721i
\(453\) 0 0
\(454\) −2.00000 −0.0938647
\(455\) 39.3301 + 8.83975i 1.84382 + 0.414414i
\(456\) 0 0
\(457\) 24.2487 14.0000i 1.13431 0.654892i 0.189292 0.981921i \(-0.439381\pi\)
0.945015 + 0.327028i \(0.106047\pi\)
\(458\) 19.0526 11.0000i 0.890268 0.513996i
\(459\) 0 0
\(460\) 0 0
\(461\) −11.0000 + 19.0526i −0.512321 + 0.887366i 0.487577 + 0.873080i \(0.337881\pi\)
−0.999898 + 0.0142861i \(0.995452\pi\)
\(462\) 0 0
\(463\) 8.00000i 0.371792i −0.982569 0.185896i \(-0.940481\pi\)
0.982569 0.185896i \(-0.0595187\pi\)
\(464\) −1.00000 + 1.73205i −0.0464238 + 0.0804084i
\(465\) 0 0
\(466\) 0 0
\(467\) 34.0000i 1.57333i −0.617379 0.786666i \(-0.711805\pi\)
0.617379 0.786666i \(-0.288195\pi\)
\(468\) 0 0
\(469\) −30.0000 −1.38527
\(470\) 0.937822 + 15.6244i 0.0432585 + 0.720698i
\(471\) 0 0
\(472\) 0 0
\(473\) 36.0000i 1.65528i
\(474\) 0 0
\(475\) −4.96410 + 0.598076i −0.227769 + 0.0274416i
\(476\) 20.0000 0.916698
\(477\) 0 0
\(478\) 12.1244 7.00000i 0.554555 0.320173i
\(479\) −5.00000 8.66025i −0.228456 0.395697i 0.728895 0.684626i \(-0.240034\pi\)
−0.957351 + 0.288929i \(0.906701\pi\)
\(480\) 0 0
\(481\) −9.00000 + 31.1769i −0.410365 + 1.42154i
\(482\) 3.00000i 0.136646i
\(483\) 0 0
\(484\) −1.00000 1.73205i −0.0454545 0.0787296i
\(485\) 12.3205 + 18.6603i 0.559445 + 0.847318i
\(486\) 0 0
\(487\) −0.866025 0.500000i −0.0392434 0.0226572i 0.480250 0.877132i \(-0.340546\pi\)
−0.519493 + 0.854475i \(0.673879\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −22.1769 33.5885i −1.00185 1.51737i
\(491\) 7.50000 + 12.9904i 0.338470 + 0.586248i 0.984145 0.177365i \(-0.0567572\pi\)
−0.645675 + 0.763612i \(0.723424\pi\)
\(492\) 0 0
\(493\) 8.00000i 0.360302i
\(494\) −2.50000 2.59808i −0.112480 0.116893i
\(495\) 0 0
\(496\) −2.00000 3.46410i −0.0898027 0.155543i
\(497\) 51.9615 30.0000i 2.33079 1.34568i
\(498\) 0 0
\(499\) 24.0000 1.07439 0.537194 0.843459i \(-0.319484\pi\)
0.537194 + 0.843459i \(0.319484\pi\)
\(500\) −10.5263 3.76795i −0.470750 0.168508i
\(501\) 0 0
\(502\) 13.0000i 0.580218i
\(503\) −9.52628 5.50000i −0.424756 0.245233i 0.272354 0.962197i \(-0.412198\pi\)
−0.697110 + 0.716964i \(0.745531\pi\)
\(504\) 0 0
\(505\) −1.33975 22.3205i −0.0596179 0.993250i
\(506\) 0 0
\(507\) 0 0
\(508\) 17.0000i 0.754253i
\(509\) 1.00000 + 1.73205i 0.0443242 + 0.0767718i 0.887336 0.461123i \(-0.152553\pi\)
−0.843012 + 0.537895i \(0.819220\pi\)
\(510\) 0 0
\(511\) 40.0000 69.2820i 1.76950 3.06486i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 5.00000 8.66025i 0.220541 0.381987i
\(515\) 7.00000 14.0000i 0.308457 0.616914i
\(516\) 0 0
\(517\) 18.1865 10.5000i 0.799843 0.461789i
\(518\) 38.9711 22.5000i 1.71229 0.988593i
\(519\) 0 0
\(520\) −2.40192 7.69615i −0.105331 0.337499i
\(521\) 45.0000 1.97149 0.985743 0.168259i \(-0.0538144\pi\)
0.985743 + 0.168259i \(0.0538144\pi\)
\(522\) 0 0
\(523\) 13.8564 8.00000i 0.605898 0.349816i −0.165460 0.986216i \(-0.552911\pi\)
