Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [117,2,Mod(61,117)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(117, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("117.61");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.f (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.934249703649\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
61.1 | −1.13984 | − | 1.97426i | −0.286273 | + | 1.70823i | −1.59846 | + | 2.76861i | −1.46964 | − | 2.54549i | 3.69879 | − | 1.38193i | −4.85829 | 2.72859 | −2.83610 | − | 0.978041i | −3.35030 | + | 5.80289i | ||||
61.2 | −1.02543 | − | 1.77610i | 1.57384 | − | 0.723199i | −1.10302 | + | 1.91049i | −0.737604 | − | 1.27757i | −2.89834 | − | 2.05371i | 1.16435 | 0.422561 | 1.95397 | − | 2.27640i | −1.51272 | + | 2.62012i | ||||
61.3 | −0.900808 | − | 1.56024i | −1.30323 | + | 1.14087i | −0.622909 | + | 1.07891i | 1.73153 | + | 2.99909i | 2.95400 | + | 1.00565i | 3.24477 | −1.35875 | 0.396816 | − | 2.97364i | 3.11954 | − | 5.40321i | ||||
61.4 | −0.567922 | − | 0.983670i | −0.529547 | − | 1.64911i | 0.354929 | − | 0.614756i | −0.0587384 | − | 0.101738i | −1.32144 | + | 1.45747i | 0.849445 | −3.07798 | −2.43916 | + | 1.74657i | −0.0667177 | + | 0.115558i | ||||
61.5 | −0.348782 | − | 0.604108i | 1.58866 | + | 0.690034i | 0.756702 | − | 1.31065i | 1.44568 | + | 2.50399i | −0.137242 | − | 1.20040i | −3.17282 | −2.45082 | 2.04771 | + | 2.19246i | 1.00846 | − | 1.74670i | ||||
61.6 | −0.108182 | − | 0.187377i | 0.455974 | + | 1.67095i | 0.976593 | − | 1.69151i | −0.702153 | − | 1.21616i | 0.263770 | − | 0.266207i | 3.31452 | −0.855329 | −2.58418 | + | 1.52382i | −0.151921 | + | 0.263135i | ||||
61.7 | 0.0816825 | + | 0.141478i | −1.72478 | + | 0.158582i | 0.986656 | − | 1.70894i | −1.55806 | − | 2.69863i | −0.163320 | − | 0.231065i | −0.136429 | 0.649100 | 2.94970 | − | 0.547036i | 0.254532 | − | 0.440862i | ||||
61.8 | 0.433689 | + | 0.751171i | 0.753735 | − | 1.55945i | 0.623828 | − | 1.08050i | −0.0324057 | − | 0.0561283i | 1.49830 | − | 0.110132i | −3.92419 | 2.81694 | −1.86377 | − | 2.35082i | 0.0281080 | − | 0.0486844i | ||||
61.9 | 0.602131 | + | 1.04292i | −1.54217 | − | 0.788485i | 0.274876 | − | 0.476100i | 1.89177 | + | 3.27665i | −0.106261 | − | 2.08313i | 0.300456 | 3.07057 | 1.75658 | + | 2.43196i | −2.27819 | + | 3.94594i | ||||
61.10 | 1.00395 | + | 1.73890i | 1.56525 | + | 0.741609i | −1.01584 | + | 1.75949i | −1.37329 | − | 2.37860i | 0.281858 | + | 3.46635i | −2.23810 | −0.0636126 | 1.90003 | + | 2.32161i | 2.75743 | − | 4.77600i | ||||
61.11 | 1.14137 | + | 1.97690i | −1.25251 | + | 1.19634i | −1.60543 | + | 2.78069i | −0.461458 | − | 0.799268i | −3.79461 | − | 1.11063i | 0.908370 | −2.76408 | 0.137559 | − | 2.99684i | 1.05338 | − | 1.82452i | ||||
