Properties

Label 351.2.h.a.334.9
Level $351$
Weight $2$
Character 351.334
Analytic conductor $2.803$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(289,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 334.9
Character \(\chi\) \(=\) 351.334
Dual form 351.2.h.a.289.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.20426 q^{2} -0.549753 q^{4} +(-1.89177 + 3.27665i) q^{5} +(-0.150228 + 0.260203i) q^{7} -3.07057 q^{8} +(-2.27819 + 3.94594i) q^{10} -1.28462 q^{11} +(0.423704 + 3.58057i) q^{13} +(-0.180914 + 0.313352i) q^{14} -2.59827 q^{16} +(2.63848 + 4.56998i) q^{17} +(-0.829906 - 1.43744i) q^{19} +(1.04001 - 1.80135i) q^{20} -1.54702 q^{22} +(-1.67399 - 2.89944i) q^{23} +(-4.65760 - 8.06721i) q^{25} +(0.510251 + 4.31194i) q^{26} +(0.0825883 - 0.143047i) q^{28} +9.63240 q^{29} +(-3.29700 + 5.71056i) q^{31} +3.01215 q^{32} +(3.17742 + 5.50346i) q^{34} +(-0.568394 - 0.984488i) q^{35} +(1.97702 - 3.42430i) q^{37} +(-0.999424 - 1.73105i) q^{38} +(5.80882 - 10.0612i) q^{40} +(1.43368 + 2.48321i) q^{41} +(0.0104220 - 0.0180514i) q^{43} +0.706223 q^{44} +(-2.01592 - 3.49168i) q^{46} +(-0.954216 - 1.65275i) q^{47} +(3.45486 + 5.98400i) q^{49} +(-5.60898 - 9.71503i) q^{50} +(-0.232933 - 1.96843i) q^{52} +7.15248 q^{53} +(2.43021 - 4.20924i) q^{55} +(0.461286 - 0.798970i) q^{56} +11.5999 q^{58} -8.73826 q^{59} +(-2.56839 + 4.44858i) q^{61} +(-3.97045 + 6.87702i) q^{62} +8.82395 q^{64} +(-12.5338 - 5.38529i) q^{65} +(-4.15570 - 7.19788i) q^{67} +(-1.45051 - 2.51236i) q^{68} +(-0.684496 - 1.18558i) q^{70} +(-4.64070 - 8.03792i) q^{71} -4.69504 q^{73} +(2.38085 - 4.12376i) q^{74} +(0.456243 + 0.790236i) q^{76} +(0.192986 - 0.334261i) q^{77} +(6.65302 + 11.5234i) q^{79} +(4.91533 - 8.51360i) q^{80} +(1.72653 + 2.99044i) q^{82} +(6.45522 + 11.1808i) q^{83} -19.9656 q^{85} +(0.0125508 - 0.0217386i) q^{86} +3.94451 q^{88} +(-3.19907 + 5.54096i) q^{89} +(-0.995325 - 0.427653i) q^{91} +(0.920281 + 1.59397i) q^{92} +(-1.14913 - 1.99035i) q^{94} +6.27997 q^{95} +(1.88195 - 3.25964i) q^{97} +(4.16056 + 7.20630i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{2} + 18 q^{4} + 2 q^{5} + 3 q^{7} + 18 q^{8} - 6 q^{11} - 2 q^{14} + 6 q^{16} - 6 q^{17} - 3 q^{19} + 11 q^{20} - 18 q^{22} - 17 q^{23} - 6 q^{25} + 12 q^{26} + 24 q^{29} - 6 q^{31} + 38 q^{32}+ \cdots + 61 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.20426 0.851542 0.425771 0.904831i \(-0.360003\pi\)
0.425771 + 0.904831i \(0.360003\pi\)
\(3\) 0 0
\(4\) −0.549753 −0.274876
\(5\) −1.89177 + 3.27665i −0.846026 + 1.46536i 0.0387007 + 0.999251i \(0.487678\pi\)
−0.884727 + 0.466110i \(0.845655\pi\)
\(6\) 0 0
\(7\) −0.150228 + 0.260203i −0.0567809 + 0.0983473i −0.893019 0.450020i \(-0.851417\pi\)
0.836238 + 0.548367i \(0.184750\pi\)
\(8\) −3.07057 −1.08561
\(9\) 0 0
\(10\) −2.27819 + 3.94594i −0.720427 + 1.24782i
\(11\) −1.28462 −0.387327 −0.193664 0.981068i \(-0.562037\pi\)
−0.193664 + 0.981068i \(0.562037\pi\)
\(12\) 0 0
\(13\) 0.423704 + 3.58057i 0.117514 + 0.993071i
\(14\) −0.180914 + 0.313352i −0.0483513 + 0.0837469i
\(15\) 0 0
\(16\) −2.59827 −0.649567
\(17\) 2.63848 + 4.56998i 0.639926 + 1.10838i 0.985449 + 0.169974i \(0.0543683\pi\)
−0.345523 + 0.938410i \(0.612298\pi\)
\(18\) 0 0
\(19\) −0.829906 1.43744i −0.190393 0.329771i 0.754987 0.655739i \(-0.227643\pi\)
−0.945381 + 0.325968i \(0.894310\pi\)
\(20\) 1.04001 1.80135i 0.232553 0.402793i
\(21\) 0 0
\(22\) −1.54702 −0.329825
\(23\) −1.67399 2.89944i −0.349051 0.604574i 0.637030 0.770839i \(-0.280163\pi\)
−0.986081 + 0.166265i \(0.946829\pi\)
\(24\) 0 0
\(25\) −4.65760 8.06721i −0.931521 1.61344i
\(26\) 0.510251 + 4.31194i 0.100068 + 0.845642i
\(27\) 0 0
\(28\) 0.0825883 0.143047i 0.0156077 0.0270334i
\(29\) 9.63240 1.78869 0.894346 0.447376i \(-0.147641\pi\)
0.894346 + 0.447376i \(0.147641\pi\)
\(30\) 0 0
\(31\) −3.29700 + 5.71056i −0.592158 + 1.02565i 0.401783 + 0.915735i \(0.368391\pi\)
−0.993941 + 0.109913i \(0.964943\pi\)
\(32\) 3.01215 0.532478
\(33\) 0 0
\(34\) 3.17742 + 5.50346i 0.544924 + 0.943836i
\(35\) −0.568394 0.984488i −0.0960762 0.166409i
\(36\) 0 0
\(37\) 1.97702 3.42430i 0.325020 0.562952i −0.656496 0.754329i \(-0.727962\pi\)
0.981517 + 0.191378i \(0.0612955\pi\)
\(38\) −0.999424 1.73105i −0.162128 0.280814i
\(39\) 0 0
\(40\) 5.80882 10.0612i 0.918455 1.59081i
\(41\) 1.43368 + 2.48321i 0.223904 + 0.387813i 0.955990 0.293399i \(-0.0947866\pi\)
−0.732086 + 0.681212i \(0.761453\pi\)
\(42\) 0 0
\(43\) 0.0104220 0.0180514i 0.00158933 0.00275281i −0.865230 0.501376i \(-0.832827\pi\)
0.866819 + 0.498623i \(0.166161\pi\)
\(44\) 0.706223 0.106467
\(45\) 0 0
\(46\) −2.01592 3.49168i −0.297232 0.514821i
\(47\) −0.954216 1.65275i −0.139187 0.241079i 0.788002 0.615672i \(-0.211116\pi\)
−0.927189 + 0.374594i \(0.877782\pi\)
\(48\) 0 0
\(49\) 3.45486 + 5.98400i 0.493552 + 0.854857i
\(50\) −5.60898 9.71503i −0.793229 1.37391i
\(51\) 0 0
\(52\) −0.232933 1.96843i −0.0323019 0.272972i
\(53\) 7.15248 0.982469 0.491235 0.871027i \(-0.336546\pi\)
0.491235 + 0.871027i \(0.336546\pi\)
\(54\) 0 0
\(55\) 2.43021 4.20924i 0.327689 0.567574i
\(56\) 0.461286 0.798970i 0.0616419 0.106767i
\(57\) 0 0
\(58\) 11.5999 1.52315
\(59\) −8.73826 −1.13762 −0.568812 0.822468i \(-0.692597\pi\)
−0.568812 + 0.822468i \(0.692597\pi\)
\(60\) 0 0
\(61\) −2.56839 + 4.44858i −0.328849 + 0.569583i −0.982284 0.187400i \(-0.939994\pi\)