0.771358 + 0.636401i \(0.219578\pi\)
\(524\) −3.50000 + 6.06218i −0.152898 + 0.264827i
\(525\) 0 0
\(526\) 3.50000 6.06218i 0.152607 0.264324i
\(527\) 13.8564 + 8.00000i 0.603595 + 0.348485i
\(528\) 0 0
\(529\) −11.5000 + 19.9186i −0.500000 + 0.866025i
\(530\) −0.401924 6.69615i −0.0174585 0.290862i
\(531\) 0 0
\(532\) 5.00000i 0.216777i
\(533\) −34.6410 10.0000i −1.50047 0.433148i
\(534\) 0 0
\(535\) −26.7846 + 1.60770i −1.15800 + 0.0695067i
\(536\) 3.00000 + 5.19615i 0.129580 + 0.224440i
\(537\) 0 0
\(538\) 8.00000i 0.344904i
\(539\) −27.0000 + 46.7654i −1.16297 + 2.01433i
\(540\) 0 0
\(541\) −8.00000 −0.343947 −0.171973 0.985102i \(-0.555014\pi\)
−0.171973 + 0.985102i \(0.555014\pi\)
\(542\) 1.73205 + 1.00000i 0.0743980 + 0.0429537i
\(543\) 0 0
\(544\) −2.00000 3.46410i −0.0857493 0.148522i
\(545\) 20.0000 + 10.0000i 0.856706 + 0.428353i
\(546\) 0 0
\(547\) 6.00000i 0.256541i −0.991739 0.128271i \(-0.959057\pi\)
0.991739 0.128271i \(-0.0409426\pi\)
\(548\) −8.66025 + 5.00000i −0.369948 + 0.213589i
\(549\) 0 0
\(550\) 1.79423 + 14.8923i 0.0765062 + 0.635010i
\(551\) 2.00000 0.0852029
\(552\) 0 0
\(553\) 60.6218 + 35.0000i 2.57790 + 1.48835i
\(554\) −17.0000 −0.722261
\(555\) 0 0
\(556\) 2.50000 + 4.33013i 0.106024 + 0.183638i
\(557\) 33.7750 19.5000i 1.43109 0.826242i 0.433888 0.900967i \(-0.357141\pi\)
0.997204 + 0.0747252i \(0.0238080\pi\)
\(558\) 0 0
\(559\) 42.0000 10.3923i 1.77641 0.439548i
\(560\) −5.00000 + 10.0000i −0.211289 + 0.422577i
\(561\) 0 0
\(562\) −25.9808 + 15.0000i −1.09593 + 0.632737i
\(563\) −15.5885 9.00000i −0.656975 0.379305i 0.134148 0.990961i \(-0.457170\pi\)
−0.791123 + 0.611656i \(0.790503\pi\)
\(564\) 0 0
\(565\) 4.92820 + 7.46410i 0.207331 + 0.314017i
\(566\) 3.00000 5.19615i 0.126099 0.218411i
\(567\) 0 0
\(568\) −10.3923 6.00000i −0.436051 0.251754i
\(569\) −19.5000 33.7750i −0.817483 1.41592i −0.907532 0.419984i \(-0.862036\pi\)
0.0900490 0.995937i \(-0.471298\pi\)
\(570\) 0 0
\(571\) 15.0000 0.627730 0.313865 0.949468i \(-0.398376\pi\)
0.313865 + 0.949468i \(0.398376\pi\)
\(572\) −7.79423 + 7.50000i −0.325893 + 0.313591i
\(573\) 0 0
\(574\) 25.0000 + 43.3013i 1.04348 + 1.80736i
\(575\) 0 0
\(576\) 0 0
\(577\) 32.0000i 1.33218i −0.745873 0.666089i \(-0.767967\pi\)
0.745873 0.666089i \(-0.232033\pi\)
\(578\) −0.866025 0.500000i −0.0360219 0.0207973i
\(579\) 0 0
\(580\) 4.00000 + 2.00000i 0.166091 + 0.0830455i
\(581\) −25.0000 + 43.3013i −1.03717 + 1.79644i
\(582\) 0 0
\(583\) −7.79423 + 4.50000i −0.322804 + 0.186371i
\(584\) −16.0000 −0.662085
\(585\) 0 0
\(586\) 3.00000 0.123929
\(587\) −29.4449 + 17.0000i −1.21532 + 0.701665i −0.963913 0.266217i \(-0.914226\pi\)
−0.251406 + 0.967882i \(0.580893\pi\)
\(588\) 0 0
\(589\) −2.00000 + 3.46410i −0.0824086 + 0.142736i
\(590\) 0 0
\(591\) 0 0
\(592\) −7.79423 4.50000i −0.320341 0.184949i
\(593\) 20.0000i 0.821302i −0.911793 0.410651i \(-0.865302\pi\)
0.911793 0.410651i \(-0.134698\pi\)
\(594\) 0 0