61.12 | 1.32814 | + | 2.30041i | 0.201038 | − | 1.72034i | −2.52792 | + | 4.37849i | 0.324360 | + | 0.561808i | 4.22450 | − | 1.82239i | 1.54792 | −8.11720 | −2.91917 | − | 0.691710i | −0.861592 | + | 1.49232i | ||||
94.1 | −1.13984 | + | 1.97426i | −0.286273 | − | 1.70823i | −1.59846 | − | 2.76861i | −1.46964 | + | 2.54549i | 3.69879 | + | 1.38193i | −4.85829 | 2.72859 | −2.83610 | + | 0.978041i | −3.35030 | − | 5.80289i | ||||
94.2 | −1.02543 | + | 1.77610i | 1.57384 | + | 0.723199i | −1.10302 | − | 1.91049i | −0.737604 | + | 1.27757i | −2.89834 | + | 2.05371i | 1.16435 | 0.422561 | 1.95397 | + | 2.27640i | −1.51272 | − | 2.62012i | ||||
94.3 | −0.900808 | + | 1.56024i | −1.30323 | − | 1.14087i | −0.622909 | − | 1.07891i | 1.73153 | − | 2.99909i | 2.95400 | − | 1.00565i | 3.24477 | −1.35875 | 0.396816 | + | 2.97364i | 3.11954 | + | 5.40321i | ||||
94.4 | −0.567922 | + | 0.983670i | −0.529547 | + | 1.64911i | 0.354929 | + | 0.614756i | −0.0587384 | + | 0.101738i | −1.32144 | − | 1.45747i | 0.849445 | −3.07798 | −2.43916 | − | 1.74657i | −0.0667177 | − | 0.115558i | ||||
94.5 | −0.348782 | + | 0.604108i | 1.58866 | − | 0.690034i | 0.756702 | + | 1.31065i | 1.44568 | − | 2.50399i | −0.137242 | + | 1.20040i | −3.17282 | −2.45082 | 2.04771 | − | 2.19246i | 1.00846 | + | 1.74670i | ||||
94.6 | −0.108182 | + | 0.187377i | 0.455974 | − | 1.67095i | 0.976593 | + | 1.69151i | −0.702153 | + | 1.21616i | 0.263770 | + | 0.266207i | 3.31452 | −0.855329 | −2.58418 | − | 1.52382i | −0.151921 | − | 0.263135i | ||||
94.7 | 0.0816825 | − | 0.141478i | −1.72478 | − | 0.158582i | 0.986656 | + | 1.70894i | −1.55806 | + | 2.69863i | −0.163320 | + | 0.231065i | −0.136429 | 0.649100 | 2.94970 | + | 0.547036i | 0.254532 | + | 0.440862i | ||||
94.8 | 0.433689 | − | 0.751171i | 0.753735 | + | 1.55945i | 0.623828 | + | 1.08050i | −0.0324057 | + | 0.0561283i | 1.49830 | + | 0.110132i | −3.92419 | 2.81694 | −1.86377 | + | 2.35082i | 0.0281080 | + | 0.0486844i | ||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.f | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 117.2.f.a | ✓ | 24 |
3.b | odd | 2 | 1 | 351.2.f.a | 24 | ||
9.c | even | 3 | 1 | 117.2.h.a | yes | 24 | |
9.d | odd | 6 | 1 | 351.2.h.a | 24 | ||
13.c | even | 3 | 1 | 117.2.h.a | yes | 24 | |
39.i | odd | 6 | 1 | 351.2.h.a | 24 | ||
117.f | even | 3 | 1 | inner | 117.2.f.a | ✓ | 24 |
117.u | odd | 6 | 1 | 351.2.f.a | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.2.f.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
117.2.f.a | ✓ | 24 | 117.f | even | 3 | 1 | inner |
117.2.h.a | yes | 24 | 9.c | even | 3 | 1 | |
117.2.h.a | yes | 24 | 13.c | even | 3 | 1 | |
351.2.f.a | 24 | 3.b | odd | 2 | 1 | ||
351.2.f.a | 24 | 117.u | odd | 6 | 1 | ||
351.2.h.a | 24 | 9.d | odd | 6 | 1 | ||
351.2.h.a | 24 | 39.i | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(117, [\chi])\).