0.653435 + 0.756983i \(0.273327\pi\)
\(62\) −3.97045 + 6.87702i −0.504247 + 0.873382i
\(63\) 0 0
\(64\) 8.82395 1.10299
\(65\) −12.5338 5.38529i −1.55463 0.667963i
\(66\) 0 0
\(67\) −4.15570 7.19788i −0.507700 0.879361i −0.999960 0.00891361i \(-0.997163\pi\)
0.492261 0.870448i \(-0.336171\pi\)
\(68\) −1.45051 2.51236i −0.175901 0.304669i
\(69\) 0 0
\(70\) −0.684496 1.18558i −0.0818129 0.141704i
\(71\) −4.64070 8.03792i −0.550749 0.953926i −0.998221 0.0596277i \(-0.981009\pi\)
0.447471 0.894298i \(-0.352325\pi\)
\(72\) 0 0
\(73\) −4.69504 −0.549512 −0.274756 0.961514i \(-0.588597\pi\)
−0.274756 + 0.961514i \(0.588597\pi\)
\(74\) 2.38085 4.12376i 0.276769 0.479377i
\(75\) 0 0
\(76\) 0.456243 + 0.790236i 0.0523346 + 0.0906463i
\(77\) 0.192986 0.334261i 0.0219928 0.0380926i
\(78\) 0 0
\(79\) 6.65302 + 11.5234i 0.748523 + 1.29648i 0.948530 + 0.316686i \(0.102570\pi\)
−0.200007 + 0.979794i \(0.564097\pi\)
\(80\) 4.91533 8.51360i 0.549550 0.951849i
\(81\) 0 0
\(82\) 1.72653 + 2.99044i 0.190663 + 0.330239i
\(83\) 6.45522 + 11.1808i 0.708552 + 1.22725i 0.965394 + 0.260795i \(0.0839848\pi\)
−0.256842 + 0.966453i \(0.582682\pi\)
\(84\) 0 0
\(85\) −19.9656 −2.16558
\(86\) 0.0125508 0.0217386i 0.00135339 0.00234413i
\(87\) 0 0
\(88\) 3.94451 0.420486
\(89\) −3.19907 + 5.54096i −0.339101 + 0.587340i −0.984264 0.176705i \(-0.943456\pi\)
0.645163 + 0.764045i \(0.276790\pi\)
\(90\) 0 0
\(91\) −0.995325 0.427653i −0.104338 0.0448302i
\(92\) 0.920281 + 1.59397i 0.0959459 + 0.166183i
\(93\) 0 0
\(94\) −1.14913 1.99035i −0.118523 0.205289i
\(95\) 6.27997 0.644311
\(96\) 0 0
\(97\) 1.88195 3.25964i 0.191083 0.330966i −0.754526 0.656270i \(-0.772133\pi\)
0.945610 + 0.325304i \(0.105467\pi\)
\(98\) 4.16056 + 7.20630i 0.420280 + 0.727946i
\(99\) 0 0
\(100\) 2.56053 + 4.43497i 0.256053 + 0.443497i
\(101\) 4.99159 0.496681 0.248341 0.968673i \(-0.420115\pi\)
0.248341 + 0.968673i \(0.420115\pi\)
\(102\) 0 0
\(103\) 2.16757 3.75434i 0.213577 0.369926i −0.739254 0.673426i \(-0.764822\pi\)
0.952831 + 0.303500i \(0.0981553\pi\)
\(104\) −1.30101 10.9944i −0.127575 1.07809i
\(105\) 0 0
\(106\) 8.61347 0.836614
\(107\) −1.57507 + 2.72809i −0.152267 + 0.263735i −0.932061 0.362302i \(-0.881991\pi\)
0.779793 + 0.626037i \(0.215324\pi\)
\(108\) 0 0
\(109\) 14.2728 1.36708 0.683542 0.729911i \(-0.260439\pi\)
0.683542 + 0.729911i \(0.260439\pi\)
\(110\) 2.92661 5.06903i 0.279041 0.483313i
\(111\) 0 0
\(112\) 0.390332 0.676076i 0.0368829 0.0638831i
\(113\) −5.27775 −0.496489 −0.248244 0.968697i \(-0.579854\pi\)
−0.248244 + 0.968697i \(0.579854\pi\)
\(114\) 0 0
\(115\) 12.6672 1.18123
\(116\) −5.29544 −0.491669
\(117\) 0 0
\(118\) −10.5232 −0.968735
\(119\) −1.58550 −0.145342
\(120\) 0 0
\(121\) −9.34975 −0.849978
\(122\) −3.09301 + 5.35726i −0.280028 + 0.485023i
\(123\) 0 0
\(124\) 1.81253 3.13940i 0.162770 0.281926i
\(125\) 16.3268 1.46031
\(126\) 0 0
\(127\) −5.36180 + 9.28691i −0.475783 + 0.824080i −0.999615 0.0277416i \(-0.991168\pi\)
0.523832 + 0.851821i \(0.324502\pi\)
\(128\) 4.60205 0.406768
\(129\) 0 0
\(130\) −15.0940 6.48530i −1.32383 0.568799i
\(131\) −1.67220 + 2.89633i −0.146101 + 0.253054i −0.929783 0.368108i \(-0.880006\pi\)
0.783682 + 0.621162i \(0.213339\pi\)
\(132\) 0 0
\(133\) 0.498700 0.0432428
\(134\) −5.00455 8.66814i −0.432327 0.748813i
\(135\) 0 0
\(136\) −8.10165 14.0325i −0.694710 1.20327i
\(137\) −7.87786 + 13.6448i −0.673051 + 1.16576i 0.303984 + 0.952677i \(0.401683\pi\)
−0.977035 + 0.213081i \(0.931650\pi\)
\(138\) 0 0
\(139\) 21.5508 1.82791 0.913956 0.405813i \(-0.133012\pi\)
0.913956 + 0.405813i \(0.133012\pi\)
\(140\) 0.312476 + 0.541225i 0.0264091 + 0.0457419i
\(141\) 0 0
\(142\) −5.58862 9.67977i −0.468986 0.812308i
\(143\) −0.544298 4.59967i −0.0455165 0.384643i
\(144\) 0 0
\(145\) −18.2223 + 31.5620i −1.51328 + 2.62108i
\(146\) −5.65405 −0.467933
\(147\) 0 0
\(148\) −1.08687 + 1.88252i −0.0893405 + 0.154742i
\(149\) 12.8737 1.05466 0.527328 0.849662i \(-0.323194\pi\)
0.527328 + 0.849662i \(0.323194\pi\)
\(150\) 0 0
\(151\) −6.21526 10.7652i −0.505791 0.876056i −0.999978 0.00669978i \(-0.997867\pi\)
0.494187 0.869356i \(-0.335466\pi\)
\(152\) 2.54828 + 4.41376i 0.206693 + 0.358003i
\(153\) 0 0
\(154\) 0.232405 0.402538i 0.0187278 0.0324374i
\(155\) −12.4743 21.6062i −1.00196 1.73545i
\(156\) 0 0
\(157\) 5.64417 9.77599i 0.450454 0.780209i −0.547960 0.836504i \(-0.684596\pi\)
0.998414 + 0.0562954i \(0.0179288\pi\)
\(158\) 8.01198 + 13.8772i 0.637399 + 1.10401i
\(159\) 0 0
\(160\) −5.69830 + 9.86974i −0.450490 + 0.780271i
\(161\) 1.00592 0.0792777
\(162\) 0 0
\(163\) −3.30893 5.73124i −0.259176 0.448905i 0.706846 0.707368i \(-0.250118\pi\)
−0.966021 + 0.258462i \(0.916784\pi\)
\(164\) −0.788171 1.36515i −0.0615458 0.106601i
\(165\) 0 0
\(166\) 7.77378 + 13.4646i 0.603362 + 1.04505i
\(167\) 5.42722 + 9.40022i 0.419971 + 0.727411i 0.995936 0.0900632i \(-0.0287069\pi\)
−0.575965 + 0.817474i \(0.695374\pi\)
\(168\) 0 0
\(169\) −12.6409 + 3.03420i −0.972381 + 0.233400i
\(170\) −24.0438 −1.84408
\(171\) 0 0
\(172\) −0.00572950 + 0.00992379i −0.000436871 + 0.000756682i
\(173\) 0.103551 0.179356i 0.00787286 0.0136362i −0.862062 0.506803i \(-0.830827\pi\)
0.869935 + 0.493166i \(0.164161\pi\)
\(174\) 0 0
\(175\) 2.79881 0.211570
\(176\) 3.33778 0.251595
\(177\) 0 0
\(178\) −3.85252 + 6.67276i −0.288759 + 0.500145i
\(179\) 4.98833 8.64004i 0.372845 0.645787i −0.617157 0.786840i \(-0.711715\pi\)