\(595\) −2.67949 44.6410i −0.109848 1.83010i
\(596\) 8.00000 + 13.8564i 0.327693 + 0.567581i
\(597\) 0 0
\(598\) 0 0
\(599\) 10.0000 0.408589 0.204294 0.978909i \(-0.434510\pi\)
0.204294 + 0.978909i \(0.434510\pi\)
\(600\) 0 0
\(601\) 17.5000 + 30.3109i 0.713840 + 1.23641i 0.963405 + 0.268049i \(0.0863789\pi\)
−0.249565 + 0.968358i \(0.580288\pi\)
\(602\) −51.9615 30.0000i −2.11779 1.22271i
\(603\) 0 0
\(604\) −4.00000 + 6.92820i −0.162758 + 0.281905i
\(605\) −3.73205 + 2.46410i −0.151729 + 0.100180i
\(606\) 0 0
\(607\) −2.59808 1.50000i −0.105453 0.0608831i 0.446346 0.894860i \(-0.352725\pi\)
−0.551799 + 0.833977i \(0.686058\pi\)
\(608\) 0.866025 0.500000i 0.0351220 0.0202777i
\(609\) 0 0
\(610\) 0 0
\(611\) 17.5000 + 18.1865i 0.707974 + 0.735748i
\(612\) 0 0
\(613\) −25.1147 + 14.5000i −1.01437 + 0.585649i −0.912470 0.409145i \(-0.865827\pi\)
−0.101905 + 0.994794i \(0.532494\pi\)
\(614\) 2.00000 + 3.46410i 0.0807134 + 0.139800i
\(615\) 0 0
\(616\) 15.0000 0.604367
\(617\) −41.5692 24.0000i −1.67351 0.966204i −0.965647 0.259858i \(-0.916324\pi\)
−0.707867 0.706346i \(-0.750342\pi\)
\(618\) 0 0
\(619\) −5.00000 −0.200967 −0.100483 0.994939i \(-0.532039\pi\)
−0.100483 + 0.994939i \(0.532039\pi\)
\(620\) −7.46410 + 4.92820i −0.299766 + 0.197921i
\(621\) 0 0
\(622\) 17.3205 10.0000i 0.694489 0.400963i
\(623\) 5.00000i 0.200321i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) −7.00000 12.1244i −0.279776 0.484587i
\(627\) 0 0
\(628\) 2.59808 + 1.50000i 0.103675 + 0.0598565i
\(629\) 36.0000 1.43541
\(630\) 0 0
\(631\) −14.0000 + 24.2487i −0.557331 + 0.965326i 0.440387 + 0.897808i \(0.354841\pi\)
−0.997718 + 0.0675178i \(0.978492\pi\)
\(632\) 14.0000i 0.556890i
\(633\) 0 0
\(634\) −3.50000 6.06218i −0.139003 0.240760i
\(635\) 37.9449 2.27757i 1.50580 0.0903825i
\(636\) 0 0
\(637\) −62.3538 18.0000i −2.47055 0.713186i
\(638\) 6.00000i 0.237542i
\(639\) 0 0
\(640\) 2.23205 0.133975i 0.0882296 0.00529581i
\(641\) 10.5000 18.1865i 0.414725 0.718325i −0.580674 0.814136i \(-0.697211\pi\)
0.995400 + 0.0958109i \(0.0305444\pi\)
\(642\) 0 0
\(643\) −13.8564 8.00000i −0.546443 0.315489i 0.201243 0.979541i \(-0.435502\pi\)
−0.747686 + 0.664052i \(0.768835\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2.00000 + 3.46410i −0.0786889 + 0.136293i
\(647\) −28.5788 + 16.5000i −1.12355 + 0.648682i −0.942305 0.334756i \(-0.891346\pi\)
−0.181245 + 0.983438i \(0.558013\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −16.8564 + 6.39230i −0.661163 + 0.250727i
\(651\) 0 0
\(652\) −6.92820 + 4.00000i −0.271329 + 0.156652i
\(653\) 11.2583 6.50000i 0.440573 0.254365i −0.263268 0.964723i \(-0.584800\pi\)
0.703840 + 0.710358i \(0.251467\pi\)
\(654\) 0 0
\(655\) 14.0000 + 7.00000i 0.547025 + 0.273513i
\(656\) 5.00000 8.66025i 0.195217 0.338126i
\(657\) 0 0
\(658\) 35.0000i 1.36444i
\(659\) 10.0000 17.3205i 0.389545 0.674711i −0.602844 0.797859i \(-0.705966\pi\)
0.992388 + 0.123148i \(0.0392990\pi\)
