Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [117,2,Mod(16,117)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(117, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("117.16");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.h (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.934249703649\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 | −2.65628 | 1.38934 | + | 1.03428i | 5.05585 | 0.324360 | + | 0.561808i | −3.69049 | − | 2.74733i | −0.773958 | − | 1.34053i | −8.11720 | 0.860545 | + | 2.87393i | −0.861592 | − | 1.49232i | ||||||
16.2 | −2.28273 | −0.409803 | − | 1.68287i | 3.21086 | −0.461458 | − | 0.799268i | 0.935470 | + | 3.84155i | −0.454185 | − | 0.786671i | −2.76408 | −2.66412 | + | 1.37929i | 1.05338 | + | 1.82452i | ||||||
16.3 | −2.00790 | −1.42488 | + | 0.984744i | 2.03168 | −1.37329 | − | 2.37860i | 2.86102 | − | 1.97727i | 1.11905 | + | 1.93825i | −0.0636126 | 1.06056 | − | 2.80628i | 2.75743 | + | 4.77600i | ||||||
16.4 | −1.20426 | 1.45393 | − | 0.941317i | −0.549753 | 1.89177 | + | 3.27665i | −1.75092 | + | 1.13359i | −0.150228 | − | 0.260203i | 3.07057 | 1.22785 | − | 2.73722i | −2.27819 | − | 3.94594i | ||||||
16.5 | −0.867378 | 0.973656 | + | 1.43248i | −1.24766 | −0.0324057 | − | 0.0561283i | −0.844528 | − | 1.24250i | 1.96209 | + | 3.39845i | 2.81694 | −1.10399 | + | 2.78948i | 0.0281080 | + | 0.0486844i | ||||||
16.6 | −0.163365 | 0.725052 | − | 1.57299i | −1.97331 | −1.55806 | − | 2.69863i | −0.118448 | + | 0.256972i | 0.0682144 | + | 0.118151i | 0.649100 | −1.94860 | − | 2.28100i | 0.254532 | + | 0.440862i | ||||||
16.7 | 0.216364 | −1.67508 | − | 0.440592i | −1.95319 | −0.702153 | − | 1.21616i | −0.362427 | − | 0.0953285i | −1.65726 | − | 2.87046i | −0.855329 | 2.61176 | + | 1.47605i | −0.151921 | − | 0.263135i | ||||||
16.8 | 0.697564 | −1.39192 | + | 1.03081i | −1.51340 | 1.44568 | + | 2.50399i | −0.970952 | + | 0.719053i | 1.58641 | + | 2.74774i | −2.45082 | 0.874877 | − | 2.86960i | 1.00846 | + | 1.74670i | ||||||
16.9 | 1.13584 | 1.69295 | + | 0.365956i | −0.709859 | −0.0587384 | − | 0.101738i | 1.92293 | + | 0.415669i | −0.424723 | − | 0.735641i | −3.07798 | 2.73215 | + | 1.23909i | −0.0667177 | − | 0.115558i | ||||||
16.10 | 1.80162 | −0.336410 | − | 1.69907i | 1.24582 | 1.73153 | + | 2.99909i | −0.606082 | − | 3.06106i | −1.62239 | − | 2.81005i | −1.35875 | −2.77366 | + | 1.14317i | 3.11954 | + | 5.40321i | ||||||
16.11 | 2.05086 | −0.160613 | + | 1.72459i | 2.20604 | −0.737604 | − | 1.27757i | −0.329395 | + | 3.53689i | −0.582175 | − | 1.00836i | 0.422561 | −2.94841 | − | 0.553983i | −1.51272 | − | 2.62012i | ||||||