0.990002 + 0.141053i \(0.0450488\pi\)
\(180\) 0 0
\(181\) 13.9599 1.03763 0.518814 0.854887i \(-0.326374\pi\)
0.518814 + 0.854887i \(0.326374\pi\)
\(182\) −1.19863 0.515006i −0.0888486 0.0381748i
\(183\) 0 0
\(184\) 5.14011 + 8.90293i 0.378934 + 0.656333i
\(185\) 7.48015 + 12.9560i 0.549952 + 0.952544i
\(186\) 0 0
\(187\) −3.38944 5.87069i −0.247861 0.429307i
\(188\) 0.524583 + 0.908605i 0.0382592 + 0.0662668i
\(189\) 0 0
\(190\) 7.56273 0.548658
\(191\) −6.93963 + 12.0198i −0.502134 + 0.869721i 0.497863 + 0.867256i \(0.334118\pi\)
−0.999997 + 0.00246553i \(0.999215\pi\)
\(192\) 0 0
\(193\) −4.02111 6.96477i −0.289446 0.501335i 0.684232 0.729265i \(-0.260138\pi\)
−0.973678 + 0.227930i \(0.926804\pi\)
\(194\) 2.26637 3.92546i 0.162716 0.281832i
\(195\) 0 0
\(196\) −1.89932 3.28972i −0.135666 0.234980i
\(197\) −1.50401 + 2.60502i −0.107156 + 0.185600i −0.914617 0.404321i \(-0.867508\pi\)
0.807461 + 0.589921i \(0.200841\pi\)
\(198\) 0 0
\(199\) −10.4398 18.0823i −0.740057 1.28182i −0.952469 0.304637i \(-0.901465\pi\)
0.212411 0.977180i \(-0.431868\pi\)
\(200\) 14.3015 + 24.7709i 1.01127 + 1.75157i
\(201\) 0 0
\(202\) 6.01118 0.422945
\(203\) −1.44706 + 2.50638i −0.101563 + 0.175913i
\(204\) 0 0
\(205\) −10.8488 −0.757714
\(206\) 2.61032 4.52121i 0.181870 0.315008i
\(207\) 0 0
\(208\) −1.10090 9.30327i −0.0763334 0.645066i
\(209\) 1.06611 + 1.84656i 0.0737445 + 0.127729i
\(210\) 0 0
\(211\) 9.04250 + 15.6621i 0.622511 + 1.07822i 0.989017 + 0.147805i \(0.0472208\pi\)
−0.366505 + 0.930416i \(0.619446\pi\)
\(212\) −3.93210 −0.270058
\(213\) 0 0
\(214\) −1.89679 + 3.28534i −0.129662 + 0.224581i
\(215\) 0.0394320 + 0.0682982i 0.00268924 + 0.00465790i
\(216\) 0 0
\(217\) −0.990602 1.71577i −0.0672465 0.116474i
\(218\) 17.1882 1.16413
\(219\) 0 0
\(220\) −1.33601 + 2.31404i −0.0900739 + 0.156013i
\(221\) −15.2452 + 11.3836i −1.02550 + 0.765743i
\(222\) 0 0
\(223\) 22.7398 1.52277 0.761385 0.648300i \(-0.224520\pi\)
0.761385 + 0.648300i \(0.224520\pi\)
\(224\) −0.452509 + 0.783769i −0.0302345 + 0.0523677i
\(225\) 0 0
\(226\) −6.35579 −0.422781
\(227\) 2.45568 4.25336i 0.162989 0.282305i −0.772950 0.634467i \(-0.781220\pi\)
0.935939 + 0.352161i \(0.114553\pi\)
\(228\) 0 0
\(229\) 1.97040 3.41283i 0.130208 0.225526i −0.793549 0.608506i \(-0.791769\pi\)
0.923757 + 0.382980i \(0.125102\pi\)
\(230\) 15.2547 1.00586
\(231\) 0 0
\(232\) −29.5770 −1.94182
\(233\) −2.49782 −0.163637 −0.0818187 0.996647i \(-0.526073\pi\)
−0.0818187 + 0.996647i \(0.526073\pi\)
\(234\) 0 0
\(235\) 7.22064 0.471023
\(236\) 4.80388 0.312706
\(237\) 0 0
\(238\) −1.90935 −0.123765
\(239\) 4.25640 7.37230i 0.275324 0.476874i −0.694893 0.719113i \(-0.744548\pi\)
0.970217 + 0.242239i \(0.0778817\pi\)
\(240\) 0 0
\(241\) −8.11525 + 14.0560i −0.522749 + 0.905428i 0.476900 + 0.878957i \(0.341760\pi\)
−0.999650 + 0.0264707i \(0.991573\pi\)
\(242\) −11.2596 −0.723792
\(243\) 0 0
\(244\) 1.41198 2.44562i 0.0903927 0.156565i
\(245\) −26.1433 −1.67023
\(246\) 0 0
\(247\) 4.79521 3.58058i 0.305112 0.227827i
\(248\) 10.1237 17.5347i 0.642853 1.11345i
\(249\) 0 0
\(250\) 19.6617 1.24352
\(251\) −11.7453 20.3434i −0.741356 1.28407i −0.951878 0.306477i \(-0.900850\pi\)
0.210522 0.977589i \(-0.432484\pi\)
\(252\) 0 0
\(253\) 2.15044 + 3.72467i 0.135197 + 0.234168i
\(254\) −6.45701 + 11.1839i −0.405149 + 0.701738i
\(255\) 0 0
\(256\) −12.1058 −0.756614
\(257\) −2.86567 4.96348i −0.178756 0.309614i 0.762699 0.646754i \(-0.223874\pi\)
−0.941455 + 0.337140i \(0.890540\pi\)
\(258\) 0 0
\(259\) 0.594008 + 1.02885i 0.0369099 + 0.0639298i
\(260\) 6.89050 + 2.96058i 0.427330 + 0.183607i
\(261\) 0 0
\(262\) −2.01376 + 3.48794i −0.124411 + 0.215486i
\(263\) 0.533324 0.0328862 0.0164431 0.999865i \(-0.494766\pi\)
0.0164431 + 0.999865i \(0.494766\pi\)
\(264\) 0 0
\(265\) −13.5309 + 23.4362i −0.831195 + 1.43967i
\(266\) 0.600566 0.0368231
\(267\) 0 0
\(268\) 2.28461 + 3.95706i 0.139555 + 0.241716i
\(269\) −0.841875 1.45817i −0.0513300 0.0889062i 0.839219 0.543794i \(-0.183013\pi\)
−0.890549 + 0.454888i \(0.849679\pi\)
\(270\) 0 0
\(271\) −2.99018 + 5.17914i −0.181640 + 0.314610i −0.942439 0.334377i \(-0.891474\pi\)
0.760799 + 0.648988i \(0.224807\pi\)
\(272\) −6.85548 11.8740i −0.415674 0.719969i
\(273\) 0 0
\(274\) −9.48700 + 16.4320i −0.573131 + 0.992692i
\(275\) 5.98325 + 10.3633i 0.360803 + 0.624930i
\(276\) 0 0
\(277\) 0.241067 0.417541i 0.0144843 0.0250876i −0.858692 0.512491i \(-0.828723\pi\)
0.873177 + 0.487404i \(0.162056\pi\)
\(278\) 25.9528 1.55654
\(279\) 0 0
\(280\) 1.74530 + 3.02294i 0.104301 + 0.180655i
\(281\) −6.37082 11.0346i −0.380051 0.658268i 0.611018 0.791617i \(-0.290760\pi\)
−0.991069 + 0.133349i \(0.957427\pi\)
\(282\) 0 0
\(283\) −4.55670 7.89244i −0.270868 0.469157i 0.698217 0.715887i \(-0.253977\pi\)
−0.969084 + 0.246730i \(0.920644\pi\)
\(284\) 2.55124 + 4.41887i 0.151388 + 0.262212i
\(285\) 0 0
\(286\) −0.655478 5.53920i −0.0387592 0.327540i
\(287\) −0.861518 −0.0508538
\(288\) 0 0
\(289\) −5.42317 + 9.39321i −0.319010 + 0.552542i
\(290\) −21.9444 + 38.0089i −1.28862 + 2.23196i
\(291\) 0 0
\(292\) 2.58111 0.151048
\(293\) −4.10386 −0.239750 −0.119875 0.992789i \(-0.538249\pi\)
−0.119875 + 0.992789i \(0.538249\pi\)
\(294\) 0 0
\(295\) 16.5308 28.6322i 0.962460 1.66703i
\(296\) −6.07059 + 10.5146i −0.352846 + 0.611147i
\(297\) 0 0
\(298\) 15.5033 0.898083