\(660\) 0 0
\(661\) −5.00000 8.66025i −0.194477 0.336845i 0.752252 0.658876i \(-0.228968\pi\)
−0.946729 + 0.322031i \(0.895634\pi\)
\(662\) 4.00000i 0.155464i
\(663\) 0 0
\(664\) 10.0000 0.388075
\(665\) 11.1603 0.669873i 0.432776 0.0259766i
\(666\) 0 0
\(667\) 0 0
\(668\) 19.0000i 0.735132i
\(669\) 0 0
\(670\) 11.1962 7.39230i 0.432545 0.285590i
\(671\) 0 0
\(672\) 0 0
\(673\) 6.92820 4.00000i 0.267063 0.154189i −0.360489 0.932763i \(-0.617390\pi\)
0.627552 + 0.778575i \(0.284057\pi\)
\(674\) −5.00000 8.66025i −0.192593 0.333581i
\(675\) 0 0
\(676\) −11.0000 6.92820i −0.423077 0.266469i
\(677\) 42.0000i 1.61419i −0.590421 0.807096i \(-0.701038\pi\)
0.590421 0.807096i \(-0.298962\pi\)
\(678\) 0 0
\(679\) −25.0000 43.3013i −0.959412 1.66175i
\(680\) −7.46410 + 4.92820i −0.286235 + 0.188988i
\(681\) 0 0
\(682\) 10.3923 + 6.00000i 0.397942 + 0.229752i
\(683\) 13.8564 + 8.00000i 0.530201 + 0.306111i 0.741098 0.671397i \(-0.234305\pi\)
−0.210898 + 0.977508i \(0.567639\pi\)
\(684\) 0 0
\(685\) 12.3205 + 18.6603i 0.470742 + 0.712972i
\(686\) 27.5000 + 47.6314i 1.04995 + 1.81858i
\(687\) 0 0
\(688\) 12.0000i 0.457496i
\(689\) −7.50000 7.79423i −0.285727 0.296936i
\(690\) 0 0
\(691\) −4.50000 7.79423i −0.171188 0.296506i 0.767647 0.640872i \(-0.221427\pi\)
−0.938835 + 0.344366i \(0.888094\pi\)
\(692\) −6.06218 + 3.50000i −0.230449 + 0.133050i
\(693\) 0 0
\(694\) −22.0000 −0.835109
\(695\) 9.33013 6.16025i 0.353912 0.233672i
\(696\) 0 0
\(697\) 40.0000i 1.51511i
\(698\) −8.66025 5.00000i −0.327795 0.189253i
\(699\) 0 0
\(700\) 22.9904 + 9.82051i 0.868955 + 0.371180i
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) 9.00000i 0.339441i
\(704\) −1.50000 2.59808i −0.0565334 0.0979187i
\(705\) 0 0
\(706\) −17.0000 + 29.4449i −0.639803 + 1.10817i
\(707\) 50.0000i 1.88044i
\(708\) 0 0
\(709\) 5.00000 8.66025i 0.187779 0.325243i −0.756730 0.653727i \(-0.773204\pi\)
0.944509 + 0.328484i \(0.106538\pi\)
\(710\) −12.0000 + 24.0000i −0.450352 + 0.900704i
\(711\) 0 0
\(712\) 0.866025 0.500000i 0.0324557 0.0187383i
\(713\) 0 0
\(714\) 0 0
\(715\) 17.7846 + 16.3923i 0.665107 + 0.613037i
\(716\) −12.0000 −0.448461
\(717\) 0 0
\(718\) −17.3205 + 10.0000i −0.646396 + 0.373197i
\(719\) −16.0000 + 27.7128i −0.596699 + 1.03351i 0.396605 + 0.917989i \(0.370188\pi\)
−0.993305 + 0.115524i \(0.963145\pi\)
\(720\) 0 0
\(721\) −17.5000 + 30.3109i −0.651734 + 1.12884i
\(722\) 15.5885 + 9.00000i 0.580142 + 0.334945i
\(723\) 0 0
\(724\) −3.00000 + 5.19615i −0.111494 + 0.193113i
\(725\) 3.92820 9.19615i 0.145890 0.341537i
\(726\) 0 0
\(727\) 37.0000i 1.37225i 0.727482 + 0.686127i \(0.240691\pi\)
−0.727482 + 0.686127i \(0.759309\pi\)
\(728\) 4.33013 + 17.5000i 0.160485 + 0.648593i
\(729\) 0 0
\(730\) 2.14359 + 35.7128i 0.0793380 + 1.32179i
\(731\) −24.0000 41.5692i −0.887672 1.53749i
\(732\) 0 0
\(733\) 45.0000i 1.66211i −0.556188 0.831056i \(-0.687737\pi\)
0.556188 0.831056i \(-0.312263\pi\)
