Properties

Label 117.2.f.a.94.9
Level $117$
Weight $2$
Character 117.94
Analytic conductor $0.934$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [117,2,Mod(61,117)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(117, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("117.61"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 117.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.934249703649\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 94.9
Character \(\chi\) \(=\) 117.94
Dual form 117.2.f.a.61.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.602131 - 1.04292i) q^{2} +(-1.54217 + 0.788485i) q^{3} +(0.274876 + 0.476100i) q^{4} +(1.89177 - 3.27665i) q^{5} +(-0.106261 + 2.08313i) q^{6} +0.300456 q^{7} +3.07057 q^{8} +(1.75658 - 2.43196i) q^{9} +(-2.27819 - 3.94594i) q^{10} +(-0.642309 + 1.11251i) q^{11} +(-0.799304 - 0.517492i) q^{12} +(-3.31272 + 1.42335i) q^{13} +(0.180914 - 0.313352i) q^{14} +(-0.333851 + 6.54478i) q^{15} +(1.29913 - 2.25016i) q^{16} +(-2.63848 + 4.56998i) q^{17} +(-1.47865 - 3.29634i) q^{18} +(-0.829906 + 1.43744i) q^{19} +2.08001 q^{20} +(-0.463355 + 0.236905i) q^{21} +(0.773509 + 1.33976i) q^{22} -3.34798 q^{23} +(-4.73535 + 2.42110i) q^{24} +(-4.65760 - 8.06721i) q^{25} +(-0.510251 + 4.31194i) q^{26} +(-0.791390 + 5.13553i) q^{27} +(0.0825883 + 0.143047i) q^{28} +(4.81620 - 8.34190i) q^{29} +(6.62467 + 4.28900i) q^{30} +(-3.29700 + 5.71056i) q^{31} +(1.50607 + 2.60860i) q^{32} +(0.113352 - 2.22214i) q^{33} +(3.17742 + 5.50346i) q^{34} +(0.568394 - 0.984488i) q^{35} +(1.64070 + 0.167821i) q^{36} +(1.97702 + 3.42430i) q^{37} +(0.999424 + 1.73105i) q^{38} +(3.98649 - 4.80707i) q^{39} +(5.80882 - 10.0612i) q^{40} +2.86737 q^{41} +(-0.0319268 + 0.625890i) q^{42} -0.0208439 q^{43} -0.706223 q^{44} +(-4.64561 - 10.3564i) q^{45} +(-2.01592 + 3.49168i) q^{46} +(0.954216 + 1.65275i) q^{47} +(-0.229265 + 4.49449i) q^{48} -6.90973 q^{49} -11.2180 q^{50} +(0.465627 - 9.12810i) q^{51} +(-1.58824 - 1.18594i) q^{52} -7.15248 q^{53} +(4.87944 + 3.91762i) q^{54} +(2.43021 + 4.20924i) q^{55} +0.922571 q^{56} +(0.146458 - 2.87114i) q^{57} +(-5.79997 - 10.0458i) q^{58} +(-4.36913 - 7.56755i) q^{59} +(-3.20774 + 1.64006i) q^{60} +5.13678 q^{61} +(3.97045 + 6.87702i) q^{62} +(0.527776 - 0.730696i) q^{63} +8.82395 q^{64} +(-1.60310 + 13.5472i) q^{65} +(-2.24926 - 1.45623i) q^{66} +8.31140 q^{67} -2.90103 q^{68} +(5.16316 - 2.63983i) q^{69} +(-0.684496 - 1.18558i) q^{70} +(4.64070 - 8.03792i) q^{71} +(5.39371 - 7.46750i) q^{72} -4.69504 q^{73} +4.76171 q^{74} +(13.5437 + 8.76856i) q^{75} -0.912486 q^{76} +(-0.192986 + 0.334261i) q^{77} +(-2.61301 - 7.05208i) q^{78} +(6.65302 + 11.5234i) q^{79} +(-4.91533 - 8.51360i) q^{80} +(-2.82883 - 8.54387i) q^{81} +(1.72653 - 2.99044i) q^{82} +(-6.45522 - 11.1808i) q^{83} +(-0.240156 - 0.155483i) q^{84} +(9.98281 + 17.2907i) q^{85} +(-0.0125508 + 0.0217386i) q^{86} +(-0.849940 + 16.6621i) q^{87} +(-1.97226 + 3.41605i) q^{88} +(3.19907 + 5.54096i) q^{89} +(-13.5982 - 1.39091i) q^{90} +(-0.995325 + 0.427653i) q^{91} +(-0.920281 - 1.59397i) q^{92} +(0.581838 - 11.4063i) q^{93} +2.29825 q^{94} +(3.13998 + 5.43861i) q^{95} +(-4.37946 - 2.83539i) q^{96} -3.76391 q^{97} +(-4.16056 + 7.20630i) q^{98} +(1.57731 + 3.51629i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + q^{2} - q^{3} - 9 q^{4} - 2 q^{5} + 9 q^{6} - 6 q^{7} - 18 q^{8} - 3 q^{9} - 3 q^{11} - 3 q^{12} + 2 q^{14} + 8 q^{15} - 3 q^{16} + 6 q^{17} - 8 q^{18} - 3 q^{19} + 22 q^{20} - 25 q^{21} + 9 q^{22}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.602131 1.04292i 0.425771 0.737457i −0.570721 0.821144i \(-0.693336\pi\)
0.996492 + 0.0836870i \(0.0266696\pi\)
\(3\) −1.54217 + 0.788485i −0.890373 + 0.455232i
\(4\) 0.274876 + 0.476100i 0.137438 + 0.238050i
\(5\) 1.89177 3.27665i 0.846026 1.46536i −0.0387007 0.999251i \(-0.512322\pi\)
0.884727 0.466110i \(-0.154345\pi\)
\(6\) −0.106261 + 2.08313i −0.0433810 + 0.850436i
\(7\) 0.300456 0.113562 0.0567809 0.998387i \(-0.481916\pi\)
0.0567809 + 0.998387i \(0.481916\pi\)
\(8\) 3.07057 1.08561
\(9\) 1.75658 2.43196i 0.585528 0.810652i
\(10\) −2.27819 3.94594i −0.720427 1.24782i
\(11\) −0.642309 + 1.11251i −0.193664 + 0.335435i −0.946462 0.322816i \(-0.895370\pi\)
0.752798 + 0.658252i \(0.228704\pi\)
\(12\) −0.799304 0.517492i −0.230739 0.149387i
\(13\) −3.31272 + 1.42335i −0.918782 + 0.394765i
\(14\) 0.180914 0.313352i 0.0483513 0.0837469i
\(15\) −0.333851 + 6.54478i −0.0861999 + 1.68986i
\(16\) 1.29913 2.25016i 0.324783 0.562541i
\(17\) −2.63848 + 4.56998i −0.639926 + 1.10838i 0.345523 + 0.938410i \(0.387702\pi\)
−0.985449 + 0.169974i \(0.945632\pi\)
\(18\) −1.47865 3.29634i −0.348520 0.776954i
\(19\) −0.829906 + 1.43744i −0.190393 + 0.329771i −0.945381 0.325968i \(-0.894310\pi\)
0.754987 + 0.655739i \(0.227643\pi\)
\(20\) 2.08001 0.465105
\(21\) −0.463355 + 0.236905i −0.101112 + 0.0516969i
\(22\) 0.773509 + 1.33976i 0.164913 + 0.285637i
\(23\) −3.34798 −0.698102 −0.349051 0.937104i \(-0.613496\pi\)
−0.349051 + 0.937104i \(0.613496\pi\)
\(24\) −4.73535 + 2.42110i −0.966598 + 0.494205i
\(25\) −4.65760 8.06721i −0.931521 1.61344i
\(26\) −0.510251 + 4.31194i −0.100068 + 0.845642i
\(27\) −0.791390 + 5.13553i −0.152303 + 0.988334i
\(28\) 0.0825883 + 0.143047i 0.0156077 + 0.0270334i
\(29\) 4.81620 8.34190i 0.894346 1.54905i 0.0597340 0.998214i \(-0.480975\pi\)
0.834612 0.550838i \(-0.185692\pi\)
\(30\) 6.62467 + 4.28900i 1.20949 + 0.783060i
\(31\) −3.29700 + 5.71056i −0.592158 + 1.02565i 0.401783 + 0.915735i \(0.368391\pi\)
−0.993941 + 0.109913i \(0.964943\pi\)
\(32\) 1.50607 + 2.60860i 0.266239 + 0.461139i
\(33\) 0.113352 2.22214i 0.0197320 0.386824i
\(34\) 3.17742 + 5.50346i 0.544924 + 0.943836i
\(35\) 0.568394 0.984488i 0.0960762 0.166409i
\(36\) 1.64070 + 0.167821i 0.273450 + 0.0279702i
\(37\) 1.97702 + 3.42430i 0.325020 + 0.562952i 0.981517 0.191378i \(-0.0612955\pi\)
−0.656496 + 0.754329i \(0.727962\pi\)
\(38\) 0.999424 + 1.73105i 0.162128 + 0.280814i
\(39\) 3.98649 4.80707i 0.638349 0.769747i
\(40\) 5.80882 10.0612i 0.918455 1.59081i
\(41\) 2.86737 0.447807 0.223904 0.974611i \(-0.428120\pi\)
0.223904 + 0.974611i \(0.428120\pi\)
\(42\) −0.0319268 + 0.625890i −0.00492642 + 0.0965770i
\(43\) −0.0208439 −0.00317867 −0.00158933 0.999999i \(-0.500506\pi\)
−0.00158933 + 0.999999i \(0.500506\pi\)
\(44\) −0.706223 −0.106467
\(45\) −4.64561 10.3564i −0.692526 1.54384i
\(46\) −2.01592 + 3.49168i −0.297232 + 0.514821i
\(47\) 0.954216 + 1.65275i 0.139187 + 0.241079i 0.927189 0.374594i \(-0.122218\pi\)
−0.788002 + 0.615672i \(0.788884\pi\)
\(48\) −0.229265 + 4.49449i −0.0330915 + 0.648723i
\(49\) −6.90973 −0.987104
\(50\) −11.2180 −1.58646
\(51\) 0.465627 9.12810i 0.0652008 1.27819i
\(52\) −1.58824 1.18594i −0.220250 0.164460i
\(53\) −7.15248 −0.982469 −0.491235 0.871027i \(-0.663454\pi\)
−0.491235 + 0.871027i \(0.663454\pi\)
\(54\) 4.87944 + 3.91762i 0.664007 + 0.533121i
\(55\) 2.43021 + 4.20924i 0.327689 + 0.567574i
\(56\) 0.922571 0.123284
\(57\) 0.146458 2.87114i 0.0193988 0.380292i
\(58\) −5.79997 10.0458i −0.761573 1.31908i
\(59\) −4.36913 7.56755i −0.568812 0.985211i −0.996684 0.0813719i \(-0.974070\pi\)
0.427872 0.903839i \(-0.359263\pi\)
\(60\) −3.20774 + 1.64006i −0.414117 + 0.211731i
\(61\) 5.13678 0.657697 0.328849 0.944383i \(-0.393339\pi\)
0.328849 + 0.944383i \(0.393339\pi\)
\(62\) 3.97045 + 6.87702i 0.504247 + 0.873382i
\(63\) 0.527776 0.730696i 0.0664935 0.0920591i
\(64\) 8.82395 1.10299
\(65\) −1.60310 + 13.5472i −0.198841 + 1.68033i