\(299\) 9.67236 7.22234i 0.559367 0.417679i
\(300\) 0 0
\(301\) 0.00313134 + 0.00542364i 0.000180488 + 0.000312614i
\(302\) −7.48481 12.9641i −0.430702 0.745998i
\(303\) 0 0
\(304\) 2.15632 + 3.73485i 0.123673 + 0.214208i
\(305\) −9.71762 16.8314i −0.556429 0.963764i
\(306\) 0 0
\(307\) 21.0459 1.20115 0.600575 0.799568i \(-0.294938\pi\)
0.600575 + 0.799568i \(0.294938\pi\)
\(308\) −0.106094 + 0.183761i −0.00604529 + 0.0104708i
\(309\) 0 0
\(310\) −15.0224 26.0195i −0.853213 1.47781i
\(311\) 13.8275 23.9500i 0.784087 1.35808i −0.145456 0.989365i \(-0.546465\pi\)
0.929543 0.368714i \(-0.120202\pi\)
\(312\) 0 0
\(313\) −1.14415 1.98173i −0.0646712 0.112014i 0.831877 0.554960i \(-0.187267\pi\)
−0.896548 + 0.442946i \(0.853933\pi\)
\(314\) 6.79706 11.7729i 0.383580 0.664381i
\(315\) 0 0
\(316\) −3.65752 6.33500i −0.205751 0.356372i
\(317\) −10.1830 17.6374i −0.571932 0.990615i −0.996368 0.0851568i \(-0.972861\pi\)
0.424436 0.905458i \(-0.360472\pi\)
\(318\) 0 0
\(319\) −12.3740 −0.692809
\(320\) −16.6929 + 28.9130i −0.933161 + 1.61628i
\(321\) 0 0
\(322\) 1.21139 0.0675083
\(323\) 4.37938 7.58531i 0.243675 0.422058i
\(324\) 0 0
\(325\) 26.9117 20.0950i 1.49280 1.11467i
\(326\) −3.98482 6.90192i −0.220699 0.382262i
\(327\) 0 0
\(328\) −4.40223 7.62488i −0.243072 0.421013i
\(329\) 0.573400 0.0316126
\(330\) 0 0
\(331\) −8.72183 + 15.1067i −0.479395 + 0.830337i −0.999721 0.0236311i \(-0.992477\pi\)
0.520325 + 0.853968i \(0.325811\pi\)
\(332\) −3.54877 6.14666i −0.194764 0.337342i
\(333\) 0 0
\(334\) 6.53580 + 11.3203i 0.357623 + 0.619421i
\(335\) 31.4466 1.71811
\(336\) 0 0
\(337\) 12.4840 21.6229i 0.680048 1.17788i −0.294918 0.955523i \(-0.595292\pi\)
0.974966 0.222355i \(-0.0713743\pi\)
\(338\) −15.2230 + 3.65398i −0.828023 + 0.198750i
\(339\) 0 0
\(340\) 10.9762 0.595266
\(341\) 4.23538 7.33590i 0.229359 0.397261i
\(342\) 0 0
\(343\) −4.17926 −0.225659
\(344\) −0.0320014 + 0.0554280i −0.00172540 + 0.00298848i
\(345\) 0 0
\(346\) 0.124703 0.215992i 0.00670407 0.0116118i
\(347\) 10.1284 0.543722 0.271861 0.962336i \(-0.412361\pi\)
0.271861 + 0.962336i \(0.412361\pi\)
\(348\) 0 0
\(349\) 22.5689 1.20809 0.604044 0.796951i \(-0.293555\pi\)
0.604044 + 0.796951i \(0.293555\pi\)
\(350\) 3.37050 0.180161
\(351\) 0 0
\(352\) −3.86946 −0.206243
\(353\) −24.9017 −1.32539 −0.662693 0.748891i \(-0.730587\pi\)
−0.662693 + 0.748891i \(0.730587\pi\)
\(354\) 0 0
\(355\) 35.1166 1.86379
\(356\) 1.75870 3.04616i 0.0932109 0.161446i
\(357\) 0 0
\(358\) 6.00726 10.4049i 0.317494 0.549915i
\(359\) 35.7532 1.88698 0.943492 0.331395i \(-0.107519\pi\)
0.943492 + 0.331395i \(0.107519\pi\)
\(360\) 0 0
\(361\) 8.12251 14.0686i 0.427501 0.740453i
\(362\) 16.8113 0.883584
\(363\) 0 0
\(364\) 0.547183 + 0.235103i 0.0286802 + 0.0123228i
\(365\) 8.88194 15.3840i 0.464902 0.805234i
\(366\) 0 0
\(367\) −13.3838 −0.698627 −0.349313 0.937006i \(-0.613585\pi\)
−0.349313 + 0.937006i \(0.613585\pi\)
\(368\) 4.34947 + 7.53351i 0.226732 + 0.392711i
\(369\) 0 0
\(370\) 9.00806 + 15.6024i 0.468307 + 0.811131i
\(371\) −1.07450 + 1.86109i −0.0557854 + 0.0966232i
\(372\) 0 0
\(373\) 7.14941 0.370182 0.185091 0.982721i \(-0.440742\pi\)
0.185091 + 0.982721i \(0.440742\pi\)
\(374\) −4.08178 7.06985i −0.211064 0.365573i
\(375\) 0 0
\(376\) 2.92999 + 5.07489i 0.151103 + 0.261717i
\(377\) 4.08129 + 34.4895i 0.210197 + 1.77630i
\(378\) 0 0
\(379\) 13.7475 23.8114i 0.706162 1.22311i −0.260109 0.965579i \(-0.583758\pi\)
0.966271 0.257529i \(-0.0829082\pi\)
\(380\) −3.45243 −0.177106
\(381\) 0 0
\(382\) −8.35713 + 14.4750i −0.427588 + 0.740604i
\(383\) 11.3250 0.578680 0.289340 0.957226i \(-0.406564\pi\)
0.289340 + 0.957226i \(0.406564\pi\)
\(384\) 0 0
\(385\) 0.730170 + 1.26469i 0.0372129 + 0.0644547i
\(386\) −4.84247 8.38741i −0.246475 0.426908i
\(387\) 0 0
\(388\) −1.03461 + 1.79200i −0.0525243 + 0.0909748i
\(389\) 7.75413 + 13.4306i 0.393150 + 0.680956i 0.992863 0.119259i \(-0.0380519\pi\)
−0.599713 + 0.800215i \(0.704719\pi\)
\(390\) 0 0
\(391\) 8.83359 15.3002i 0.446734 0.773766i
\(392\) −10.6084 18.3743i −0.535805 0.928042i
\(393\) 0 0
\(394\) −1.81122 + 3.13713i −0.0912481 + 0.158046i
\(395\) −50.3440 −2.53308
\(396\) 0 0
\(397\) −5.84662 10.1266i −0.293434 0.508242i 0.681186 0.732111i \(-0.261465\pi\)
−0.974619 + 0.223869i \(0.928131\pi\)
\(398\) −12.5722 21.7758i −0.630190 1.09152i
\(399\) 0 0
\(400\) 12.1017 + 20.9608i 0.605085 + 1.04804i
\(401\) 0.357848 + 0.619811i 0.0178701 + 0.0309519i 0.874822 0.484444i \(-0.160978\pi\)
−0.856952 + 0.515396i \(0.827645\pi\)
\(402\) 0 0
\(403\) −21.8440 9.38553i −1.08813 0.467527i
\(404\) −2.74414 −0.136526
\(405\) 0 0
\(406\) −1.74264 + 3.01833i −0.0864855 + 0.149797i
\(407\) −2.53972 + 4.39892i −0.125889 + 0.218047i
\(408\) 0 0
\(409\) −3.49404 −0.172769 −0.0863846 0.996262i \(-0.527531\pi\)
−0.0863846 + 0.996262i \(0.527531\pi\)
\(410\) −13.0648 −0.645225
\(411\) 0 0
\(412\) −1.19163 + 2.06396i −0.0587073 + 0.101684i
\(413\) 1.31273 2.27372i 0.0645953 0.111882i
\(414\) 0 0
\(415\) −48.8472 −2.39782
\(416\) 1.27626 + 10.7852i 0.0625738 + 0.528788i
\(417\) 0 0
\(418\) 1.28388 + 2.22374i 0.0627965 + 0.108767i
\(419\) −9.13962 15.8303i −0.446500 0.773360i 0.551656 0.834072i \(-0.313996\pi\)
−0.998155 + 0.0607117i \(0.980663\pi\)
\(420\) 0 0
\(421\) −1.70275 2.94926i −0.0829871 0.143738i 0.821545 0.570144i \(-0.193113\pi\)