\(734\) 12.0000 20.7846i 0.442928 0.767174i
\(735\) 0 0
\(736\) 0 0
\(737\) −15.5885 9.00000i −0.574208 0.331519i
\(738\) 0 0
\(739\) −14.5000 25.1147i −0.533391 0.923861i −0.999239 0.0389959i \(-0.987584\pi\)
0.465848 0.884865i \(-0.345749\pi\)
\(740\) −9.00000 + 18.0000i −0.330847 + 0.661693i
\(741\) 0 0
\(742\) 15.0000i 0.550667i
\(743\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(744\) 0 0
\(745\) 29.8564 19.7128i 1.09385 0.722222i
\(746\) −6.00000 −0.219676
\(747\) 0 0
\(748\) 10.3923 + 6.00000i 0.379980 + 0.219382i
\(749\) 60.0000 2.19235
\(750\) 0 0
\(751\) 15.0000 + 25.9808i 0.547358 + 0.948051i 0.998454 + 0.0555764i \(0.0176996\pi\)
−0.451097 + 0.892475i \(0.648967\pi\)
\(752\) −6.06218 + 3.50000i −0.221065 + 0.127632i
\(753\) 0 0
\(754\) 7.00000 1.73205i 0.254925 0.0630776i
\(755\) 16.0000 + 8.00000i 0.582300 + 0.291150i
\(756\) 0 0
\(757\) 21.6506 12.5000i 0.786906 0.454320i −0.0519664 0.998649i \(-0.516549\pi\)
0.838872 + 0.544329i \(0.183216\pi\)
\(758\) 16.4545 + 9.50000i 0.597654 + 0.345056i
\(759\) 0 0
\(760\) −1.23205 1.86603i −0.0446912 0.0676879i
\(761\) 13.5000 23.3827i 0.489375 0.847622i −0.510551 0.859848i \(-0.670558\pi\)
0.999925 + 0.0122260i \(0.00389175\pi\)
\(762\) 0 0
\(763\) −43.3013 25.0000i −1.56761 0.905061i
\(764\) −6.00000 10.3923i −0.217072 0.375980i
\(765\) 0 0
\(766\) −16.0000 −0.578103
\(767\) 0 0
\(768\) 0 0
\(769\) −1.00000 1.73205i −0.0360609 0.0624593i 0.847432 0.530904i \(-0.178148\pi\)
−0.883493 + 0.468445i \(0.844814\pi\)
\(770\) −2.00962 33.4808i −0.0724216 1.20656i
\(771\) 0 0
\(772\) 4.00000i 0.143963i
\(773\) 18.1865 + 10.5000i 0.654124 + 0.377659i 0.790034 0.613062i \(-0.210063\pi\)
−0.135910 + 0.990721i \(0.543396\pi\)
\(774\) 0 0
\(775\) 12.0000 + 16.0000i 0.431053 + 0.574737i
\(776\) −5.00000 + 8.66025i −0.179490 + 0.310885i
\(777\) 0 0
\(778\) 20.7846 12.0000i 0.745164 0.430221i
\(779\) −10.0000 −0.358287
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) 0 0
\(784\) 9.00000 15.5885i 0.321429 0.556731i
\(785\) 3.00000 6.00000i 0.107075 0.214149i
\(786\) 0 0
\(787\) −36.3731 21.0000i −1.29656 0.748569i −0.316752 0.948509i \(-0.602592\pi\)
−0.979808 + 0.199939i \(0.935925\pi\)
\(788\) 15.0000i 0.534353i
\(789\) 0 0
\(790\) −31.2487 + 1.87564i −1.11178 + 0.0667324i
\(791\) −10.0000 17.3205i −0.355559 0.615846i
\(792\) 0 0
\(793\) 0 0
\(794\) 23.0000 0.816239
\(795\) 0 0
\(796\) 7.00000 + 12.1244i 0.248108 + 0.429736i
\(797\) 15.5885 + 9.00000i 0.552171 + 0.318796i 0.749997 0.661441i \(-0.230055\pi\)
−0.197826 + 0.980237i \(0.563388\pi\)
\(798\) 0 0
\(799\) 14.0000 24.2487i 0.495284 0.857858i
\(800\) −0.598076 4.96410i −0.0211452 0.175507i
\(801\) 0 0
\(802\) −18.1865 10.5000i −0.642189 0.370768i
\(803\) 41.5692 24.0000i 1.46695 0.846942i
\(804\) 0 0
\(805\) 0 0
\(806\) −4.00000 + 13.8564i −0.140894 + 0.488071i
\(807\) 0 0
\(808\) 8.66025 5.00000i 0.304667 0.175899i
\(809\) −5.00000 8.66025i −0.175791 0.304478i 0.764644 0.644453i \(-0.222915\pi\)