\(66\) −2.24926 1.45623i −0.276865 0.179250i
\(67\) 8.31140 1.01540 0.507700 0.861534i \(-0.330496\pi\)
0.507700 + 0.861534i \(0.330496\pi\)
\(68\) −2.90103 −0.351801
\(69\) 5.16316 2.63983i 0.621572 0.317799i
\(70\) −0.684496 1.18558i −0.0818129 0.141704i
\(71\) 4.64070 8.03792i 0.550749 0.953926i −0.447471 0.894298i \(-0.647675\pi\)
0.998221 0.0596277i \(-0.0189913\pi\)
\(72\) 5.39371 7.46750i 0.635655 0.880053i
\(73\) −4.69504 −0.549512 −0.274756 0.961514i \(-0.588597\pi\)
−0.274756 + 0.961514i \(0.588597\pi\)
\(74\) 4.76171 0.553537
\(75\) 13.5437 + 8.76856i 1.56389 + 1.01251i
\(76\) −0.912486 −0.104669
\(77\) −0.192986 + 0.334261i −0.0219928 + 0.0380926i
\(78\) −2.61301 7.05208i −0.295865 0.798491i
\(79\) 6.65302 + 11.5234i 0.748523 + 1.29648i 0.948530 + 0.316686i \(0.102570\pi\)
−0.200007 + 0.979794i \(0.564097\pi\)
\(80\) −4.91533 8.51360i −0.549550 0.951849i
\(81\) −2.82883 8.54387i −0.314315 0.949319i
\(82\) 1.72653 2.99044i 0.190663 0.330239i
\(83\) −6.45522 11.1808i −0.708552 1.22725i −0.965394 0.260795i \(-0.916015\pi\)
0.256842 0.966453i \(-0.417318\pi\)
\(84\) −0.240156 0.155483i −0.0262031 0.0169646i
\(85\) 9.98281 + 17.2907i 1.08279 + 1.87544i
\(86\) −0.0125508 + 0.0217386i −0.00135339 + 0.00234413i
\(87\) −0.849940 + 16.6621i −0.0911231 + 1.78637i
\(88\) −1.97226 + 3.41605i −0.210243 + 0.364152i
\(89\) 3.19907 + 5.54096i 0.339101 + 0.587340i 0.984264 0.176705i \(-0.0565438\pi\)
−0.645163 + 0.764045i \(0.723210\pi\)
\(90\) −13.5982 1.39091i −1.43337 0.146615i
\(91\) −0.995325 + 0.427653i −0.104338 + 0.0448302i
\(92\) −0.920281 1.59397i −0.0959459 0.166183i
\(93\) 0.581838 11.4063i 0.0603338 1.18278i
\(94\) 2.29825 0.237047
\(95\) 3.13998 + 5.43861i 0.322156 + 0.557990i
\(96\) −4.37946 2.83539i −0.446977 0.289385i
\(97\) −3.76391 −0.382167 −0.191083 0.981574i \(-0.561200\pi\)
−0.191083 + 0.981574i \(0.561200\pi\)
\(98\) −4.16056 + 7.20630i −0.420280 + 0.727946i
\(99\) 1.57731 + 3.51629i 0.158526 + 0.353400i
\(100\) 2.56053 4.43497i 0.256053 0.443497i
\(101\) 2.49579 4.32284i 0.248341 0.430139i −0.714725 0.699406i \(-0.753448\pi\)
0.963066 + 0.269267i \(0.0867814\pi\)
\(102\) −9.23953 5.98193i −0.914849 0.592299i
\(103\) 2.16757 3.75434i 0.213577 0.369926i −0.739254 0.673426i \(-0.764822\pi\)
0.952831 + 0.303500i \(0.0981553\pi\)
\(104\) −10.1719 + 4.37048i −0.997440 + 0.428561i
\(105\) −0.100308 + 1.96642i −0.00978901 + 0.191903i
\(106\) −4.30673 + 7.45948i −0.418307 + 0.724529i
\(107\) 1.57507 + 2.72809i 0.152267 + 0.263735i 0.932061 0.362302i \(-0.118009\pi\)
−0.779793 + 0.626037i \(0.784676\pi\)
\(108\) −2.66256 + 1.03486i −0.256205 + 0.0995791i
\(109\) 14.2728 1.36708 0.683542 0.729911i \(-0.260439\pi\)
0.683542 + 0.729911i \(0.260439\pi\)
\(110\) 5.85321 0.558082
\(111\) −5.74892 3.72201i −0.545663 0.353277i
\(112\) 0.390332 0.676076i 0.0368829 0.0638831i
\(113\) −2.63887 4.57066i −0.248244 0.429972i 0.714794 0.699335i \(-0.246520\pi\)
−0.963039 + 0.269363i \(0.913187\pi\)
\(114\) −2.90619 1.88155i −0.272190 0.176223i
\(115\) −6.33362 + 10.9702i −0.590613 + 1.02297i
\(116\) 5.29544 0.491669
\(117\) −2.35754 + 10.5566i −0.217955 + 0.975959i
\(118\) −10.5232 −0.968735
\(119\) −0.792748 + 1.37308i −0.0726711 + 0.125870i
\(120\) −1.02511 + 20.0962i −0.0935796 + 1.83453i
\(121\) 4.67488 + 8.09713i 0.424989 + 0.736102i
\(122\) 3.09301 5.35726i 0.280028 0.485023i
\(123\) −4.42197 + 2.26087i −0.398716 + 0.203856i
\(124\) −3.62507 −0.325540
\(125\) −16.3268 −1.46031
\(126\) −0.444268 0.990404i −0.0395786 0.0882322i
\(127\) −5.36180 9.28691i −0.475783 0.824080i 0.523832 0.851821i \(-0.324502\pi\)
−0.999615 + 0.0277416i \(0.991168\pi\)
\(128\) 2.30103 3.98549i 0.203384 0.352271i
\(129\) 0.0321449 0.0164351i 0.00283020 0.00144703i
\(130\) 13.1634 + 9.82913i 1.15451 + 0.862071i
\(131\) 1.67220 2.89633i 0.146101 0.253054i −0.783682 0.621162i \(-0.786661\pi\)
0.929783 + 0.368108i \(0.119994\pi\)
\(132\) 1.08912 0.556846i 0.0947954 0.0484672i
\(133\) −0.249350 + 0.431887i −0.0216214 + 0.0374494i
\(134\) 5.00455 8.66814i 0.432327 0.748813i
\(135\) 15.3302 + 12.3084i 1.31941 + 1.05934i
\(136\) −8.10165 + 14.0325i −0.694710 + 1.20327i
\(137\) −15.7557 −1.34610 −0.673051 0.739596i \(-0.735016\pi\)
−0.673051 + 0.739596i \(0.735016\pi\)
\(138\) 0.355761 6.97430i 0.0302844 0.593692i
\(139\) −10.7754 18.6635i −0.913956 1.58302i −0.808422 0.588603i \(-0.799678\pi\)
−0.105534 0.994416i \(-0.533655\pi\)
\(140\) 0.624953 0.0528182
\(141\) −2.77473 1.79644i −0.233675 0.151288i
\(142\) −5.58862 9.67977i −0.468986 0.812308i
\(143\) 0.544298 4.59967i 0.0455165 0.384643i
\(144\) −3.19027 7.11204i −0.265856 0.592670i
\(145\) −18.2223 31.5620i −1.51328 2.62108i
\(146\) −2.82703 + 4.89656i −0.233966 + 0.405242i
\(147\) 10.6560 5.44821i 0.878890 0.449361i
\(148\) −1.08687 + 1.88252i −0.0893405 + 0.154742i
\(149\) 6.43686 + 11.1490i 0.527328 + 0.913359i 0.999493 + 0.0318483i \(0.0101393\pi\)
−0.472165 + 0.881510i \(0.656527\pi\)
\(150\) 17.3000 8.84519i 1.41254 0.722206i
\(151\) −6.21526 10.7652i −0.505791 0.876056i −0.999978 0.00669978i \(-0.997867\pi\)
0.494187 0.869356i \(-0.335466\pi\)
\(152\) −2.54828 + 4.41376i −0.206693 + 0.358003i
\(153\) 6.47929 + 14.4442i 0.523820 + 1.16775i
\(154\) 0.232405 + 0.402538i 0.0187278 + 0.0324374i
\(155\) 12.4743 + 21.6062i 1.00196 + 1.73545i
\(156\) 3.38444 + 0.576616i 0.270972 + 0.0461663i
\(157\) 5.64417 9.77599i 0.450454 0.780209i −0.547960 0.836504i \(-0.684596\pi\)
0.998414 + 0.0562954i \(0.0179288\pi\)
\(158\) 16.0240 1.27480
\(159\) 11.0304 5.63963i 0.874764 0.447251i
\(160\) 11.3966 0.900980
\(161\) −1.00592 −0.0792777
\(162\) −10.6139 2.19428i −0.833908 0.172399i
\(163\) −3.30893 + 5.73124i −0.259176 + 0.448905i −0.966021 0.258462i \(-0.916784\pi\)
0.706846 + 0.707368i \(0.250118\pi\)
\(164\) 0.788171 + 1.36515i 0.0615458 + 0.106601i
\(165\) −7.06672 4.57519i −0.550143 0.356178i
\(166\) −15.5476 −1.20672
\(167\) 10.8544 0.839942 0.419971 0.907538i \(-0.362040\pi\)
0.419971 + 0.907538i \(0.362040\pi\)
\(168\) −1.42276 + 0.727434i −0.109769 + 0.0561227i
\(169\) 8.94817 9.43028i 0.688321 0.725406i
\(170\) 24.0438 1.84408
\(171\) 2.03799 + 4.54327i 0.155849 + 0.347433i
\(172\) −0.00572950 0.00992379i −0.000436871 0.000756682i
\(173\) 0.207102 0.0157457 0.00787286 0.999969i \(-0.497494\pi\)
0.00787286 + 0.999969i \(0.497494\pi\)
\(174\) 16.8655 + 10.9192i 1.27857 + 0.827784i
\(175\) −1.39941 2.42384i −0.105785 0.183225i
\(176\) 1.66889 + 2.89060i 0.125797 + 0.217887i
\(177\) 12.7048 + 8.22547i 0.954955 + 0.618264i
\(178\) 7.70504 0.577518
\(179\) −4.98833 8.64004i −0.372845 0.645787i 0.617157 0.786840i \(-0.288285\pi\)
−0.990002 + 0.141053i \(0.954951\pi\)
\(180\) 3.65372 5.05851i 0.272332 0.377039i
\(181\) 13.9599 1.03763 0.518814 0.854887i \(-0.326374\pi\)
0.518814 + 0.854887i \(0.326374\pi\)
\(182\) −0.153308 + 1.29555i −0.0113639 + 0.0960325i
\(183\) −7.92179 + 4.05027i −0.585596 + 0.299405i
\(184\) −10.2802 −0.757868
\(185\) 14.9603 1.09990
\(186\) −11.5455 7.47490i −0.846559 0.548086i
\(187\) −3.38944 5.87069i −0.247861 0.429307i
\(188\) −0.524583 + 0.908605i −0.0382592 + 0.0662668i
\(189\) −0.237778 + 1.54300i −0.0172958 + 0.112237i
\(190\) 7.56273 0.548658
\(191\) −13.8793 −1.00427 −0.502134 0.864790i \(-0.667451\pi\)
−0.502134 + 0.864790i \(0.667451\pi\)
\(192\) −13.6080 + 6.95755i −0.982075 + 0.502118i
\(193\) 8.04222 0.578892 0.289446 0.957194i \(-0.406529\pi\)
0.289446 + 0.957194i \(0.406529\pi\)
\(194\) −2.26637 + 3.92546i −0.162716 + 0.281832i