−0.904532 + 0.426406i \(0.859779\pi\)
\(422\) 10.8895 + 18.8612i 0.530094 + 0.918150i
\(423\) 0 0
\(424\) −21.9622 −1.06658
\(425\) 24.5780 42.5704i 1.19221 2.06497i
\(426\) 0 0
\(427\) −0.771688 1.33660i −0.0373446 0.0646828i
\(428\) 0.865896 1.49978i 0.0418547 0.0724944i
\(429\) 0 0
\(430\) 0.0474864 + 0.0822489i 0.00229000 + 0.00396639i
\(431\) 7.51196 13.0111i 0.361839 0.626723i −0.626425 0.779482i \(-0.715482\pi\)
0.988263 + 0.152759i \(0.0488158\pi\)
\(432\) 0 0
\(433\) 1.01128 + 1.75159i 0.0485991 + 0.0841762i 0.889302 0.457321i \(-0.151191\pi\)
−0.840703 + 0.541497i \(0.817858\pi\)
\(434\) −1.19294 2.06624i −0.0572632 0.0991827i
\(435\) 0 0
\(436\) −7.84649 −0.375779
\(437\) −2.77851 + 4.81252i −0.132914 + 0.230214i
\(438\) 0 0
\(439\) 13.1733 0.628725 0.314363 0.949303i \(-0.398209\pi\)
0.314363 + 0.949303i \(0.398209\pi\)
\(440\) −7.46212 + 12.9248i −0.355743 + 0.616164i
\(441\) 0 0
\(442\) −18.3592 + 13.7088i −0.873259 + 0.652062i
\(443\) 5.48308 + 9.49698i 0.260509 + 0.451215i 0.966377 0.257128i \(-0.0827762\pi\)
−0.705868 + 0.708343i \(0.749443\pi\)
\(444\) 0 0
\(445\) −12.1038 20.9645i −0.573777 0.993811i
\(446\) 27.3847 1.29670
\(447\) 0 0
\(448\) −1.32560 + 2.29601i −0.0626289 + 0.108476i
\(449\) 18.1471 + 31.4318i 0.856416 + 1.48336i 0.875325 + 0.483535i \(0.160647\pi\)
−0.0189089 + 0.999821i \(0.506019\pi\)
\(450\) 0 0
\(451\) −1.84174 3.18998i −0.0867240 0.150210i
\(452\) 2.90146 0.136473
\(453\) 0 0
\(454\) 2.95728 5.12216i 0.138792 0.240395i
\(455\) 3.28420 2.45231i 0.153965 0.114966i
\(456\) 0 0
\(457\) −33.9786 −1.58945 −0.794726 0.606968i \(-0.792386\pi\)
−0.794726 + 0.606968i \(0.792386\pi\)
\(458\) 2.37288 4.10994i 0.110877 0.192045i
\(459\) 0 0
\(460\) −6.96385 −0.324691
\(461\) −5.76497 + 9.98523i −0.268502 + 0.465058i −0.968475 0.249110i \(-0.919862\pi\)
0.699973 + 0.714169i \(0.253195\pi\)
\(462\) 0 0
\(463\) −15.1765 + 26.2864i −0.705310 + 1.22163i 0.261270 + 0.965266i \(0.415859\pi\)
−0.966580 + 0.256366i \(0.917475\pi\)
\(464\) −25.0275 −1.16187
\(465\) 0 0
\(466\) −3.00803 −0.139344
\(467\) 1.64762 0.0762426 0.0381213 0.999273i \(-0.487863\pi\)
0.0381213 + 0.999273i \(0.487863\pi\)
\(468\) 0 0
\(469\) 2.49721 0.115310
\(470\) 8.69554 0.401096
\(471\) 0 0
\(472\) 26.8314 1.23502
\(473\) −0.0133883 + 0.0231891i −0.000615592 + 0.00106624i
\(474\) 0 0
\(475\) −7.73074 + 13.3900i −0.354711 + 0.614377i
\(476\) 0.871631 0.0399511
\(477\) 0 0
\(478\) 5.12582 8.87818i 0.234450 0.406079i
\(479\) 10.5874 0.483753 0.241876 0.970307i \(-0.422237\pi\)
0.241876 + 0.970307i \(0.422237\pi\)
\(480\) 0 0
\(481\) 13.0986 + 5.62797i 0.597246 + 0.256614i
\(482\) −9.77289 + 16.9271i −0.445143 + 0.771010i
\(483\) 0 0
\(484\) 5.14005 0.233639
\(485\) 7.12045 + 12.3330i 0.323323 + 0.560012i
\(486\) 0 0
\(487\) 13.3185 + 23.0683i 0.603517 + 1.04532i 0.992284 + 0.123986i \(0.0395679\pi\)
−0.388767 + 0.921336i \(0.627099\pi\)
\(488\) 7.88642 13.6597i 0.357002 0.618345i
\(489\) 0 0
\(490\) −31.4833 −1.42227
\(491\) 11.6757 + 20.2228i 0.526915 + 0.912644i 0.999508 + 0.0313629i \(0.00998477\pi\)
−0.472593 + 0.881281i \(0.656682\pi\)
\(492\) 0 0
\(493\) 25.4149 + 44.0199i 1.14463 + 1.98256i
\(494\) 5.77469 4.31196i 0.259816 0.194004i
\(495\) 0 0
\(496\) 8.56647 14.8376i 0.384646 0.666226i
\(497\) 2.78865 0.125088
\(498\) 0 0
\(499\) −0.396185 + 0.686212i −0.0177357 + 0.0307191i −0.874757 0.484562i \(-0.838979\pi\)
0.857021 + 0.515281i \(0.172312\pi\)
\(500\) −8.97570 −0.401405
\(501\) 0 0
\(502\) −14.1444 24.4988i −0.631296 1.09344i
\(503\) −11.9019 20.6147i −0.530681 0.919166i −0.999359 0.0357971i \(-0.988603\pi\)
0.468678 0.883369i \(-0.344730\pi\)
\(504\) 0 0
\(505\) −9.44294 + 16.3557i −0.420206 + 0.727817i
\(506\) 2.58969 + 4.48548i 0.115126 + 0.199404i
\(507\) 0 0
\(508\) 2.94766 5.10550i 0.130781 0.226520i
\(509\) 12.1015 + 20.9604i 0.536388 + 0.929052i 0.999095 + 0.0425404i \(0.0135451\pi\)
−0.462706 + 0.886512i \(0.653122\pi\)
\(510\) 0 0
\(511\) 0.705326 1.22166i 0.0312018 0.0540431i
\(512\) −23.7827 −1.05106
\(513\) 0 0
\(514\) −3.45102 5.97734i −0.152218 0.263649i
\(515\) 8.20109 + 14.2047i 0.361383 + 0.625934i
\(516\) 0 0
\(517\) 1.22580 + 2.12316i 0.0539108 + 0.0933763i
\(518\) 0.715342 + 1.23901i 0.0314303 + 0.0544389i
\(519\) 0 0
\(520\) 38.4859 + 16.5359i 1.68772 + 0.725148i
\(521\) 10.2515 0.449125 0.224563 0.974460i \(-0.427905\pi\)
0.224563 + 0.974460i \(0.427905\pi\)
\(522\) 0 0
\(523\) −13.3127 + 23.0583i −0.582124 + 1.00827i 0.413103 + 0.910684i \(0.364445\pi\)
−0.995227 + 0.0975847i \(0.968888\pi\)
\(524\) 0.919295 1.59227i 0.0401596 0.0695584i
\(525\) 0 0
\(526\) 0.642262 0.0280040
\(527\) −34.7963 −1.51575
\(528\) 0 0
\(529\) 5.89551 10.2113i 0.256326 0.443970i
\(530\) −16.2947 + 28.2233i −0.707797 + 1.22594i
\(531\) 0 0
\(532\) −0.274162 −0.0118864
\(533\) −8.28385 + 6.18555i −0.358814 + 0.267926i
\(534\) 0 0
\(535\) −5.95933 10.3219i −0.257644 0.446253i
\(536\) 12.7604 + 22.1016i 0.551164 + 0.954644i
\(537\) 0 0
\(538\) −1.01384 1.75602i −0.0437096 0.0757073i
\(539\) −4.43818 7.68716i −0.191166 0.331109i
\(540\) 0 0
\(541\) −11.7447 −0.504943 −0.252471 0.967604i \(-0.581243\pi\)
−0.252471 + 0.967604i \(0.581243\pi\)
\(542\) −3.60096 + 6.23704i −0.154674 + 0.267904i
\(543\) 0 0
\(544\) 7.94750 + 13.7655i 0.340746 + 0.590190i
\(545\) −27.0008 + 46.7668i −1.15659 + 2.00327i
\(546\) 0 0