−0.940435 + 0.339975i \(0.889582\pi\)
\(810\) 0 0
\(811\) 13.0000 0.456492 0.228246 0.973604i \(-0.426701\pi\)
0.228246 + 0.973604i \(0.426701\pi\)
\(812\) −8.66025 5.00000i −0.303915 0.175466i
\(813\) 0 0
\(814\) 27.0000 0.946350
\(815\) 9.85641 + 14.9282i 0.345255 + 0.522912i
\(816\) 0 0
\(817\) 10.3923 6.00000i 0.363581 0.209913i
\(818\) 19.0000i 0.664319i
\(819\) 0 0
\(820\) −20.0000 10.0000i −0.698430 0.349215i
\(821\) −5.00000 8.66025i −0.174501 0.302245i 0.765487 0.643451i \(-0.222498\pi\)
−0.939989 + 0.341206i \(0.889165\pi\)
\(822\) 0 0
\(823\) 35.5070 + 20.5000i 1.23770 + 0.714585i 0.968623 0.248534i \(-0.0799489\pi\)
0.269075 + 0.963119i \(0.413282\pi\)
\(824\) 7.00000 0.243857
\(825\) 0 0
\(826\) 0 0
\(827\) 2.00000i 0.0695468i −0.999395 0.0347734i \(-0.988929\pi\)
0.999395 0.0347734i \(-0.0110710\pi\)
\(828\) 0 0
\(829\) 1.00000 + 1.73205i 0.0347314 + 0.0601566i 0.882869 0.469620i \(-0.155609\pi\)
−0.848137 + 0.529777i \(0.822276\pi\)
\(830\) −1.33975 22.3205i −0.0465033 0.774756i
\(831\) 0 0
\(832\) 2.59808 2.50000i 0.0900721 0.0866719i
\(833\) 72.0000i 2.49465i
\(834\) 0 0
\(835\) 42.4090 2.54552i 1.46762 0.0880913i
\(836\) −1.50000 + 2.59808i −0.0518786 + 0.0898563i
\(837\) 0 0
\(838\) 24.2487 + 14.0000i 0.837658 + 0.483622i
\(839\) −23.0000 + 39.8372i −0.794048 + 1.37533i 0.129394 + 0.991593i \(0.458697\pi\)
−0.923442 + 0.383738i \(0.874636\pi\)
\(840\) 0 0
\(841\) 12.5000 21.6506i 0.431034 0.746574i
\(842\) 13.8564 8.00000i 0.477523 0.275698i
\(843\) 0 0
\(844\) −13.0000 −0.447478
\(845\) −13.9904 + 25.4808i −0.481284 + 0.876565i
\(846\) 0 0
\(847\) 8.66025 5.00000i 0.297570 0.171802i
\(848\) 2.59808 1.50000i 0.0892183 0.0515102i
\(849\) 0 0
\(850\) 12.0000 + 16.0000i 0.411597 + 0.548795i
\(851\) 0 0
\(852\) 0 0
\(853\) 10.0000i 0.342393i 0.985237 + 0.171197i \(0.0547634\pi\)
−0.985237 + 0.171197i \(0.945237\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −6.00000 10.3923i −0.205076 0.355202i
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) −55.0000 −1.87658 −0.938288 0.345855i \(-0.887589\pi\)
−0.938288 + 0.345855i \(0.887589\pi\)
\(860\) 26.7846 1.60770i 0.913348 0.0548219i
\(861\) 0 0
\(862\) −34.6410 20.0000i −1.17988 0.681203i
\(863\) 24.0000i 0.816970i −0.912765 0.408485i \(-0.866057\pi\)
0.912765 0.408485i \(-0.133943\pi\)
\(864\) 0 0
\(865\) 8.62436 + 13.0622i 0.293237 + 0.444127i
\(866\) 8.00000 0.271851
\(867\) 0 0
\(868\) 17.3205 10.0000i 0.587896 0.339422i
\(869\) 21.0000 + 36.3731i 0.712376 + 1.23387i
\(870\) 0 0
\(871\) 6.00000 20.7846i 0.203302 0.704260i
\(872\) 10.0000i 0.338643i
\(873\) 0 0
\(874\) 0 0
\(875\) 18.8397 52.6314i 0.636900 1.77927i
\(876\) 0 0
\(877\) −15.5885 9.00000i −0.526385 0.303908i 0.213158 0.977018i \(-0.431625\pi\)
−0.739543 + 0.673109i \(0.764958\pi\)
\(878\) 13.8564 + 8.00000i 0.467631 + 0.269987i
\(879\) 0 0
\(880\) −5.59808 + 3.69615i −0.188711 + 0.124597i