\(195\) −8.20954 22.1562i −0.587897 1.58664i
\(196\) −1.89932 3.28972i −0.135666 0.234980i
\(197\) 1.50401 + 2.60502i 0.107156 + 0.185600i 0.914617 0.404321i \(-0.132492\pi\)
−0.807461 + 0.589921i \(0.799159\pi\)
\(198\) 4.61696 + 0.472254i 0.328113 + 0.0335616i
\(199\) −10.4398 + 18.0823i −0.740057 + 1.28182i 0.212411 + 0.977180i \(0.431868\pi\)
−0.952469 + 0.304637i \(0.901465\pi\)
\(200\) −14.3015 24.7709i −1.01127 1.75157i
\(201\) −12.8176 + 6.55341i −0.904084 + 0.462242i
\(202\) −3.00559 5.20583i −0.211473 0.366281i
\(203\) 1.44706 2.50638i 0.101563 0.175913i
\(204\) 4.47388 2.28741i 0.313234 0.160151i
\(205\) 5.42440 9.39534i 0.378857 0.656199i
\(206\) −2.61032 4.52121i −0.181870 0.315008i
\(207\) −5.88101 + 8.14215i −0.408758 + 0.565918i
\(208\) −1.10090 + 9.30327i −0.0763334 + 0.645066i
\(209\) −1.06611 1.84656i −0.0737445 0.127729i
\(210\) 1.99042 + 1.28865i 0.137352 + 0.0889256i
\(211\) −18.0850 −1.24502 −0.622511 0.782611i \(-0.713887\pi\)
−0.622511 + 0.782611i \(0.713887\pi\)
\(212\) −1.96605 3.40530i −0.135029 0.233877i
\(213\) −0.818968 + 16.0550i −0.0561148 + 1.10007i
\(214\) 3.79358 0.259324
\(215\) −0.0394320 + 0.0682982i −0.00268924 + 0.00465790i
\(216\) −2.43002 + 15.7690i −0.165342 + 1.07295i
\(217\) −0.990602 + 1.71577i −0.0672465 + 0.116474i
\(218\) 8.59408 14.8854i 0.582064 1.00817i
\(219\) 7.24055 3.70197i 0.489271 0.250156i
\(220\) −1.33601 + 2.31404i −0.0900739 + 0.156013i
\(221\) 2.23587 18.8945i 0.150401 1.27098i
\(222\) −7.34337 + 3.75453i −0.492854 + 0.251988i
\(223\) −11.3699 + 19.6933i −0.761385 + 1.31876i 0.180751 + 0.983529i \(0.442147\pi\)
−0.942137 + 0.335229i \(0.891186\pi\)
\(224\) 0.452509 + 0.783769i 0.0302345 + 0.0523677i
\(225\) −27.8006 2.84363i −1.85337 0.189575i
\(226\) −6.35579 −0.422781
\(227\) 4.91136 0.325978 0.162989 0.986628i \(-0.447886\pi\)
0.162989 + 0.986628i \(0.447886\pi\)
\(228\) 1.40721 0.719481i 0.0931947 0.0476488i
\(229\) 1.97040 3.41283i 0.130208 0.225526i −0.793549 0.608506i \(-0.791769\pi\)
0.923757 + 0.382980i \(0.125102\pi\)
\(230\) 7.62734 + 13.2109i 0.502932 + 0.871103i
\(231\) 0.0340572 0.667654i 0.00224080 0.0439284i
\(232\) 14.7885 25.6144i 0.970912 1.68167i
\(233\) 2.49782 0.163637 0.0818187 0.996647i \(-0.473927\pi\)
0.0818187 + 0.996647i \(0.473927\pi\)
\(234\) 9.59016 + 8.81520i 0.626929 + 0.576267i
\(235\) 7.22064 0.471023
\(236\) 2.40194 4.16028i 0.156353 0.270811i
\(237\) −19.3461 12.5252i −1.25666 0.813599i
\(238\) 0.954676 + 1.65355i 0.0618825 + 0.107184i
\(239\) −4.25640 + 7.37230i −0.275324 + 0.476874i −0.970217 0.242239i \(-0.922118\pi\)
0.694893 + 0.719113i \(0.255452\pi\)
\(240\) 14.2931 + 9.25376i 0.922617 + 0.597328i
\(241\) 16.2305 1.04550 0.522749 0.852487i \(-0.324906\pi\)
0.522749 + 0.852487i \(0.324906\pi\)
\(242\) 11.2596 0.723792
\(243\) 11.0993 + 10.9456i 0.712017 + 0.702162i
\(244\) 1.41198 + 2.44562i 0.0903927 + 0.156565i
\(245\) −13.0716 + 22.6407i −0.835116 + 1.44646i
\(246\) −0.304690 + 5.97311i −0.0194263 + 0.380832i
\(247\) 0.703269 5.94307i 0.0447479 0.378148i
\(248\) −10.1237 + 17.5347i −0.642853 + 1.11345i
\(249\) 18.7709 + 12.1528i 1.18956 + 0.770153i
\(250\) −9.83086 + 17.0276i −0.621758 + 1.07692i
\(251\) 11.7453 20.3434i 0.741356 1.28407i −0.210522 0.977589i \(-0.567516\pi\)
0.951878 0.306477i \(-0.0991503\pi\)
\(252\) 0.492958 + 0.0504230i 0.0310534 + 0.00317635i
\(253\) 2.15044 3.72467i 0.135197 0.234168i
\(254\) −12.9140 −0.810298
\(255\) −29.0287 18.7940i −1.81785 1.17692i
\(256\) 6.05291 + 10.4839i 0.378307 + 0.655247i
\(257\) −5.73134 −0.357511 −0.178756 0.983894i \(-0.557207\pi\)
−0.178756 + 0.983894i \(0.557207\pi\)
\(258\) 0.00221490 0.0434207i 0.000137894 0.00270326i
\(259\) 0.594008 + 1.02885i 0.0369099 + 0.0639298i
\(260\) −6.89050 + 2.96058i −0.427330 + 0.183607i
\(261\) −11.8271 26.3660i −0.732079 1.63202i
\(262\) −2.01376 3.48794i −0.124411 0.215486i
\(263\) 0.266662 0.461872i 0.0164431 0.0284803i −0.857687 0.514173i \(-0.828099\pi\)
0.874130 + 0.485692i \(0.161432\pi\)
\(264\) 0.348054 6.82322i 0.0214213 0.419940i
\(265\) −13.5309 + 23.4362i −0.831195 + 1.43967i
\(266\) 0.300283 + 0.520105i 0.0184115 + 0.0318897i
\(267\) −9.30248 6.02268i −0.569302 0.368582i
\(268\) 2.28461 + 3.95706i 0.139555 + 0.241716i
\(269\) 0.841875 1.45817i 0.0513300 0.0889062i −0.839219 0.543794i \(-0.816987\pi\)
0.890549 + 0.454888i \(0.150321\pi\)
\(270\) 22.0674 8.57694i 1.34298 0.521976i
\(271\) −2.99018 5.17914i −0.181640 0.314610i 0.760799 0.648988i \(-0.224807\pi\)
−0.942439 + 0.334377i \(0.891474\pi\)
\(272\) 6.85548 + 11.8740i 0.415674 + 0.719969i
\(273\) 1.19776 1.44431i 0.0724920 0.0874138i
\(274\) −9.48700 + 16.4320i −0.573131 + 0.992692i
\(275\) 11.9665 0.721607
\(276\) 2.67606 + 1.73255i 0.161080 + 0.104287i
\(277\) −0.482134 −0.0289686 −0.0144843 0.999895i \(-0.504611\pi\)
−0.0144843 + 0.999895i \(0.504611\pi\)
\(278\) −25.9528 −1.55654
\(279\) 8.09640 + 18.0492i 0.484719 + 1.08058i
\(280\) 1.74530 3.02294i 0.104301 0.180655i
\(281\) 6.37082 + 11.0346i 0.380051 + 0.658268i 0.991069 0.133349i \(-0.0425731\pi\)
−0.611018 + 0.791617i \(0.709240\pi\)
\(282\) −3.54430 + 1.81214i −0.211060 + 0.107911i
\(283\) 9.11340 0.541736 0.270868 0.962617i \(-0.412689\pi\)
0.270868 + 0.962617i \(0.412689\pi\)
\(284\) 5.10247 0.302776
\(285\) −9.13066 5.91144i −0.540853 0.350164i
\(286\) −4.46935 3.33726i −0.264278 0.197336i
\(287\) 0.861518 0.0508538
\(288\) 8.98954 + 0.919510i 0.529714 + 0.0541826i
\(289\) −5.42317 9.39321i −0.319010 0.552542i
\(290\) −43.8889 −2.57724
\(291\) 5.80459 2.96778i 0.340271 0.173975i
\(292\) −1.29055 2.23531i −0.0755240 0.130811i
\(293\) −2.05193 3.55405i −0.119875 0.207630i 0.799843 0.600209i \(-0.204916\pi\)
−0.919718 + 0.392580i \(0.871583\pi\)
\(294\) 0.734236 14.3939i 0.0428215 0.839469i
\(295\) −33.0616 −1.92492
\(296\) 6.07059 + 10.5146i 0.352846 + 0.611147i
\(297\) −5.20503 4.17903i −0.302026 0.242492i
\(298\) 15.5033 0.898083
\(299\) 11.0909 4.76534i 0.641404 0.275587i
\(300\) −0.451870 + 8.85842i −0.0260887 + 0.511441i
\(301\) −0.00626268 −0.000360975
\(302\) −14.9696 −0.861404
\(303\) −0.440446 + 8.63445i −0.0253029 + 0.496036i
\(304\) 2.15632 + 3.73485i 0.123673 + 0.214208i
\(305\) 9.71762 16.8314i 0.556429 0.963764i
\(306\) 18.9656 + 1.93993i 1.08419 + 0.110898i
\(307\) 21.0459 1.20115 0.600575 0.799568i \(-0.294938\pi\)
0.600575 + 0.799568i \(0.294938\pi\)
\(308\) −0.212189 −0.0120906
\(309\) −0.382522 + 7.49893i −0.0217609 + 0.426599i
\(310\) 30.0447 1.70643
\(311\) −13.8275 + 23.9500i −0.784087 + 1.35808i 0.145456 + 0.989365i \(0.453535\pi\)
−0.929543 + 0.368714i \(0.879798\pi\)
\(312\) 12.2408 14.7604i 0.692998 0.835646i
\(313\) −1.14415 1.98173i −0.0646712 0.112014i 0.831877 0.554960i \(-0.187267\pi\)
−0.896548 + 0.442946i \(0.853933\pi\)
\(314\) −6.79706 11.7729i −0.383580 0.664381i
\(315\) −1.39580 3.11165i −0.0786444 0.175321i
\(316\) −3.65752 + 6.33500i −0.205751 + 0.356372i
\(317\) 10.1830 + 17.6374i 0.571932 + 0.990615i 0.996368 + 0.0851568i \(0.0271391\pi\)
−0.424436 + 0.905458i \(0.639528\pi\)
\(318\) 0.760032 14.8996i 0.0426205 0.835527i
\(319\) 6.18698 + 10.7162i 0.346404 + 0.599990i
\(320\) 16.6929 28.9130i 0.933161 1.61628i
\(321\) −4.58008 2.96527i −0.255635 0.165505i
\(322\) −0.605696 + 1.04910i −0.0337541 + 0.0584639i
\(323\) −4.37938 7.58531i −0.243675 0.422058i
\(324\) 3.29016 3.69531i 0.182786 0.205295i
\(325\) 26.9117 + 20.0950i 1.49280 + 1.11467i
\(326\) 3.98482 + 6.90192i 0.220699 + 0.382262i
\(327\) −22.0111 + 11.2539i −1.21721 + 0.622340i
\(328\) 8.80445 0.486144