\(547\) 0.492671 + 0.853331i 0.0210651 + 0.0364858i 0.876366 0.481646i \(-0.159961\pi\)
−0.855301 + 0.518132i \(0.826628\pi\)
\(548\) 4.33087 7.50129i 0.185006 0.320439i
\(549\) 0 0
\(550\) 7.20540 + 12.4801i 0.307239 + 0.532154i
\(551\) −7.99398 13.8460i −0.340555 0.589859i
\(552\) 0 0
\(553\) −3.99788 −0.170007
\(554\) 0.290308 0.502828i 0.0123340 0.0213631i
\(555\) 0 0
\(556\) −11.8476 −0.502450
\(557\) −12.1835 + 21.1025i −0.516233 + 0.894141i 0.483590 + 0.875295i \(0.339333\pi\)
−0.999822 + 0.0188462i \(0.994001\pi\)
\(558\) 0 0
\(559\) 0.0690500 + 0.0296681i 0.00292050 + 0.00125483i
\(560\) 1.47684 + 2.55796i 0.0624079 + 0.108094i
\(561\) 0 0
\(562\) −7.67213 13.2885i −0.323629 0.560543i
\(563\) −33.9591 −1.43121 −0.715603 0.698507i \(-0.753848\pi\)
−0.715603 + 0.698507i \(0.753848\pi\)
\(564\) 0 0
\(565\) 9.98430 17.2933i 0.420043 0.727535i
\(566\) −5.48746 9.50456i −0.230655 0.399507i
\(567\) 0 0
\(568\) 14.2496 + 24.6810i 0.597899 + 1.03559i
\(569\) 24.0616 1.00871 0.504356 0.863496i \(-0.331730\pi\)
0.504356 + 0.863496i \(0.331730\pi\)
\(570\) 0 0
\(571\) −2.33817 + 4.04984i −0.0978495 + 0.169480i −0.910794 0.412860i \(-0.864530\pi\)
0.812945 + 0.582341i \(0.197863\pi\)
\(572\) 0.299229 + 2.52868i 0.0125114 + 0.105729i
\(573\) 0 0
\(574\) −1.03749 −0.0433041
\(575\) −15.5936 + 27.0089i −0.650297 + 1.12635i
\(576\) 0 0
\(577\) −24.2913 −1.01126 −0.505630 0.862750i \(-0.668740\pi\)
−0.505630 + 0.862750i \(0.668740\pi\)
\(578\) −6.53092 + 11.3119i −0.271651 + 0.470513i
\(579\) 0 0
\(580\) 10.0178 17.3513i 0.415965 0.720473i
\(581\) −3.87902 −0.160929
\(582\) 0 0
\(583\) −9.18822 −0.380537
\(584\) 14.4164 0.596557
\(585\) 0 0
\(586\) −4.94212 −0.204157
\(587\) 17.0334 0.703045 0.351522 0.936179i \(-0.385664\pi\)
0.351522 + 0.936179i \(0.385664\pi\)
\(588\) 0 0
\(589\) 10.9448 0.450972
\(590\) 19.9074 34.4806i 0.819575 1.41955i
\(591\) 0 0
\(592\) −5.13683 + 8.89725i −0.211122 + 0.365675i
\(593\) −16.1029 −0.661266 −0.330633 0.943759i \(-0.607262\pi\)
−0.330633 + 0.943759i \(0.607262\pi\)
\(594\) 0 0
\(595\) 2.99940 5.19511i 0.122963 0.212979i
\(596\) −7.07736 −0.289900
\(597\) 0 0
\(598\) 11.6481 8.69760i 0.476324 0.355671i
\(599\) 10.4601 18.1175i 0.427390 0.740261i −0.569250 0.822164i \(-0.692766\pi\)
0.996640 + 0.0819032i \(0.0260998\pi\)
\(600\) 0 0
\(601\) 2.39968 0.0978850 0.0489425 0.998802i \(-0.484415\pi\)
0.0489425 + 0.998802i \(0.484415\pi\)
\(602\) 0.00377096 + 0.00653149i 0.000153693 + 0.000266204i
\(603\) 0 0
\(604\) 3.41686 + 5.91817i 0.139030 + 0.240807i
\(605\) 17.6876 30.6358i 0.719103 1.24552i
\(606\) 0 0
\(607\) −41.9024 −1.70076 −0.850382 0.526165i \(-0.823629\pi\)
−0.850382 + 0.526165i \(0.823629\pi\)
\(608\) −2.49980 4.32978i −0.101380 0.175596i
\(609\) 0 0
\(610\) −11.7026 20.2694i −0.473823 0.820685i
\(611\) 5.51349 4.11692i 0.223052 0.166553i
\(612\) 0 0
\(613\) −6.47866 + 11.2214i −0.261671 + 0.453227i −0.966686 0.255965i \(-0.917607\pi\)
0.705015 + 0.709192i \(0.250940\pi\)
\(614\) 25.3447 1.02283
\(615\) 0 0
\(616\) −0.592576 + 1.02637i −0.0238756 + 0.0413537i
\(617\) 14.5666 0.586431 0.293216 0.956046i \(-0.405275\pi\)
0.293216 + 0.956046i \(0.405275\pi\)
\(618\) 0 0
\(619\) 4.73531 + 8.20179i 0.190328 + 0.329658i 0.945359 0.326031i \(-0.105711\pi\)
−0.755031 + 0.655689i \(0.772378\pi\)
\(620\) 6.85780 + 11.8781i 0.275416 + 0.477034i
\(621\) 0 0
\(622\) 16.6520 28.8420i 0.667683 1.15646i
\(623\) −0.961181 1.66481i −0.0385089 0.0666994i
\(624\) 0 0
\(625\) −7.59854 + 13.1611i −0.303941 + 0.526442i
\(626\) −1.37786 2.38652i −0.0550703 0.0953845i
\(627\) 0 0
\(628\) −3.10290 + 5.37438i −0.123819 + 0.214461i
\(629\) 20.8654 0.831956
\(630\) 0 0
\(631\) 24.2342 + 41.9749i 0.964749 + 1.67099i 0.710288 + 0.703911i \(0.248565\pi\)
0.254461 + 0.967083i \(0.418102\pi\)
\(632\) −20.4286 35.3833i −0.812605 1.40747i
\(633\) 0 0
\(634\) −12.2629 21.2400i −0.487024 0.843550i
\(635\) −20.2866 35.1374i −0.805049 1.39439i
\(636\) 0 0
\(637\) −19.9623 + 14.9058i −0.790934 + 0.590590i
\(638\) −14.9015 −0.589956
\(639\) 0 0
\(640\) −8.70603 + 15.0793i −0.344136 + 0.596061i
\(641\) −0.384354 + 0.665720i −0.0151811 + 0.0262944i −0.873516 0.486795i \(-0.838166\pi\)
0.858335 + 0.513090i \(0.171499\pi\)
\(642\) 0 0
\(643\) −0.284528 −0.0112207 −0.00561034 0.999984i \(-0.501786\pi\)
−0.00561034 + 0.999984i \(0.501786\pi\)
\(644\) −0.553008 −0.0217916
\(645\) 0 0
\(646\) 5.27392 9.13470i 0.207500 0.359400i
\(647\) −14.6716 + 25.4119i −0.576798 + 0.999044i 0.419045 + 0.907965i \(0.362365\pi\)
−0.995844 + 0.0910787i \(0.970969\pi\)
\(648\) 0 0
\(649\) 11.2253 0.440633
\(650\) 32.4088 24.1996i 1.27118 0.949187i
\(651\) 0 0
\(652\) 1.81910 + 3.15077i 0.0712413 + 0.123394i
\(653\) −24.8170 42.9843i −0.971164 1.68211i −0.692053 0.721846i \(-0.743294\pi\)
−0.279111 0.960259i \(-0.590040\pi\)
\(654\) 0 0
\(655\) −6.32683 10.9584i −0.247210 0.428180i
\(656\) −3.72509 6.45205i −0.145440 0.251910i
\(657\) 0 0
\(658\) 0.690524 0.0269194
\(659\) −21.4051 + 37.0746i −0.833823 + 1.44422i 0.0611628 + 0.998128i \(0.480519\pi\)
−0.894985 + 0.446095i \(0.852814\pi\)
\(660\) 0 0
\(661\) 17.6585 + 30.5855i 0.686837 + 1.18964i 0.972856 + 0.231413i \(0.0743348\pi\)
−0.286019 + 0.958224i \(0.592332\pi\)
\(662\) −10.5034 + 18.1924i −0.408225 + 0.707067i
\(663\) 0 0
\(664\) −19.8212 34.3313i −0.769212 1.33231i
\(665\) −0.943427 + 1.63406i −0.0365845 + 0.0633663i
\(666\) 0 0