\(881\) 7.50000 + 12.9904i 0.252681 + 0.437657i 0.964263 0.264946i \(-0.0853542\pi\)
−0.711582 + 0.702603i \(0.752021\pi\)
\(882\) 0 0
\(883\) 50.0000i 1.68263i −0.540542 0.841317i \(-0.681781\pi\)
0.540542 0.841317i \(-0.318219\pi\)
\(884\) −4.00000 + 13.8564i −0.134535 + 0.466041i
\(885\) 0 0
\(886\) 12.0000 + 20.7846i 0.403148 + 0.698273i
\(887\) 28.5788 16.5000i 0.959583 0.554016i 0.0635387 0.997979i \(-0.479761\pi\)
0.896045 + 0.443964i \(0.146428\pi\)
\(888\) 0 0
\(889\) −85.0000 −2.85081
\(890\) −1.23205 1.86603i −0.0412984 0.0625493i
\(891\) 0 0
\(892\) 1.00000i 0.0334825i
\(893\) 6.06218 + 3.50000i 0.202863 + 0.117123i
\(894\) 0 0
\(895\) 1.60770 + 26.7846i 0.0537393 + 0.895311i
\(896\) −5.00000 −0.167038
\(897\) 0 0
\(898\) 13.0000i 0.433816i
\(899\) −4.00000 6.92820i −0.133407 0.231069i
\(900\) 0 0
\(901\) −6.00000 + 10.3923i −0.199889 + 0.346218i
\(902\) 30.0000i 0.998891i
\(903\) 0 0
\(904\) −2.00000 + 3.46410i −0.0665190 + 0.115214i
\(905\) 12.0000 + 6.00000i 0.398893 + 0.199447i
\(906\) 0 0
\(907\) −13.8564 + 8.00000i −0.460094 + 0.265636i −0.712084 0.702094i \(-0.752248\pi\)
0.251990 + 0.967730i \(0.418915\pi\)
\(908\) −1.73205 + 1.00000i −0.0574801 + 0.0331862i
\(909\) 0 0
\(910\) 38.4808 12.0096i 1.27562 0.398115i
\(911\) 36.0000 1.19273 0.596367 0.802712i \(-0.296610\pi\)
0.596367 + 0.802712i \(0.296610\pi\)
\(912\) 0 0
\(913\) −25.9808 + 15.0000i −0.859838 + 0.496428i
\(914\) 14.0000 24.2487i 0.463079 0.802076i
\(915\) 0 0
\(916\) 11.0000 19.0526i 0.363450 0.629514i
\(917\) −30.3109 17.5000i −1.00095 0.577901i
\(918\) 0 0
\(919\) 8.00000 13.8564i 0.263896 0.457081i −0.703378 0.710816i \(-0.748326\pi\)
0.967274 + 0.253735i \(0.0816592\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 22.0000i 0.724531i
\(923\) 10.3923 + 42.0000i 0.342067 + 1.38245i
\(924\) 0 0
\(925\) 41.3827 + 17.6769i 1.36065 + 0.581213i
\(926\) −4.00000 6.92820i −0.131448 0.227675i
\(927\) 0 0
\(928\) 2.00000i 0.0656532i
\(929\) −17.0000 + 29.4449i −0.557752 + 0.966055i 0.439932 + 0.898031i \(0.355003\pi\)
−0.997684 + 0.0680235i \(0.978331\pi\)
\(930\) 0 0
\(931\) −18.0000 −0.589926
\(932\) 0 0
\(933\) 0 0
\(934\) −17.0000 29.4449i −0.556257 0.963465i
\(935\) 12.0000 24.0000i 0.392442 0.784884i
\(936\) 0 0
\(937\) 36.0000i 1.17607i −0.808836 0.588034i \(-0.799902\pi\)
0.808836 0.588034i \(-0.200098\pi\)
\(938\) −25.9808 + 15.0000i −0.848302 + 0.489767i
\(939\) 0 0
\(940\) 8.62436 + 13.0622i 0.281295 + 0.426041i
\(941\) −52.0000 −1.69515 −0.847576 0.530674i \(-0.821939\pi\)
−0.847576 + 0.530674i \(0.821939\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) −18.0000 31.1769i −0.585230 1.01365i
\(947\) 10.3923 6.00000i 0.337705 0.194974i −0.321552 0.946892i \(-0.604204\pi\)
0.659256 + 0.751918i \(0.270871\pi\)
\(948\) 0 0
\(949\) 40.0000 + 41.5692i 1.29845 + 1.34939i
\(950\) −4.00000 + 3.00000i −0.129777 + 0.0973329i
\(951\) 0 0
\(952\) 17.3205 10.0000i 0.561361 0.324102i