\(329\) 0.286700 + 0.496579i 0.0158063 + 0.0273773i
\(330\) −9.02665 + 4.61517i −0.496901 + 0.254057i
\(331\) 17.4437 0.958791 0.479395 0.877599i \(-0.340856\pi\)
0.479395 + 0.877599i \(0.340856\pi\)
\(332\) 3.54877 6.14666i 0.194764 0.337342i
\(333\) 11.8006 + 1.20704i 0.646667 + 0.0661454i
\(334\) 6.53580 11.3203i 0.357623 0.619421i
\(335\) 15.7233 27.2335i 0.859054 1.48793i
\(336\) −0.0688840 + 1.35040i −0.00375793 + 0.0736701i
\(337\) 12.4840 21.6229i 0.680048 1.17788i −0.294918 0.955523i \(-0.595292\pi\)
0.974966 0.222355i \(-0.0713743\pi\)
\(338\) −4.44707 15.0105i −0.241889 0.816464i
\(339\) 7.67350 + 4.96803i 0.416767 + 0.269827i
\(340\) −5.48808 + 9.50563i −0.297633 + 0.515515i
\(341\) −4.23538 7.33590i −0.229359 0.397261i
\(342\) 5.96542 + 0.610182i 0.322573 + 0.0329949i
\(343\) −4.17926 −0.225659
\(344\) −0.0640028 −0.00345080
\(345\) 1.11773 21.9118i 0.0601764 1.17969i
\(346\) 0.124703 0.215992i 0.00670407 0.0116118i
\(347\) 5.06421 + 8.77147i 0.271861 + 0.470877i 0.969338 0.245730i \(-0.0790275\pi\)
−0.697477 + 0.716607i \(0.745694\pi\)
\(348\) −8.16647 + 4.17537i −0.437769 + 0.223824i
\(349\) −11.2845 + 19.5453i −0.604044 + 1.04623i 0.388158 + 0.921593i \(0.373111\pi\)
−0.992202 + 0.124642i \(0.960222\pi\)
\(350\) −3.37050 −0.180161
\(351\) −4.68799 18.1390i −0.250226 0.968187i
\(352\) −3.86946 −0.206243
\(353\) −12.4509 + 21.5655i −0.662693 + 1.14782i 0.317212 + 0.948355i \(0.397253\pi\)
−0.979905 + 0.199463i \(0.936080\pi\)
\(354\) 16.2285 8.29735i 0.862535 0.440999i
\(355\) −17.5583 30.4118i −0.931897 1.61409i
\(356\) −1.75870 + 3.04616i −0.0932109 + 0.161446i
\(357\) 0.139900 2.74259i 0.00740431 0.145153i
\(358\) −12.0145 −0.634987
\(359\) −35.7532 −1.88698 −0.943492 0.331395i \(-0.892481\pi\)
−0.943492 + 0.331395i \(0.892481\pi\)
\(360\) −14.2647 31.8001i −0.751814 1.67601i
\(361\) 8.12251 + 14.0686i 0.427501 + 0.740453i
\(362\) 8.40567 14.5590i 0.441792 0.765206i
\(363\) −13.5939 8.80108i −0.713496 0.461937i
\(364\) −0.477197 0.356323i −0.0250119 0.0186764i
\(365\) −8.88194 + 15.3840i −0.464902 + 0.805234i
\(366\) −0.545840 + 10.7006i −0.0285315 + 0.559330i
\(367\) 6.69188 11.5907i 0.349313 0.605028i −0.636814 0.771017i \(-0.719748\pi\)
0.986128 + 0.165989i \(0.0530815\pi\)
\(368\) −4.34947 + 7.53351i −0.226732 + 0.392711i
\(369\) 5.03677 6.97331i 0.262204 0.363016i
\(370\) 9.00806 15.6024i 0.468307 0.811131i
\(371\) −2.14901 −0.111571
\(372\) 5.59047 2.85831i 0.289852 0.148196i
\(373\) −3.57470 6.19157i −0.185091 0.320587i 0.758516 0.651654i \(-0.225925\pi\)
−0.943607 + 0.331067i \(0.892591\pi\)
\(374\) −8.16356 −0.422127
\(375\) 25.1787 12.8734i 1.30022 0.664781i
\(376\) 2.92999 + 5.07489i 0.151103 + 0.261717i
\(377\) −4.08129 + 34.4895i −0.210197 + 1.77630i
\(378\) 1.46606 + 1.17707i 0.0754058 + 0.0605421i
\(379\) 13.7475 + 23.8114i 0.706162 + 1.22311i 0.966271 + 0.257529i \(0.0829082\pi\)
−0.260109 + 0.965579i \(0.583758\pi\)
\(380\) −1.72622 + 2.98989i −0.0885530 + 0.153378i
\(381\) 15.5914 + 10.0943i 0.798771 + 0.517147i
\(382\) −8.35713 + 14.4750i −0.427588 + 0.740604i
\(383\) 5.66249 + 9.80773i 0.289340 + 0.501151i 0.973652 0.228037i \(-0.0732309\pi\)
−0.684312 + 0.729189i \(0.739898\pi\)
\(384\) −0.406074 + 7.96064i −0.0207224 + 0.406239i
\(385\) 0.730170 + 1.26469i 0.0372129 + 0.0644547i
\(386\) 4.84247 8.38741i 0.246475 0.426908i
\(387\) −0.0366141 + 0.0506915i −0.00186120 + 0.00257680i
\(388\) −1.03461 1.79200i −0.0525243 0.0909748i
\(389\) −7.75413 13.4306i −0.393150 0.680956i 0.599713 0.800215i \(-0.295281\pi\)
−0.992863 + 0.119259i \(0.961948\pi\)
\(390\) −28.0504 4.77903i −1.42039 0.241995i
\(391\) 8.83359 15.3002i 0.446734 0.773766i
\(392\) −21.2168 −1.07161
\(393\) −0.295101 + 5.78514i −0.0148859 + 0.291822i
\(394\) 3.62244 0.182496
\(395\) 50.3440 2.53308
\(396\) −1.24054 + 1.71750i −0.0623394 + 0.0863078i
\(397\) −5.84662 + 10.1266i −0.293434 + 0.508242i −0.974619 0.223869i \(-0.928131\pi\)
0.681186 + 0.732111i \(0.261465\pi\)
\(398\) 12.5722 + 21.7758i 0.630190 + 1.09152i
\(399\) 0.0440041 0.862653i 0.00220296 0.0431866i
\(400\) −24.2034 −1.21017
\(401\) 0.715696 0.0357402 0.0178701 0.999840i \(-0.494311\pi\)
0.0178701 + 0.999840i \(0.494311\pi\)
\(402\) −0.883179 + 17.3138i −0.0440490 + 0.863532i
\(403\) 2.79390 23.6102i 0.139174 1.17611i
\(404\) 2.74414 0.136526
\(405\) −33.3467 6.89398i −1.65701 0.342565i
\(406\) −1.74264 3.01833i −0.0864855 0.149797i
\(407\) −5.07944 −0.251778
\(408\) 1.42974 28.0285i 0.0707827 1.38762i
\(409\) 1.74702 + 3.02593i 0.0863846 + 0.149623i 0.905980 0.423320i \(-0.139135\pi\)
−0.819596 + 0.572942i \(0.805802\pi\)
\(410\) −6.53240 11.3145i −0.322612 0.558781i
\(411\) 24.2980 12.4231i 1.19853 0.612788i
\(412\) 2.38325 0.117415
\(413\) −1.31273 2.27372i −0.0645953 0.111882i
\(414\) 4.95048 + 11.0361i 0.243303 + 0.542393i
\(415\) −48.8472 −2.39782
\(416\) −8.70213 6.49787i −0.426657 0.318585i
\(417\) 31.3334 + 20.2861i 1.53440 + 0.993415i
\(418\) −2.56776 −0.125593
\(419\) −18.2792 −0.893000 −0.446500 0.894784i \(-0.647330\pi\)
−0.446500 + 0.894784i \(0.647330\pi\)
\(420\) −0.963784 + 0.492766i −0.0470278 + 0.0240445i
\(421\) −1.70275 2.94926i −0.0829871 0.143738i 0.821545 0.570144i \(-0.193113\pi\)
−0.904532 + 0.426406i \(0.859779\pi\)
\(422\) −10.8895 + 18.8612i −0.530094 + 0.918150i
\(423\) 5.69558 + 0.582582i 0.276929 + 0.0283261i
\(424\) −21.9622 −1.06658
\(425\) 49.1560 2.38442
\(426\) 16.2510 + 10.5213i 0.787361 + 0.509759i
\(427\) 1.54338 0.0746892
\(428\) −0.865896 + 1.49978i −0.0418547 + 0.0724944i
\(429\) 2.78737 + 7.52264i 0.134575 + 0.363197i
\(430\) 0.0474864 + 0.0822489i 0.00229000 + 0.00396639i
\(431\) −7.51196 13.0111i −0.361839 0.626723i 0.626425 0.779482i \(-0.284518\pi\)
−0.988263 + 0.152759i \(0.951184\pi\)
\(432\) 10.5277 + 8.45250i 0.506513 + 0.406671i
\(433\) 1.01128 1.75159i 0.0485991 0.0841762i −0.840703 0.541497i \(-0.817858\pi\)
0.889302 + 0.457321i \(0.151191\pi\)
\(434\) 1.19294 + 2.06624i 0.0572632 + 0.0991827i
\(435\) 52.9880 + 34.3059i 2.54058 + 1.64484i
\(436\) 3.92325 + 6.79526i 0.187889 + 0.325434i
\(437\) 2.77851 4.81252i 0.132914 0.230214i
\(438\) 0.498900 9.78039i 0.0238384 0.467325i
\(439\) −6.58663 + 11.4084i −0.314363 + 0.544492i −0.979302 0.202405i \(-0.935124\pi\)
0.664939 + 0.746898i \(0.268457\pi\)
\(440\) 7.46212 + 12.9248i 0.355743 + 0.616164i
\(441\) −12.1375 + 16.8042i −0.577977 + 0.800198i
\(442\) −18.3592 13.7088i −0.873259 0.652062i
\(443\) −5.48308 9.49698i −0.260509 0.451215i 0.705868 0.708343i \(-0.250557\pi\)
−0.966377 + 0.257128i \(0.917224\pi\)
\(444\) 0.191806 3.76015i 0.00910272 0.178449i
\(445\) 24.2077 1.14755
\(446\) 13.6923 + 23.7158i 0.648351 + 1.12298i
\(447\) −18.7175 12.1182i −0.885308 0.573173i
\(448\) 2.65121 0.125258
\(449\) −18.1471 + 31.4318i −0.856416 + 1.48336i 0.0189089 + 0.999821i \(0.493981\pi\)
−0.875325 + 0.483535i \(0.839353\pi\)
\(450\) −19.7053 + 27.2816i −0.928915 + 1.28607i
\(451\) −1.84174 + 3.18998i −0.0867240 + 0.150210i
\(452\) 1.45073 2.51274i 0.0682365 0.118189i
\(453\) 18.0732 + 11.7011i 0.849151 + 0.549764i
\(454\) 2.95728 5.12216i 0.138792 0.240395i
\(455\) −0.481662 + 4.07035i −0.0225807 + 0.190821i
\(456\) 0.449709 8.81605i 0.0210595 0.412849i
\(457\) 16.9893 29.4263i 0.794726 1.37651i −0.128286 0.991737i \(-0.540948\pi\)
0.923013 0.384769i \(-0.125719\pi\)
\(458\) −2.37288 4.10994i −0.110877 0.192045i
\(459\) −21.3812 17.1667i −0.997991 0.801271i
\(460\) −6.96385 −0.324691
\(461\) −11.5299 −0.537003 −0.268502 0.963279i \(-0.586528\pi\)
