Properties

Label 117.2.h
Level $117$
Weight $2$
Character orbit 117.h
Rep. character $\chi_{117}(16,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $24$
Newform subspaces $1$
Sturm bound $28$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 117.h (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 117 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 1 \)
Sturm bound: \(28\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(117, [\chi])\).

Total New Old
Modular forms 32 32 0
Cusp forms 24 24 0
Eisenstein series 8 8 0

Trace form

\( 24 q - 2 q^{2} - q^{3} + 18 q^{4} - 2 q^{5} - 12 q^{6} + 3 q^{7} - 18 q^{8} - 3 q^{9} + 6 q^{11} - 3 q^{12} + 2 q^{14} + 11 q^{15} + 6 q^{16} + 6 q^{17} - 8 q^{18} - 3 q^{19} - 11 q^{20} - 25 q^{21} - 18 q^{22}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(117, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
117.2.h.a 117.h 117.h $24$ $0.934$ None 117.2.f.a \(-2\) \(-1\) \(-2\) \(3\) $\mathrm{SU}(2)[C_{3}]$