\(667\) −16.1246 27.9285i −0.624345 1.08140i
\(668\) −2.98363 5.16780i −0.115440 0.199948i
\(669\) 0 0
\(670\) 37.8699 1.46304
\(671\) 3.29940 5.71473i 0.127372 0.220615i
\(672\) 0 0
\(673\) 34.7386 1.33907 0.669537 0.742779i \(-0.266493\pi\)
0.669537 + 0.742779i \(0.266493\pi\)
\(674\) 15.0340 26.0397i 0.579089 1.00301i
\(675\) 0 0
\(676\) 6.94940 1.66806i 0.267285 0.0641562i
\(677\) −9.05262 15.6796i −0.347920 0.602616i 0.637959 0.770070i \(-0.279779\pi\)
−0.985880 + 0.167454i \(0.946445\pi\)
\(678\) 0 0
\(679\) 0.565444 + 0.979378i 0.0216998 + 0.0375851i
\(680\) 61.3059 2.35097
\(681\) 0 0
\(682\) 5.10051 8.83434i 0.195309 0.338284i
\(683\) 11.6147 + 20.1173i 0.444426 + 0.769768i 0.998012 0.0630237i \(-0.0200744\pi\)
−0.553586 + 0.832792i \(0.686741\pi\)
\(684\) 0 0
\(685\) −29.8062 51.6259i −1.13884 1.97252i
\(686\) −5.03293 −0.192158
\(687\) 0 0
\(688\) −0.0270790 + 0.0469023i −0.00103238 + 0.00178813i
\(689\) 3.03054 + 25.6100i 0.115454 + 0.975662i
\(690\) 0 0
\(691\) −4.50951 −0.171550 −0.0857748 0.996315i \(-0.527337\pi\)
−0.0857748 + 0.996315i \(0.527337\pi\)
\(692\) −0.0569276 + 0.0986015i −0.00216406 + 0.00374827i
\(693\) 0 0
\(694\) 12.1973 0.463002
\(695\) −40.7691 + 70.6142i −1.54646 + 2.67855i
\(696\) 0 0
\(697\) −7.56549 + 13.1038i −0.286564 + 0.496343i
\(698\) 27.1789 1.02874
\(699\) 0 0
\(700\) −1.53865 −0.0581557
\(701\) 12.6104 0.476288 0.238144 0.971230i \(-0.423461\pi\)
0.238144 + 0.971230i \(0.423461\pi\)
\(702\) 0 0
\(703\) −6.56297 −0.247527
\(704\) −11.3354 −0.427219
\(705\) 0 0
\(706\) −29.9882 −1.12862
\(707\) −0.749876 + 1.29882i −0.0282020 + 0.0488473i
\(708\) 0 0
\(709\) 25.1270 43.5212i 0.943662 1.63447i 0.185255 0.982690i \(-0.440689\pi\)
0.758407 0.651781i \(-0.225978\pi\)
\(710\) 42.2896 1.58710
\(711\) 0 0
\(712\) 9.82298 17.0139i 0.368132 0.637623i
\(713\) 22.0766 0.826774
\(714\) 0 0
\(715\) 16.1012 + 6.91805i 0.602149 + 0.258720i
\(716\) −2.74235 + 4.74989i −0.102486 + 0.177512i
\(717\) 0 0
\(718\) 43.0563 1.60685
\(719\) −21.5058 37.2492i −0.802031 1.38916i −0.918277 0.395939i \(-0.870419\pi\)
0.116246 0.993221i \(-0.462914\pi\)
\(720\) 0 0
\(721\) 0.651259 + 1.12801i 0.0242542 + 0.0420094i
\(722\) 9.78164 16.9423i 0.364035 0.630527i
\(723\) 0 0
\(724\) −7.67448 −0.285220
\(725\) −44.8639 77.7066i −1.66620 2.88595i
\(726\) 0 0
\(727\) 6.80760 + 11.7911i 0.252480 + 0.437308i 0.964208 0.265147i \(-0.0854205\pi\)
−0.711728 + 0.702455i \(0.752087\pi\)
\(728\) 3.05622 + 1.31314i 0.113271 + 0.0486681i
\(729\) 0 0
\(730\) 10.6962 18.5263i 0.395884 0.685690i
\(731\) 0.109993 0.00406823
\(732\) 0 0
\(733\) 23.0761 39.9690i 0.852336 1.47629i −0.0267594 0.999642i \(-0.508519\pi\)
0.879095 0.476647i \(-0.158148\pi\)
\(734\) −16.1176 −0.594910
\(735\) 0 0
\(736\) −5.04231 8.73353i −0.185862 0.321922i
\(737\) 5.33849 + 9.24654i 0.196646 + 0.340601i
\(738\) 0 0
\(739\) −0.339921 + 0.588761i −0.0125042 + 0.0216579i −0.872210 0.489132i \(-0.837314\pi\)
0.859706 + 0.510790i \(0.170647\pi\)
\(740\) −4.11223 7.12260i −0.151169 0.261832i
\(741\) 0 0
\(742\) −1.29398 + 2.24125i −0.0475036 + 0.0822787i
\(743\) 13.2649 + 22.9755i 0.486642 + 0.842889i 0.999882 0.0153563i \(-0.00488826\pi\)
−0.513240 + 0.858245i \(0.671555\pi\)
\(744\) 0 0
\(745\) −24.3541 + 42.1826i −0.892266 + 1.54545i
\(746\) 8.60976 0.315226
\(747\) 0 0
\(748\) 1.86336 + 3.22743i 0.0681310 + 0.118006i
\(749\) −0.473238 0.819672i −0.0172917 0.0299502i
\(750\) 0 0
\(751\) −16.0066 27.7242i −0.584088 1.01167i −0.994988 0.0999903i \(-0.968119\pi\)
0.410900 0.911680i \(-0.365215\pi\)
\(752\) 2.47931 + 4.29429i 0.0904111 + 0.156597i
\(753\) 0 0
\(754\) 4.91494 + 41.5344i 0.178992 + 1.51259i
\(755\) 47.0315 1.71165
\(756\) 0 0
\(757\) 10.5610 18.2922i 0.383846 0.664840i −0.607763 0.794119i \(-0.707933\pi\)
0.991608 + 0.129278i \(0.0412661\pi\)
\(758\) 16.5556 28.6751i 0.601326 1.04153i
\(759\) 0 0
\(760\) −19.2831 −0.699471
\(761\) 24.4460 0.886166 0.443083 0.896481i \(-0.353885\pi\)
0.443083 + 0.896481i \(0.353885\pi\)
\(762\) 0 0
\(763\) −2.14417 + 3.71381i −0.0776242 + 0.134449i
\(764\) 3.81508 6.60791i 0.138025 0.239066i
\(765\) 0 0
\(766\) 13.6383 0.492770
\(767\) −3.70244 31.2879i −0.133687 1.12974i
\(768\) 0 0
\(769\) 4.36070 + 7.55296i 0.157251 + 0.272367i 0.933876 0.357596i \(-0.116404\pi\)
−0.776625 + 0.629963i \(0.783070\pi\)
\(770\) 0.879316 + 1.52302i 0.0316884 + 0.0548858i
\(771\) 0 0
\(772\) 2.21062 + 3.82890i 0.0795619 + 0.137805i
\(773\) 0.571592 + 0.990027i 0.0205587 + 0.0356088i 0.876122 0.482090i \(-0.160122\pi\)
−0.855563 + 0.517699i \(0.826789\pi\)
\(774\) 0 0
\(775\) 61.4244 2.20643
\(776\) −5.77867 + 10.0090i −0.207442 + 0.359300i
\(777\) 0 0
\(778\) 9.33801 + 16.1739i 0.334784 + 0.579863i
\(779\) 2.37964 4.12166i 0.0852596 0.147674i
\(780\) 0 0
\(781\) 5.96153 + 10.3257i 0.213320 + 0.369481i
\(782\) 10.6380 18.4255i 0.380413 0.658894i
\(783\) 0 0
\(784\) −8.97665 15.5480i −0.320595 0.555286i
\(785\) 21.3550 + 36.9879i 0.762192 + 1.32015i
\(786\) 0 0
\(787\) 14.5911 0.520115 0.260058 0.965593i \(-0.416258\pi\)
0.260058 + 0.965593i \(0.416258\pi\)
\(788\) 0.826834 1.43212i 0.0294547 0.0510171i
\(789\) 0 0
\(790\) −60.6274 −2.15702
\(791\) 0.792866 1.37328i 0.0281911 0.0488283i
\(792\) 0 0
\(793\) −17.0167 7.31142i −0.604281 0.259636i
\(794\) −7.04087 12.1951i −0.249871 0.432789i
\(795\) 0 0
\(796\) 5.73931 + 9.94077i 0.203424 + 0.352341i