−0.268502 + 0.963279i \(0.586528\pi\)
\(462\) −0.675804 0.437534i −0.0314412 0.0203559i
\(463\) −15.1765 + 26.2864i −0.705310 + 1.22163i 0.261270 + 0.965266i \(0.415859\pi\)
−0.966580 + 0.256366i \(0.917475\pi\)
\(464\) −12.5138 21.6745i −0.580937 1.00621i
\(465\) −36.2737 23.4846i −1.68215 1.08907i
\(466\) 1.50401 2.60503i 0.0696721 0.120676i
\(467\) −1.64762 −0.0762426 −0.0381213 0.999273i \(-0.512137\pi\)
−0.0381213 + 0.999273i \(0.512137\pi\)
\(468\) −5.67403 + 1.77934i −0.262282 + 0.0822498i
\(469\) 2.49721 0.115310
\(470\) 4.34777 7.53056i 0.200548 0.347359i
\(471\) −0.996056 + 19.5266i −0.0458958 + 0.899738i
\(472\) −13.4157 23.2367i −0.617508 1.06956i
\(473\) 0.0133883 0.0231891i 0.000615592 0.00106624i
\(474\) −24.7117 + 12.6347i −1.13505 + 0.580329i
\(475\) 15.4615 0.709422
\(476\) −0.871631 −0.0399511
\(477\) −12.5639 + 17.3945i −0.575263 + 0.796441i
\(478\) 5.12582 + 8.87818i 0.234450 + 0.406079i
\(479\) 5.29372 9.16900i 0.241876 0.418942i −0.719372 0.694625i \(-0.755570\pi\)
0.961249 + 0.275682i \(0.0889038\pi\)
\(480\) −17.5755 + 8.98604i −0.802208 + 0.410155i
\(481\) −11.4233 8.52976i −0.520857 0.388923i
\(482\) 9.77289 16.9271i 0.445143 0.771010i
\(483\) 1.55130 0.793154i 0.0705867 0.0360897i
\(484\) −2.57003 + 4.45142i −0.116819 + 0.202337i
\(485\) −7.12045 + 12.3330i −0.323323 + 0.560012i
\(486\) 18.0986 4.98495i 0.820970 0.226122i
\(487\) 13.3185 23.0683i 0.603517 1.04532i −0.388767 0.921336i \(-0.627099\pi\)
0.992284 0.123986i \(-0.0395679\pi\)
\(488\) 15.7728 0.714003
\(489\) 0.583945 11.4476i 0.0264069 0.517678i
\(490\) 15.7417 + 27.2654i 0.711136 + 1.23172i
\(491\) 23.3513 1.05383 0.526915 0.849918i \(-0.323349\pi\)
0.526915 + 0.849918i \(0.323349\pi\)
\(492\) −2.29190 1.48384i −0.103327 0.0668966i
\(493\) 25.4149 + 44.0199i 1.14463 + 1.98256i
\(494\) −5.77469 4.31196i −0.259816 0.194004i
\(495\) 14.5056 + 1.48372i 0.651976 + 0.0666884i
\(496\) 8.56647 + 14.8376i 0.384646 + 0.666226i
\(497\) 1.39433 2.41504i 0.0625440 0.108329i
\(498\) 23.9770 12.2590i 1.07443 0.549339i
\(499\) −0.396185 + 0.686212i −0.0177357 + 0.0307191i −0.874757 0.484562i \(-0.838979\pi\)
0.857021 + 0.515281i \(0.172312\pi\)
\(500\) −4.48785 7.77318i −0.200703 0.347627i
\(501\) −16.7394 + 8.55856i −0.747862 + 0.382368i
\(502\) −14.1444 24.4988i −0.631296 1.09344i
\(503\) 11.9019 20.6147i 0.530681 0.919166i −0.468678 0.883369i \(-0.655270\pi\)
0.999359 0.0357971i \(-0.0113970\pi\)
\(504\) 1.62057 2.24365i 0.0721861 0.0999403i
\(505\) −9.44294 16.3557i −0.420206 0.727817i
\(506\) −2.58969 4.48548i −0.115126 0.199404i
\(507\) −6.36398 + 21.5986i −0.282634 + 0.959228i
\(508\) 2.94766 5.10550i 0.130781 0.226520i
\(509\) 24.2029 1.07278 0.536388 0.843971i \(-0.319788\pi\)
0.536388 + 0.843971i \(0.319788\pi\)
\(510\) −37.0797 + 18.9582i −1.64192 + 0.839484i
\(511\) −1.41065 −0.0624036
\(512\) 23.7827 1.05106
\(513\) −6.72523 5.39958i −0.296926 0.238397i
\(514\) −3.45102 + 5.97734i −0.152218 + 0.263649i
\(515\) −8.20109 14.2047i −0.361383 0.625934i
\(516\) 0.0166606 + 0.0107866i 0.000733444 + 0.000474852i
\(517\) −2.45161 −0.107822
\(518\) 1.43068 0.0628606
\(519\) −0.319387 + 0.163297i −0.0140196 + 0.00716795i
\(520\) −4.92244 + 41.5978i −0.215863 + 1.82418i
\(521\) −10.2515 −0.449125 −0.224563 0.974460i \(-0.572095\pi\)
−0.224563 + 0.974460i \(0.572095\pi\)
\(522\) −34.6192 3.54108i −1.51524 0.154989i
\(523\) −13.3127 23.0583i −0.582124 1.00827i −0.995227 0.0975847i \(-0.968888\pi\)
0.413103 0.910684i \(-0.364445\pi\)
\(524\) 1.83859 0.0803192
\(525\) 4.06928 + 2.63457i 0.177598 + 0.114982i
\(526\) −0.321131 0.556215i −0.0140020 0.0242521i
\(527\) −17.3981 30.1344i −0.757874 1.31268i
\(528\) −4.85291 3.14191i −0.211196 0.136734i
\(529\) −11.7910 −0.512653
\(530\) 16.2947 + 28.2233i 0.707797 + 1.22594i
\(531\) −26.0787 2.66750i −1.13172 0.115760i
\(532\) −0.274162 −0.0118864
\(533\) −9.49877 + 4.08125i −0.411437 + 0.176779i
\(534\) −11.8825 + 6.07531i −0.514206 + 0.262904i
\(535\) 11.9187 0.515289
\(536\) 25.5207 1.10233
\(537\) 14.5054 + 9.39120i 0.625954 + 0.405260i
\(538\) −1.01384 1.75602i −0.0437096 0.0757073i
\(539\) 4.43818 7.68716i 0.191166 0.331109i
\(540\) −1.64610 + 10.6820i −0.0708370 + 0.459679i
\(541\) −11.7447 −0.504943 −0.252471 0.967604i \(-0.581243\pi\)
−0.252471 + 0.967604i \(0.581243\pi\)
\(542\) −7.20192 −0.309349
\(543\) −21.5285 + 11.0071i −0.923876 + 0.472362i
\(544\) −15.8950 −0.681492
\(545\) 27.0008 46.7668i 1.15659 2.00327i
\(546\) −0.785094 2.11884i −0.0335989 0.0906780i
\(547\) 0.492671 + 0.853331i 0.0210651 + 0.0364858i 0.876366 0.481646i \(-0.159961\pi\)
−0.855301 + 0.518132i \(0.826628\pi\)
\(548\) −4.33087 7.50129i −0.185006 0.320439i
\(549\) 9.02318 12.4924i 0.385100 0.533164i
\(550\) 7.20540 12.4801i 0.307239 0.532154i
\(551\) 7.99398 + 13.8460i 0.340555 + 0.589859i
\(552\) 15.8539 8.10579i 0.674785 0.345006i
\(553\) 1.99894 + 3.46227i 0.0850036 + 0.147231i
\(554\) −0.290308 + 0.502828i −0.0123340 + 0.0213631i
\(555\) −23.0713 + 11.7960i −0.979324 + 0.500711i
\(556\) 5.92380 10.2603i 0.251225 0.435134i
\(557\) 12.1835 + 21.1025i 0.516233 + 0.894141i 0.999822 + 0.0188462i \(0.00599930\pi\)
−0.483590 + 0.875295i \(0.660667\pi\)
\(558\) 23.6990 + 2.42409i 1.00326 + 0.102620i
\(559\) 0.0690500 0.0296681i 0.00292050 0.00125483i
\(560\) −1.47684 2.55796i −0.0624079 0.108094i
\(561\) 9.85605 + 6.38108i 0.416123 + 0.269409i
\(562\) 15.3443 0.647259
\(563\) −16.9796 29.4095i −0.715603 1.23946i −0.962726 0.270477i \(-0.912819\pi\)
0.247123 0.968984i \(-0.420515\pi\)
\(564\) 0.0925759 1.81485i 0.00389815 0.0764190i
\(565\) −19.9686 −0.840085
\(566\) 5.48746 9.50456i 0.230655 0.399507i
\(567\) −0.849939 2.56706i −0.0356941 0.107806i
\(568\) 14.2496 24.6810i 0.597899 1.03559i
\(569\) 12.0308 20.8379i 0.504356 0.873571i −0.495631 0.868533i \(-0.665063\pi\)
0.999987 0.00503776i \(-0.00160358\pi\)
\(570\) −11.6630 + 5.96310i −0.488510 + 0.249767i
\(571\) −2.33817 + 4.04984i −0.0978495 + 0.169480i −0.910794 0.412860i \(-0.864530\pi\)
0.812945 + 0.582341i \(0.197863\pi\)
\(572\) 2.33952 1.00520i 0.0978200 0.0420295i
\(573\) 21.4042 10.9436i 0.894172 0.457175i
\(574\) 0.518746 0.898495i 0.0216521 0.0375025i
\(575\) 15.5936 + 27.0089i 0.650297 + 1.12635i
\(576\) 15.5000 21.4595i 0.645833 0.894144i
\(577\) −24.2913 −1.01126 −0.505630 0.862750i \(-0.668740\pi\)
−0.505630 + 0.862750i \(0.668740\pi\)
\(578\) −13.0618 −0.543301
\(579\) −12.4025 + 6.34117i −0.515430 + 0.263530i
\(580\) 10.0178 17.3513i 0.415965 0.720473i
\(581\) −1.93951 3.35933i −0.0804644 0.139368i
\(582\) 0.399957 7.84073i 0.0165788 0.325009i
\(583\) 4.59411 7.95723i 0.190269 0.329555i
\(584\) −14.4164 −0.596557
\(585\) 30.1303 + 27.6955i 1.24574 + 1.14507i
\(586\) −4.94212 −0.204157
\(587\) 8.51672 14.7514i 0.351522 0.608855i −0.634994 0.772517i \(-0.718997\pi\)
0.986516 + 0.163662i \(0.0523307\pi\)
\(588\) 5.52297 + 3.57573i 0.227764 + 0.147460i
\(589\) −5.47239 9.47846i −0.225486 0.390553i
\(590\) −19.9074 + 34.4806i −0.819575 + 1.41955i
\(591\) −4.37346 2.83150i −0.179900 0.116472i
\(592\) 10.2737 0.422245
\(593\) 16.1029 0.661266 0.330633 0.943759i \(-0.392738\pi\)
0.330633 + 0.943759i \(0.392738\pi\)
\(594\) −7.49251 + 2.91211i −0.307421 + 0.119485i
\(595\) 2.99940 + 5.19511i 0.122963 + 0.212979i
\(596\) −3.53868 + 6.12917i −0.144950 + 0.251061i
\(597\) 1.84236 36.1175i 0.0754030 1.47819i
\(598\) 1.70831 14.4363i 0.0698580 0.590345i
\(599\) −10.4601 + 18.1175i −0.427390 + 0.740261i −0.996640 0.0819032i \(-0.973900\pi\)