\(953\) 25.9808 + 15.0000i 0.841599 + 0.485898i 0.857808 0.513971i \(-0.171826\pi\)
−0.0162081 + 0.999869i \(0.505159\pi\)
\(954\) 0 0
\(955\) −22.3923 + 14.7846i −0.724598 + 0.478419i
\(956\) 7.00000 12.1244i 0.226396 0.392130i
\(957\) 0 0
\(958\) −8.66025 5.00000i −0.279800 0.161543i
\(959\) −25.0000 43.3013i −0.807292 1.39827i
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 7.79423 + 31.5000i 0.251296 + 1.01560i
\(963\) 0 0
\(964\) 1.50000 + 2.59808i 0.0483117 + 0.0836784i
\(965\) −8.92820 + 0.535898i −0.287409 + 0.0172512i
\(966\) 0 0
\(967\) 37.0000i 1.18984i 0.803785 + 0.594920i \(0.202816\pi\)
−0.803785 + 0.594920i \(0.797184\pi\)
\(968\) −1.73205 1.00000i −0.0556702 0.0321412i
\(969\) 0 0
\(970\) 20.0000 + 10.0000i 0.642161 + 0.321081i
\(971\) −25.5000 + 44.1673i −0.818334 + 1.41740i 0.0885751 + 0.996070i \(0.471769\pi\)
−0.906909 + 0.421326i \(0.861565\pi\)
\(972\) 0 0
\(973\) −21.6506 + 12.5000i −0.694087 + 0.400732i
\(974\) −1.00000 −0.0320421
\(975\) 0 0
\(976\) 0 0
\(977\) −32.9090 + 19.0000i −1.05285 + 0.607864i −0.923446 0.383728i \(-0.874640\pi\)
−0.129405 + 0.991592i \(0.541307\pi\)
\(978\) 0 0
\(979\) −1.50000 + 2.59808i −0.0479402 + 0.0830349i
\(980\) −36.0000 18.0000i −1.14998 0.574989i
\(981\) 0 0
\(982\) 12.9904 + 7.50000i 0.414540 + 0.239335i
\(983\) 23.0000i 0.733586i −0.930303 0.366793i \(-0.880456\pi\)
0.930303 0.366793i \(-0.119544\pi\)
\(984\) 0 0
\(985\) −33.4808 + 2.00962i −1.06679 + 0.0640318i
\(986\) −4.00000 6.92820i −0.127386 0.220639i
\(987\) 0 0
\(988\) −3.46410 1.00000i −0.110208 0.0318142i
\(989\) 0 0
\(990\) 0 0
\(991\) 16.0000 + 27.7128i 0.508257 + 0.880327i 0.999954 + 0.00956046i \(0.00304324\pi\)
−0.491698 + 0.870766i \(0.663623\pi\)
\(992\) −3.46410 2.00000i −0.109985 0.0635001i
\(993\) 0 0
\(994\) 30.0000 51.9615i 0.951542 1.64812i
\(995\) 26.1244 17.2487i 0.828198 0.546821i
\(996\) 0 0
\(997\) 45.8993 + 26.5000i 1.45365 + 0.839263i 0.998686 0.0512480i \(-0.0163199\pi\)
0.454961 + 0.890511i \(0.349653\pi\)
\(998\) 20.7846 12.0000i 0.657925 0.379853i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.bp.b.289.2 4
3.2 odd 2 390.2.y.e.289.1 yes 4
5.4 even 2 inner 1170.2.bp.b.289.1 4
13.9 even 3 inner 1170.2.bp.b.919.1 4
15.2 even 4 1950.2.i.a.601.1 2
15.8 even 4 1950.2.i.x.601.1 2
15.14 odd 2 390.2.y.e.289.2 yes 4
39.35 odd 6 390.2.y.e.139.2 yes 4
65.9 even 6 inner 1170.2.bp.b.919.2 4
195.74 odd 6 390.2.y.e.139.1 4
195.113 even 12 1950.2.i.x.451.1 2
195.152 even 12 1950.2.i.a.451.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.y.e.139.1 4 195.74 odd 6
390.2.y.e.139.2 yes 4 39.35 odd 6
390.2.y.e.289.1 yes 4 3.2 odd 2
390.2.y.e.289.2 yes 4 15.14 odd 2
1170.2.bp.b.289.1 4 5.4 even 2 inner
1170.2.bp.b.289.2 4 1.1 even 1 trivial
1170.2.bp.b.919.1 4 13.9 even 3 inner
1170.2.bp.b.919.2 4 65.9 even 6 inner
1950.2.i.a.451.1 2 195.152 even 12
1950.2.i.a.601.1 2 15.2 even 4
1950.2.i.x.451.1 2 195.113 even 12
1950.2.i.x.601.1 2 15.8 even 4