16.12 | 2.27968 | −1.33623 | − | 1.10203i | 3.19692 | −1.46964 | − | 2.54549i | −3.04618 | − | 2.51228i | 2.42914 | + | 4.20740i | 2.72859 | 0.571039 | + | 2.94515i | −3.35030 | − | 5.80289i | ||||||
22.1 | −2.65628 | 1.38934 | − | 1.03428i | 5.05585 | 0.324360 | − | 0.561808i | −3.69049 | + | 2.74733i | −0.773958 | + | 1.34053i | −8.11720 | 0.860545 | − | 2.87393i | −0.861592 | + | 1.49232i | ||||||
22.2 | −2.28273 | −0.409803 | + | 1.68287i | 3.21086 | −0.461458 | + | 0.799268i | 0.935470 | − | 3.84155i | −0.454185 | + | 0.786671i | −2.76408 | −2.66412 | − | 1.37929i | 1.05338 | − | 1.82452i | ||||||
22.3 | −2.00790 | −1.42488 | − | 0.984744i | 2.03168 | −1.37329 | + | 2.37860i | 2.86102 | + | 1.97727i | 1.11905 | − | 1.93825i | −0.0636126 | 1.06056 | + | 2.80628i | 2.75743 | − | 4.77600i | ||||||
22.4 | −1.20426 | 1.45393 | + | 0.941317i | −0.549753 | 1.89177 | − | 3.27665i | −1.75092 | − | 1.13359i | −0.150228 | + | 0.260203i | 3.07057 | 1.22785 | + | 2.73722i | −2.27819 | + | 3.94594i | ||||||
22.5 | −0.867378 | 0.973656 | − | 1.43248i | −1.24766 | −0.0324057 | + | 0.0561283i | −0.844528 | + | 1.24250i | 1.96209 | − | 3.39845i | 2.81694 | −1.10399 | − | 2.78948i | 0.0281080 | − | 0.0486844i | ||||||
22.6 | −0.163365 | 0.725052 | + | 1.57299i | −1.97331 | −1.55806 | + | 2.69863i | −0.118448 | − | 0.256972i | 0.0682144 | − | 0.118151i | 0.649100 | −1.94860 | + | 2.28100i | 0.254532 | − | 0.440862i | ||||||
22.7 | 0.216364 | −1.67508 | + | 0.440592i | −1.95319 | −0.702153 | + | 1.21616i | −0.362427 | + | 0.0953285i | −1.65726 | + | 2.87046i | −0.855329 | 2.61176 | − | 1.47605i | −0.151921 | + | 0.263135i | ||||||
22.8 | 0.697564 | −1.39192 | − | 1.03081i | −1.51340 | 1.44568 | − | 2.50399i | −0.970952 | − | 0.719053i | 1.58641 | − | 2.74774i | −2.45082 | 0.874877 | + | 2.86960i | 1.00846 | − | 1.74670i | ||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.h | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 117.2.h.a | yes | 24 |
3.b | odd | 2 | 1 | 351.2.h.a | 24 | ||
9.c | even | 3 | 1 | 117.2.f.a | ✓ | 24 | |
9.d | odd | 6 | 1 | 351.2.f.a | 24 | ||
13.c | even | 3 | 1 | 117.2.f.a | ✓ | 24 | |
39.i | odd | 6 | 1 | 351.2.f.a | 24 | ||
117.h | even | 3 | 1 | inner | 117.2.h.a | yes | 24 |
117.k | odd | 6 | 1 | 351.2.h.a | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.2.f.a | ✓ | 24 | 9.c | even | 3 | 1 | |
117.2.f.a | ✓ | 24 | 13.c | even | 3 | 1 | |
117.2.h.a | yes | 24 | 1.a | even | 1 | 1 | trivial |
117.2.h.a | yes | 24 | 117.h | even | 3 | 1 | inner |
351.2.f.a | 24 | 9.d | odd | 6 | 1 | ||
351.2.f.a | 24 | 39.i | odd | 6 | 1 | ||
351.2.h.a | 24 | 3.b | odd | 2 | 1 | ||
351.2.h.a | 24 | 117.k | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(117, [\chi])\).