0.569250 + 0.822164i \(0.307234\pi\)
\(600\) 41.5869 + 26.9245i 1.69778 + 1.09919i
\(601\) −1.19984 + 2.07818i −0.0489425 + 0.0847709i −0.889459 0.457015i \(-0.848918\pi\)
0.840516 + 0.541786i \(0.182252\pi\)
\(602\) −0.00377096 + 0.00653149i −0.000153693 + 0.000266204i
\(603\) 14.5997 20.2130i 0.594544 0.823136i
\(604\) 3.41686 5.91817i 0.139030 0.240807i
\(605\) 35.3752 1.43821
\(606\) 8.73985 + 5.65842i 0.355032 + 0.229858i
\(607\) 20.9512 + 36.2885i 0.850382 + 1.47291i 0.880864 + 0.473370i \(0.156963\pi\)
−0.0304814 + 0.999535i \(0.509704\pi\)
\(608\) −4.99960 −0.202760
\(609\) −0.255370 + 5.00624i −0.0103481 + 0.202863i
\(610\) −11.7026 20.2694i −0.473823 0.820685i
\(611\) −5.51349 4.11692i −0.223052 0.166553i
\(612\) −5.09589 + 7.05517i −0.205989 + 0.285188i
\(613\) −6.47866 11.2214i −0.261671 0.453227i 0.705015 0.709192i \(-0.250940\pi\)
−0.966686 + 0.255965i \(0.917607\pi\)
\(614\) 12.6724 21.9492i 0.511415 0.885797i
\(615\) −0.957273 + 18.7663i −0.0386010 + 0.756730i
\(616\) −0.592576 + 1.02637i −0.0238756 + 0.0413537i
\(617\) 7.28332 + 12.6151i 0.293216 + 0.507864i 0.974568 0.224091i \(-0.0719413\pi\)
−0.681353 + 0.731955i \(0.738608\pi\)
\(618\) 7.59047 + 4.91428i 0.305333 + 0.197681i
\(619\) 4.73531 + 8.20179i 0.190328 + 0.329658i 0.945359 0.326031i \(-0.105711\pi\)
−0.755031 + 0.655689i \(0.772378\pi\)
\(620\) −6.85780 + 11.8781i −0.275416 + 0.477034i
\(621\) 2.64956 17.1937i 0.106323 0.689958i
\(622\) 16.6520 + 28.8420i 0.667683 + 1.15646i
\(623\) 0.961181 + 1.66481i 0.0385089 + 0.0666994i
\(624\) −5.63772 15.2153i −0.225689 0.609099i
\(625\) −7.59854 + 13.1611i −0.303941 + 0.526442i
\(626\) −2.75571 −0.110141
\(627\) 3.10011 + 2.00710i 0.123807 + 0.0801558i
\(628\) 6.20580 0.247638
\(629\) −20.8654 −0.831956
\(630\) −4.08566 0.417908i −0.162776 0.0166499i
\(631\) 24.2342 41.9749i 0.964749 1.67099i 0.254461 0.967083i \(-0.418102\pi\)
0.710288 0.703911i \(-0.248565\pi\)
\(632\) 20.4286 + 35.3833i 0.812605 + 1.40747i
\(633\) 27.8901 14.2597i 1.10853 0.566774i
\(634\) 24.5259 0.974048
\(635\) −40.5732 −1.61010
\(636\) 5.71701 + 3.70135i 0.226694 + 0.146768i
\(637\) 22.8900 9.83493i 0.906933 0.389674i
\(638\) 14.9015 0.589956
\(639\) −11.3961 25.4053i −0.450823 1.00502i
\(640\) −8.70603 15.0793i −0.344136 0.596061i
\(641\) −0.768707 −0.0303621 −0.0151811 0.999885i \(-0.504832\pi\)
−0.0151811 + 0.999885i \(0.504832\pi\)
\(642\) −5.85035 + 2.99118i −0.230895 + 0.118053i
\(643\) 0.142264 + 0.246408i 0.00561034 + 0.00971740i 0.868817 0.495133i \(-0.164881\pi\)
−0.863207 + 0.504851i \(0.831547\pi\)
\(644\) −0.276504 0.478919i −0.0108958 0.0188721i
\(645\) 0.00695877 0.136419i 0.000274001 0.00537149i
\(646\) −10.5478 −0.414999
\(647\) 14.6716 + 25.4119i 0.576798 + 0.999044i 0.995844 + 0.0910787i \(0.0290315\pi\)
−0.419045 + 0.907965i \(0.637635\pi\)
\(648\) −8.68612 26.2346i −0.341223 1.03059i
\(649\) 11.2253 0.440633
\(650\) 37.1619 15.9670i 1.45761 0.626278i
\(651\) 0.174817 3.42709i 0.00685161 0.134318i
\(652\) −3.63819 −0.142483
\(653\) −49.6340 −1.94233 −0.971164 0.238413i \(-0.923373\pi\)
−0.971164 + 0.238413i \(0.923373\pi\)
\(654\) −1.51664 + 29.7321i −0.0593054 + 1.16262i
\(655\) −6.32683 10.9584i −0.247210 0.428180i
\(656\) 3.72509 6.45205i 0.145440 0.251910i
\(657\) −8.24722 + 11.4181i −0.321755 + 0.445464i
\(658\) 0.690524 0.0269194
\(659\) −42.8101 −1.66765 −0.833823 0.552032i \(-0.813852\pi\)
−0.833823 + 0.552032i \(0.813852\pi\)
\(660\) 0.235773 4.62207i 0.00917746 0.179914i
\(661\) −35.3171 −1.37367 −0.686837 0.726811i \(-0.741001\pi\)
−0.686837 + 0.726811i \(0.741001\pi\)
\(662\) 10.5034 18.1924i 0.408225 0.707067i
\(663\) 11.4500 + 30.9016i 0.444680 + 1.20012i
\(664\) −19.8212 34.3313i −0.769212 1.33231i
\(665\) 0.943427 + 1.63406i 0.0365845 + 0.0633663i
\(666\) 8.36433 11.5803i 0.324111 0.448726i
\(667\) −16.1246 + 27.9285i −0.624345 + 1.08140i
\(668\) 2.98363 + 5.16780i 0.115440 + 0.199948i
\(669\) 2.00651 39.3354i 0.0775760 1.52079i
\(670\) −18.9349 32.7963i −0.731521 1.26703i
\(671\) −3.29940 + 5.71473i −0.127372 + 0.220615i
\(672\) −1.31584 0.851909i −0.0507595 0.0328631i
\(673\) −17.3693 + 30.0845i −0.669537 + 1.15967i 0.308497 + 0.951225i \(0.400174\pi\)
−0.978034 + 0.208446i \(0.933159\pi\)
\(674\) −15.0340 26.0397i −0.579089 1.00301i
\(675\) 45.1154 17.5350i 1.73649 0.674921i
\(676\) 6.94940 + 1.66806i 0.267285 + 0.0641562i
\(677\) 9.05262 + 15.6796i 0.347920 + 0.602616i 0.985880 0.167454i \(-0.0535546\pi\)
−0.637959 + 0.770070i \(0.720221\pi\)
\(678\) 9.80172 5.01145i 0.376433 0.192463i
\(679\) −1.13089 −0.0433995
\(680\) 30.6529 + 53.0924i 1.17549 + 2.03600i
\(681\) −7.57415 + 3.87253i −0.290242 + 0.148396i
\(682\) −10.2010 −0.390617
\(683\) −11.6147 + 20.1173i −0.444426 + 0.769768i −0.998012 0.0630237i \(-0.979926\pi\)
0.553586 + 0.832792i \(0.313259\pi\)
\(684\) −1.60286 + 2.21913i −0.0612868 + 0.0848504i
\(685\) −29.8062 + 51.6259i −1.13884 + 1.97252i
\(686\) −2.51646 + 4.35864i −0.0960790 + 0.166414i
\(687\) −0.347726 + 6.81680i −0.0132666 + 0.260077i
\(688\) −0.0270790 + 0.0469023i −0.00103238 + 0.00178813i
\(689\) 23.6941 10.1805i 0.902675 0.387845i
\(690\) −22.1793 14.3595i −0.844351 0.546656i
\(691\) 2.25475 3.90535i 0.0857748 0.148566i −0.819946 0.572440i \(-0.805997\pi\)
0.905721 + 0.423874i \(0.139330\pi\)
\(692\) 0.0569276 + 0.0986015i 0.00216406 + 0.00374827i
\(693\) 0.473913 + 1.05649i 0.0180025 + 0.0401328i
\(694\) 12.1973 0.463002
\(695\) −81.5383 −3.09292
\(696\) −2.60980 + 51.1623i −0.0989242 + 1.93930i
\(697\) −7.56549 + 13.1038i −0.286564 + 0.496343i
\(698\) 13.5895 + 23.5376i 0.514369 + 0.890913i
\(699\) −3.85206 + 1.96949i −0.145698 + 0.0744930i
\(700\) 0.769327 1.33251i 0.0290778 0.0503643i
\(701\) −12.6104 −0.476288 −0.238144 0.971230i \(-0.576539\pi\)
−0.238144 + 0.971230i \(0.576539\pi\)
\(702\) −21.7403 6.03284i −0.820536 0.227695i
\(703\) −6.56297 −0.247527
\(704\) −5.66770 + 9.81675i −0.213610 + 0.369983i
\(705\) −11.1355 + 5.69337i −0.419386 + 0.214425i
\(706\) 14.9941 + 25.9706i 0.564311 + 0.977415i
\(707\) 0.749876 1.29882i 0.0282020 0.0488473i
\(708\) −0.423883 + 8.30976i −0.0159305 + 0.312300i
\(709\) −50.2539 −1.88732 −0.943662 0.330910i \(-0.892644\pi\)
−0.943662 + 0.330910i \(0.892644\pi\)
\(710\) −42.2896 −1.58710
\(711\) 39.7109 + 4.06190i 1.48928 + 0.152333i
\(712\) 9.82298 + 17.0139i 0.368132 + 0.637623i
\(713\) 11.0383 19.1189i 0.413387 0.716007i
\(714\) −2.77607 1.79731i −0.103892 0.0672625i
\(715\) −14.0418 10.4850i −0.525133 0.392117i
\(716\) 2.74235 4.74989i 0.102486 0.177512i
\(717\) 0.751149 14.7255i 0.0280522 0.549932i
\(718\) −21.5281 + 37.2878i −0.803423 + 1.39157i
\(719\) 21.5058 37.2492i 0.802031 1.38916i −0.116246 0.993221i \(-0.537086\pi\)
0.918277 0.395939i \(-0.129581\pi\)
\(720\) −29.3389 3.00098i −1.09340 0.111840i
\(721\) 0.651259 1.12801i 0.0242542 0.0420094i
\(722\) 19.5633 0.728070
\(723\) −25.0302 + 12.7975i −0.930883 + 0.475944i
\(724\) 3.83724 + 6.64629i 0.142610 + 0.247007i
\(725\) −89.7278 −3.33241
\(726\) −17.3642 + 8.87799i −0.644444 + 0.329493i
\(727\) 6.80760 + 11.7911i 0.252480 + 0.437308i 0.964208 0.265147i \(-0.0854205\pi\)
−0.711728 + 0.702455i \(0.752087\pi\)
\(728\) −3.05622 + 1.31314i −0.113271 + 0.0486681i
\(729\) −25.7474 8.12842i −0.953607 0.301053i
\(730\) 10.6962 + 18.5263i 0.395884 + 0.685690i
\(731\) 0.0549963 0.0952565i 0.00203411 0.00352319i
\(732\) −4.10585 2.65824i −0.151757 0.0982514i
\(733\) 23.0761 39.9690i 0.852336 1.47629i −0.0267594 0.999642i \(-0.508519\pi\)
0.879095 0.476647i \(-0.158148\pi\)
\(734\) −8.05878 13.9582i −0.297455 0.515207i
\(735\) 2.30682 45.2227i 0.0850883 1.66806i
\(736\) −5.04231 8.73353i −0.185862 0.321922i
\(737\) −5.33849 + 9.24654i −0.196646 + 0.340601i
\(738\) −4.23982 9.45180i −0.156070 0.347926i
\(739\) −0.339921 0.588761i −0.0125042 0.0216579i 0.859706 0.510790i \(-0.170647\pi\)
−0.872210 + 0.489132i \(0.837314\pi\)
\(740\) 4.11223 + 7.12260i 0.151169 + 0.261832i
\(741\) 3.60146 + 9.71974i 0.132303 + 0.357064i
\(742\) −1.29398 + 2.24125i −0.0475036 + 0.0822787i
\(743\) 26.5298 0.973284 0.486642 0.873601i \(-0.338222\pi\)
0.486642 + 0.873601i \(0.338222\pi\)
\(744\) 1.78657 35.0238i 0.0654990 1.28404i
\(745\) 48.7083 1.78453
\(746\) −8.60976 −0.315226
\(747\) −38.5303 3.94113i −1.40975 0.144199i
\(748\) 1.86336 3.22743i 0.0681310 0.118006i
\(749\) 0.473238 + 0.819672i 0.0172917 + 0.0299502i
\(750\) 1.73490 34.0109i 0.0633497 1.24190i
\(751\) 32.0132 1.16818 0.584088 0.811690i \(-0.301452\pi\)
0.584088 + 0.811690i \(0.301452\pi\)
\(752\) 4.95862 0.180822
\(753\) −2.07275 + 40.6340i −0.0755353 + 1.48079i
\(754\) 33.5123 + 25.0236i 1.22045 + 0.911308i
\(755\) −47.0315 −1.71165
\(756\) −0.799983 + 0.310929i −0.0290951 + 0.0113084i
\(757\) 10.5610 + 18.2922i 0.383846 + 0.664840i 0.991608 0.129278i \(-0.0412661\pi\)
−0.607763 + 0.794119i \(0.707933\pi\)
\(758\) 33.1112 1.20265
\(759\) −0.379499 + 7.43967i −0.0137750 + 0.270043i
\(760\) 9.64154 + 16.6996i 0.349736 + 0.605760i
\(761\) 12.2230 + 21.1708i 0.443083 + 0.767442i 0.997916 0.0645194i \(-0.0205514\pi\)
−0.554834 + 0.831961i \(0.687218\pi\)
\(762\) 19.9156 10.1825i 0.721467 0.368873i
\(763\) 4.28834 0.155248
\(764\) −3.81508 6.60791i −0.138025 0.239066i
\(765\) 59.5860 + 6.09485i 2.15434 + 0.220360i
\(766\) 13.6383 0.492770
\(767\) 25.2449 + 18.8504i 0.911541 + 0.680647i
\(768\) −17.6011 11.3954i −0.635123 0.411197i
\(769\) −8.72140 −0.314502 −0.157251 0.987559i \(-0.550263\pi\)
−0.157251 + 0.987559i \(0.550263\pi\)
\(770\) 1.75863 0.0633767
\(771\) 8.83870 4.51907i 0.318318 0.162750i
\(772\) 2.21062 + 3.82890i 0.0795619 + 0.137805i
\(773\) −0.571592 + 0.990027i −0.0205587 + 0.0356088i −0.876122 0.482090i \(-0.839878\pi\)
0.855563 + 0.517699i \(0.173211\pi\)
\(774\) 0.0308208 + 0.0687086i 0.00110783 + 0.00246968i
\(775\) 61.4244 2.20643
\(776\) −11.5573 −0.414884
\(777\) −1.72730 1.11830i −0.0619664 0.0401188i
\(778\) −18.6760 −0.669568
\(779\) −2.37964 + 4.12166i −0.0852596 + 0.147674i
\(780\) 8.29195 9.99877i 0.296899 0.358013i
\(781\) 5.96153 + 10.3257i 0.213320 + 0.369481i
\(782\) −10.6380 18.4255i −0.380413 0.658894i
\(783\) 39.0286 + 31.3355i 1.39477 + 1.11984i
\(784\) −8.97665 + 15.5480i −0.320595 + 0.555286i
\(785\) −21.3550 36.9879i −0.762192 1.32015i
\(786\) 5.85576 + 3.79118i 0.208868 + 0.135227i
\(787\) −7.29553 12.6362i −0.260058 0.450433i 0.706199 0.708013i \(-0.250408\pi\)
−0.966257 + 0.257580i \(0.917075\pi\)
\(788\) −0.826834 + 1.43212i −0.0294547 + 0.0510171i
\(789\) −0.0470592 + 0.922545i −0.00167535 + 0.0328435i
\(790\) 30.3137 52.5048i 1.07851 1.86804i
\(791\) −0.792866 1.37328i −0.0281911 0.0488283i
\(792\) 4.84325 + 10.7970i 0.172097 + 0.383655i
\(793\) −17.0167 + 7.31142i −0.604281 + 0.259636i
\(794\) 7.04087 + 12.1951i 0.249871 + 0.432789i
\(795\) 2.38786 46.8115i 0.0846888 1.66023i
\(796\) −11.4786 −0.406849
\(797\) 9.89726 + 17.1426i 0.350579 + 0.607221i 0.986351 0.164656i \(-0.0526515\pi\)
−0.635772 + 0.771877i \(0.719318\pi\)
\(798\) −0.873183 0.565323i −0.0309103 0.0200122i
\(799\) −10.0707 −0.356277
\(800\) 14.0294 24.2996i 0.496014 0.859121i
\(801\) 19.0948 + 1.95314i 0.674682 + 0.0690109i
\(802\) 0.430943 0.746415i 0.0152171 0.0263568i
\(803\) 3.01567 5.22329i 0.106421 0.184326i
\(804\) −6.64333 4.30108i −0.234292 0.151687i
\(805\) −1.90297 + 3.29605i −0.0670710 + 0.116170i
\(806\) −22.9413 17.1303i −0.808074 0.603388i
\(807\) −0.148570 + 2.91255i −0.00522991 + 0.102527i
\(808\) 7.66351 13.2736i 0.269601 0.466963i
\(809\) 13.6595 + 23.6589i 0.480241 + 0.831802i 0.999743 0.0226673i \(-0.00721584\pi\)
−0.519502 + 0.854469i \(0.673883\pi\)
\(810\) −27.2690 + 30.6270i −0.958135 + 1.07612i
\(811\) 38.3231 1.34571 0.672854 0.739776i \(-0.265068\pi\)
0.672854 + 0.739776i \(0.265068\pi\)
\(812\) 1.59105 0.0558348
\(813\) 8.69504 + 5.62941i 0.304948 + 0.197432i
\(814\) −3.05849 + 5.29746i −0.107200 + 0.185676i
\(815\) 12.5195 + 21.6844i 0.438539 + 0.759572i
\(816\) −19.9348 12.9064i −0.697858 0.451813i
\(817\) 0.0172985 0.0299619i 0.000605198 0.00104823i
\(818\) 4.20774 0.147120
\(819\) −0.708339 + 3.17180i −0.0247514 + 0.110832i
\(820\) 5.96416 0.208278
\(821\) −27.2978 + 47.2812i −0.952700 + 1.65013i −0.213156 + 0.977018i \(0.568374\pi\)
−0.739545 + 0.673107i \(0.764959\pi\)
\(822\) 1.67422 32.8213i 0.0583952 1.14477i
\(823\) 26.4160 + 45.7538i 0.920804 + 1.59488i 0.798174 + 0.602426i \(0.205799\pi\)
0.122629 + 0.992453i \(0.460867\pi\)
\(824\) 6.65567 11.5280i 0.231861 0.401596i
\(825\) −18.4544 + 9.43540i −0.642499 + 0.328498i
\(826\) −3.16174 −0.110011
\(827\) 20.8919 0.726482 0.363241 0.931695i \(-0.381670\pi\)
0.363241 + 0.931695i \(0.381670\pi\)
\(828\) −5.49303 0.561863i −0.190896 0.0195261i
\(829\) −7.33261 12.7005i −0.254672 0.441105i 0.710134 0.704066i \(-0.248634\pi\)
−0.964806 + 0.262961i \(0.915301\pi\)
\(830\) −29.4124 + 50.9438i −1.02092 + 1.76829i
\(831\) 0.743534 0.380156i 0.0257929 0.0131875i
\(832\) −29.2312 + 12.5595i −1.01341 + 0.435423i
\(833\) 18.2312 31.5773i 0.631673 1.09409i
\(834\) 40.0236 20.4634i 1.38590 0.708589i
\(835\) 20.5341 35.5662i 0.710613 1.23082i
\(836\) 0.586098 1.01515i 0.0202706 0.0351098i
\(837\) −26.7176 21.4511i −0.923495 0.741459i
\(838\) −11.0065 + 19.0638i −0.380213 + 0.658549i
\(839\) 4.51106 0.155739 0.0778696 0.996964i \(-0.475188\pi\)
0.0778696 + 0.996964i \(0.475188\pi\)
\(840\) −0.308001 + 6.03803i −0.0106271 + 0.208332i
\(841\) −31.8916 55.2378i −1.09971 1.90475i
\(842\) −4.10112 −0.141334
\(843\) −18.5255 11.9939i −0.638052 0.413092i
\(844\) −4.97114 8.61026i −0.171114 0.296377i
\(845\) −13.9718 47.1599i −0.480644 1.62235i
\(846\) 4.03707 5.58925i 0.138797 0.192163i
\(847\) 1.40460 + 2.43283i 0.0482625 + 0.0835930i
\(848\) −9.29203 + 16.0943i −0.319090 + 0.552679i
\(849\) −14.0544 + 7.18578i −0.482347 + 0.246615i
\(850\) 29.5984 51.2659i 1.01522 1.75841i
\(851\) −6.61903 11.4645i −0.226898 0.392998i
\(852\) −7.86889 + 4.02322i −0.269584 + 0.137833i
\(853\) 11.4853 + 19.8932i 0.393250 + 0.681129i 0.992876 0.119151i \(-0.0380174\pi\)
−0.599626 + 0.800280i \(0.704684\pi\)
\(854\) 0.929315 1.60962i 0.0318005 0.0550801i
\(855\) 18.7421 + 1.91707i 0.640967 + 0.0655623i
\(856\) 4.83635 + 8.37680i 0.165303 + 0.286313i
\(857\) −20.3594 35.2635i −0.695463 1.20458i −0.970024 0.243008i \(-0.921866\pi\)
0.274561 0.961570i \(-0.411467\pi\)
\(858\) 9.52389 + 1.62261i 0.325140 + 0.0553951i
\(859\) −26.7637 + 46.3561i −0.913167 + 1.58165i −0.103603 + 0.994619i \(0.533037\pi\)
−0.809563 + 0.587033i \(0.800296\pi\)
\(860\) −0.0433557 −0.00147842
\(861\) −1.32861 + 0.679294i −0.0452788 + 0.0231503i
\(862\) −18.0927 −0.616241
\(863\) 26.8211 0.913000 0.456500 0.889724i \(-0.349103\pi\)
0.456500 + 0.889724i \(0.349103\pi\)
\(864\) −14.5884 + 5.67007i −0.496308 + 0.192900i
\(865\) 0.391791 0.678601i 0.0133213 0.0230731i
\(866\) −1.21785 2.10938i −0.0413842 0.0716796i
\(867\) 15.7699 + 10.2099i 0.535573 + 0.346745i
\(868\) −1.08917 −0.0369689
\(869\) −17.0932 −0.579847
\(870\) 67.6841 34.6057i 2.29471 1.17324i
\(871\) −27.5333 + 11.8300i −0.932930 + 0.400844i
\(872\) 43.8255 1.48412
\(873\) −6.61162 + 9.15366i −0.223769 + 0.309804i
\(874\) −3.34605 5.79553i −0.113182 0.196037i
\(875\) −4.90548 −0.165836
\(876\) 3.75276 + 2.42964i 0.126794 + 0.0820900i
\(877\) 12.3170 + 21.3337i 0.415917 + 0.720390i 0.995524 0.0945065i \(-0.0301273\pi\)
−0.579607 + 0.814896i \(0.696794\pi\)
\(878\) 7.93203 + 13.7387i 0.267693 + 0.463658i
\(879\) 5.96674 + 3.86303i 0.201253 + 0.130297i
\(880\) 12.6286 0.425712
\(881\) −14.7520 25.5512i −0.497008 0.860843i 0.502986 0.864294i \(-0.332235\pi\)
−0.999994 + 0.00345150i \(0.998901\pi\)
\(882\) 10.2170 + 22.7768i 0.344026 + 0.766934i
\(883\) −29.2625 −0.984761 −0.492380 0.870380i \(-0.663873\pi\)
−0.492380 + 0.870380i \(0.663873\pi\)
\(884\) 9.61027 4.12916i 0.323228 0.138879i
\(885\) 50.9866 26.0686i 1.71390 0.876285i
\(886\) −13.2061 −0.443669
\(887\) 8.26501 0.277512 0.138756 0.990327i \(-0.455690\pi\)
0.138756 + 0.990327i \(0.455690\pi\)
\(888\) −17.6525 11.4287i −0.592378 0.383522i
\(889\) −1.61098 2.79031i −0.0540307 0.0935839i
\(890\) 14.5762 25.2467i 0.488595 0.846271i
\(891\) 11.3221 + 2.34070i 0.379306 + 0.0784163i
\(892\) −12.5013 −0.418574
\(893\) −3.16764 −0.106001
\(894\) −23.9088 + 12.2241i −0.799629 + 0.408836i
\(895\) −37.7472 −1.26175
\(896\) 0.691357 1.19747i 0.0230966 0.0400045i
\(897\) −13.3467 + 16.0940i −0.445633 + 0.537362i
\(898\) 21.8539 + 37.8521i 0.729274 + 1.26314i
\(899\) 31.7580 + 55.0064i 1.05919 + 1.83457i
\(900\) −6.28787 14.0175i −0.209596 0.467250i
\(901\) 18.8717 32.6867i 0.628708 1.08895i
\(902\) 2.21793 + 3.84157i 0.0738491 + 0.127910i
\(903\) 0.00965813 0.00493803i 0.000321402 0.000164327i
\(904\) −8.10285 14.0345i −0.269497 0.466782i
\(905\) 26.4089 45.7415i 0.877861 1.52050i
\(906\) 23.0857 11.8033i 0.766971 0.392139i
\(907\) −9.21731 + 15.9648i −0.306056 + 0.530104i −0.977496 0.210955i \(-0.932343\pi\)
0.671440 + 0.741059i \(0.265676\pi\)
\(908\) 1.35002 + 2.33830i 0.0448019 + 0.0775991i
\(909\) −6.12889 13.6631i −0.203283 0.453176i
\(910\) 3.95503 + 2.95322i 0.131108 + 0.0978983i
\(911\) −23.0212 39.8739i −0.762726 1.32108i −0.941441 0.337179i \(-0.890527\pi\)
0.178715 0.983901i \(-0.442806\pi\)
\(912\) −6.27028 4.05955i −0.207630 0.134425i
\(913\) 16.5850 0.548883
\(914\) −20.4596 35.4370i −0.676743 1.17215i
\(915\) −1.71492 + 33.6191i −0.0566935 + 1.11141i
\(916\) 2.16646 0.0715820
\(917\) 0.502422 0.870220i 0.0165914 0.0287372i
\(918\) −30.7778 + 11.9624i −1.01582 + 0.394817i
\(919\) 16.5071 28.5912i 0.544520 0.943136i −0.454117 0.890942i \(-0.650045\pi\)
0.998637 0.0521939i \(-0.0166214\pi\)
\(920\) −19.4478 + 33.6846i −0.641176 + 1.11055i
\(921\) −32.4563 + 16.5943i −1.06947 + 0.546802i
\(922\) −6.94254 + 12.0248i −0.228640 + 0.396017i
\(923\) −3.93257 + 33.2327i −0.129442 + 1.09387i
\(924\) 0.327232 0.167308i 0.0107651 0.00550402i
\(925\) 18.4164 31.8981i 0.605527 1.04880i
\(926\) 18.2764 + 31.6557i 0.600601 + 1.04027i
\(927\) −5.32288 11.8662i −0.174826 0.389739i
\(928\) 29.0142 0.952438
\(929\) 34.4070 1.12886 0.564429 0.825482i \(-0.309096\pi\)
0.564429 + 0.825482i \(0.309096\pi\)
\(930\) −46.3341 + 23.6898i −1.51936 + 0.776820i
\(931\) 5.73442 9.93231i 0.187938 0.325518i
\(932\) 0.686591 + 1.18921i 0.0224900 + 0.0389539i
\(933\) 2.44021 47.8377i 0.0798891 1.56614i
\(934\) −0.992081 + 1.71833i −0.0324619 + 0.0562256i
\(935\) −25.6482 −0.838786
\(936\) −7.23901 + 32.4148i −0.236614 + 1.05951i
\(937\) −3.49544 −0.114191 −0.0570956 0.998369i \(-0.518184\pi\)
−0.0570956 + 0.998369i \(0.518184\pi\)
\(938\) 1.50365 2.60439i 0.0490958 0.0850365i
\(939\) 3.32704 + 2.15402i 0.108574 + 0.0702937i
\(940\) 1.98478 + 3.43775i 0.0647365 + 0.112127i
\(941\) −11.7060 + 20.2754i −0.381605 + 0.660959i −0.991292 0.131684i \(-0.957962\pi\)
0.609687 + 0.792642i \(0.291295\pi\)
\(942\) 19.7649 + 12.7964i 0.643977 + 0.416928i
\(943\) −9.59989 −0.312615
\(944\) −22.7043 −0.738963
\(945\) 4.60605 + 3.69812i 0.149835 + 0.120300i
\(946\) −0.0161230 0.0279258i −0.000524203 0.000907946i
\(947\) 20.3033 35.1664i 0.659769 1.14275i −0.320906 0.947111i \(-0.603987\pi\)
0.980675 0.195643i \(-0.0626792\pi\)
\(948\) 0.645461 12.6536i 0.0209636 0.410968i
\(949\) 15.5533 6.68266i 0.504882 0.216928i
\(950\) 9.30984 16.1251i 0.302051 0.523168i
\(951\) −29.6107 19.1708i −0.960192 0.621655i
\(952\) −2.43419 + 4.21614i −0.0788925 + 0.136646i
\(953\) 24.9334 43.1859i 0.807672 1.39893i −0.106801 0.994280i \(-0.534061\pi\)
0.914473 0.404648i \(-0.132606\pi\)
\(954\) 10.5760 + 23.5770i 0.342411 + 0.763333i
\(955\) −26.2564 + 45.4774i −0.849637 + 1.47161i
\(956\) −4.67993 −0.151360
\(957\) −17.9909 11.6478i −0.581564 0.376521i
\(958\) −6.37503 11.0419i −0.205968 0.356747i
\(959\) −4.73390 −0.152866
\(960\) −2.94588 + 57.7508i −0.0950780 + 1.86390i
\(961\) −6.24036 10.8086i −0.201302 0.348665i
\(962\) −15.7742 + 6.77756i −0.508580 + 0.218517i
\(963\) 9.40134 + 0.961631i 0.302954 + 0.0309881i
\(964\) 4.46138 + 7.72734i 0.143691 + 0.248881i
\(965\) 15.2141 26.3515i 0.489758 0.848285i
\(966\) 0.106890 2.09547i 0.00343914 0.0674206i
\(967\) 5.80396 10.0528i 0.186643 0.323275i −0.757486 0.652851i \(-0.773573\pi\)
0.944129 + 0.329576i \(0.106906\pi\)
\(968\) 14.3545 + 24.8628i 0.461372 + 0.799120i
\(969\) 12.7347 + 8.24477i 0.409096 + 0.264860i
\(970\) 8.57489 + 14.8522i 0.275323 + 0.476874i
\(971\) 7.04458 12.2016i 0.226071 0.391567i −0.730569 0.682839i \(-0.760745\pi\)
0.956640 + 0.291272i \(0.0940785\pi\)
\(972\) −2.16029 + 8.29305i −0.0692912 + 0.266000i
\(973\) −3.23753 5.60756i −0.103790 0.179770i
\(974\) −16.0389 27.7802i −0.513920 0.890136i
\(975\) −57.3471 9.77040i −1.83658 0.312903i
\(976\) 6.67336 11.5586i 0.213609 0.369982i
\(977\) −13.3499 −0.427101 −0.213550 0.976932i \(-0.568503\pi\)
−0.213550 + 0.976932i \(0.568503\pi\)
\(978\) −11.5873 7.50196i −0.370522 0.239886i
\(979\) −8.21918 −0.262686
\(980\) −14.3723 −0.459107
\(981\) 25.0713 34.7108i 0.800465 1.10823i
\(982\) 14.0606 24.3536i 0.448690 0.777154i
\(983\) −8.77579 15.2001i −0.279904 0.484808i 0.691456 0.722418i \(-0.256969\pi\)
−0.971361 + 0.237610i \(0.923636\pi\)
\(984\) −13.5780 + 6.94218i −0.432850 + 0.221308i
\(985\) 11.3810 0.362628
\(986\) 61.2124 1.94940
\(987\) −0.833686 0.539751i −0.0265365 0.0171805i
\(988\) 3.02281 1.29878i 0.0961683 0.0413198i
\(989\) 0.0697851 0.00221904
\(990\) 10.2817 14.2348i 0.326772 0.452410i
\(991\) 12.8289 + 22.2202i 0.407522 + 0.705849i 0.994611 0.103673i \(-0.0330596\pi\)
−0.587089 + 0.809522i \(0.699726\pi\)
\(992\) −19.8621 −0.630622
\(993\) −26.9011 + 13.7541i −0.853681 + 0.436472i
\(994\) −1.67913 2.90834i −0.0532589 0.0922471i
\(995\) 39.4994 + 68.4150i 1.25222 + 2.16890i
\(996\) −0.626271 + 12.2774i −0.0198441 + 0.389023i
\(997\) 18.2294 0.577330 0.288665 0.957430i \(-0.406789\pi\)
0.288665 + 0.957430i \(0.406789\pi\)
\(998\) 0.477110 + 0.826379i 0.0151027 + 0.0261586i
\(999\) −19.1502 + 7.44310i −0.605886 + 0.235489i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.2.f.a.94.9 yes 24
3.2 odd 2 351.2.f.a.172.4 24
9.2 odd 6 351.2.h.a.289.9 24
9.7 even 3 117.2.h.a.16.4 yes 24
13.9 even 3 117.2.h.a.22.4 yes 24
39.35 odd 6 351.2.h.a.334.9 24
117.61 even 3 inner 117.2.f.a.61.9 24
117.74 odd 6 351.2.f.a.100.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.f.a.61.9 24 117.61 even 3 inner
117.2.f.a.94.9 yes 24 1.1 even 1 trivial
117.2.h.a.16.4 yes 24 9.7 even 3
117.2.h.a.22.4 yes 24 13.9 even 3
351.2.f.a.100.4 24 117.74 odd 6
351.2.f.a.172.4 24 3.2 odd 2
351.2.h.a.289.9 24 9.2 odd 6
351.2.h.a.334.9 24 39.35 odd 6