\(797\) 19.7945 0.701158 0.350579 0.936533i \(-0.385985\pi\)
0.350579 + 0.936533i \(0.385985\pi\)
\(798\) 0 0
\(799\) 5.03537 8.72151i 0.178138 0.308545i
\(800\) −14.0294 24.2996i −0.496014 0.859121i
\(801\) 0 0
\(802\) 0.430943 + 0.746415i 0.0152171 + 0.0263568i
\(803\) 6.03133 0.212841
\(804\) 0 0
\(805\) −1.90297 + 3.29605i −0.0670710 + 0.116170i
\(806\) −26.3059 11.3026i −0.926587 0.398119i
\(807\) 0 0
\(808\) −15.3270 −0.539203
\(809\) −13.6595 + 23.6589i −0.480241 + 0.831802i −0.999743 0.0226673i \(-0.992784\pi\)
0.519502 + 0.854469i \(0.326117\pi\)
\(810\) 0 0
\(811\) 38.3231 1.34571 0.672854 0.739776i \(-0.265068\pi\)
0.672854 + 0.739776i \(0.265068\pi\)
\(812\) 0.795523 1.37789i 0.0279174 0.0483543i
\(813\) 0 0
\(814\) −3.05849 + 5.29746i −0.107200 + 0.185676i
\(815\) 25.0390 0.877078
\(816\) 0 0
\(817\) −0.0345970 −0.00121040
\(818\) −4.20774 −0.147120
\(819\) 0 0
\(820\) 5.96416 0.208278
\(821\) −54.5956 −1.90540 −0.952700 0.303911i \(-0.901708\pi\)
−0.952700 + 0.303911i \(0.901708\pi\)
\(822\) 0 0
\(823\) −52.8320 −1.84161 −0.920804 0.390026i \(-0.872466\pi\)
−0.920804 + 0.390026i \(0.872466\pi\)
\(824\) −6.65567 + 11.5280i −0.231861 + 0.401596i
\(825\) 0 0
\(826\) 1.58087 2.73815i 0.0550056 0.0952725i
\(827\) −20.8919 −0.726482 −0.363241 0.931695i \(-0.618330\pi\)
−0.363241 + 0.931695i \(0.618330\pi\)
\(828\) 0 0
\(829\) −7.33261 + 12.7005i −0.254672 + 0.441105i −0.964806 0.262961i \(-0.915301\pi\)
0.710134 + 0.704066i \(0.248634\pi\)
\(830\) −58.8249 −2.04184
\(831\) 0 0
\(832\) 3.73874 + 31.5948i 0.129618 + 1.09535i
\(833\) −18.2312 + 31.5773i −0.631673 + 1.09409i
\(834\) 0 0
\(835\) −41.0683 −1.42123
\(836\) −0.586098 1.01515i −0.0202706 0.0351098i
\(837\) 0 0
\(838\) −11.0065 19.0638i −0.380213 0.658549i
\(839\) 2.25553 3.90669i 0.0778696 0.134874i −0.824461 0.565919i \(-0.808522\pi\)
0.902331 + 0.431045i \(0.141855\pi\)
\(840\) 0 0
\(841\) 63.7831 2.19942
\(842\) −2.05056 3.55168i −0.0706670 0.122399i
\(843\) 0 0
\(844\) −4.97114 8.61026i −0.171114 0.296377i
\(845\) 13.9718 47.1599i 0.480644 1.62235i
\(846\) 0 0
\(847\) 1.40460 2.43283i 0.0482625 0.0835930i
\(848\) −18.5841 −0.638179
\(849\) 0 0
\(850\) 29.5984 51.2659i 1.01522 1.75841i
\(851\) −13.2381 −0.453795
\(852\) 0 0
\(853\) 11.4853 + 19.8932i 0.393250 + 0.681129i 0.992876 0.119151i \(-0.0380174\pi\)
−0.599626 + 0.800280i \(0.704684\pi\)
\(854\) −0.929315 1.60962i −0.0318005 0.0550801i
\(855\) 0 0
\(856\) 4.83635 8.37680i 0.165303 0.286313i
\(857\) 20.3594 + 35.2635i 0.695463 + 1.20458i 0.970024 + 0.243008i \(0.0781340\pi\)
−0.274561 + 0.961570i \(0.588533\pi\)
\(858\) 0 0
\(859\) −26.7637 + 46.3561i −0.913167 + 1.58165i −0.103603 + 0.994619i \(0.533037\pi\)
−0.809563 + 0.587033i \(0.800296\pi\)
\(860\) −0.0216778 0.0375471i −0.000739208 0.00128035i
\(861\) 0 0
\(862\) 9.04637 15.6688i 0.308121 0.533681i
\(863\) −26.8211 −0.913000 −0.456500 0.889724i \(-0.650897\pi\)
−0.456500 + 0.889724i \(0.650897\pi\)
\(864\) 0 0
\(865\) 0.391791 + 0.678601i 0.0133213 + 0.0230731i
\(866\) 1.21785 + 2.10938i 0.0413842 + 0.0716796i
\(867\) 0 0
\(868\) 0.544586 + 0.943251i 0.0184845 + 0.0320160i
\(869\) −8.54659 14.8031i −0.289923 0.502162i
\(870\) 0 0
\(871\) 24.0117 17.9295i 0.813606 0.607519i
\(872\) −43.8255 −1.48412
\(873\) 0 0
\(874\) −3.34605 + 5.79553i −0.113182 + 0.196037i
\(875\) −2.45274 + 4.24827i −0.0829178 + 0.143618i
\(876\) 0 0
\(877\) −24.6341 −0.831834 −0.415917 0.909403i \(-0.636539\pi\)
−0.415917 + 0.909403i \(0.636539\pi\)
\(878\) 15.8641 0.535386
\(879\) 0 0
\(880\) −6.31432 + 10.9367i −0.212856 + 0.368677i
\(881\) 14.7520 25.5512i 0.497008 0.860843i −0.502986 0.864294i \(-0.667765\pi\)
0.999994 + 0.00345150i \(0.00109865\pi\)
\(882\) 0 0
\(883\) −29.2625 −0.984761 −0.492380 0.870380i \(-0.663873\pi\)
−0.492380 + 0.870380i \(0.663873\pi\)
\(884\) 8.38110 6.25816i 0.281887 0.210485i
\(885\) 0 0
\(886\) 6.60307 + 11.4369i 0.221834 + 0.384229i
\(887\) 4.13251 + 7.15771i 0.138756 + 0.240332i 0.927026 0.374997i \(-0.122356\pi\)
−0.788270 + 0.615330i \(0.789023\pi\)
\(888\) 0 0
\(889\) −1.61098 2.79031i −0.0540307 0.0935839i
\(890\) −14.5762 25.2467i −0.488595 0.846271i
\(891\) 0 0
\(892\) −12.5013 −0.418574
\(893\) −1.58382 + 2.74326i −0.0530005 + 0.0917995i
\(894\) 0 0
\(895\) 18.8736 + 32.6900i 0.630874 + 1.09271i
\(896\) −0.691357 + 1.19747i −0.0230966 + 0.0400045i
\(897\) 0 0
\(898\) 21.8539 + 37.8521i 0.729274 + 1.26314i
\(899\) −31.7580 + 55.0064i −1.05919 + 1.83457i
\(900\) 0 0
\(901\) 18.8717 + 32.6867i 0.628708 + 1.08895i
\(902\) −2.21793 3.84157i −0.0738491 0.127910i
\(903\) 0 0
\(904\) 16.2057 0.538994
\(905\) −26.4089 + 45.7415i −0.877861 + 1.52050i
\(906\) 0 0
\(907\) 18.4346 0.612111 0.306056 0.952014i \(-0.400991\pi\)
0.306056 + 0.952014i \(0.400991\pi\)
\(908\) −1.35002 + 2.33830i −0.0448019 + 0.0775991i
\(909\) 0 0
\(910\) 3.95503 2.95322i 0.131108 0.0978983i
\(911\) 23.0212 + 39.8739i 0.762726 + 1.32108i 0.941441 + 0.337179i \(0.109473\pi\)
−0.178715 + 0.983901i \(0.557194\pi\)
\(912\) 0 0
\(913\) −8.29250 14.3630i −0.274442 0.475347i
\(914\) −40.9192 −1.35349
\(915\) 0 0
\(916\) −1.08323 + 1.87621i −0.0357910 + 0.0619918i
\(917\) −0.502422 0.870220i −0.0165914 0.0287372i
\(918\) 0 0
\(919\) 16.5071 + 28.5912i 0.544520 + 0.943136i 0.998637 + 0.0521939i \(0.0166214\pi\)
−0.454117 + 0.890942i \(0.650045\pi\)
\(920\) −38.8957 −1.28235
\(921\) 0 0
\(922\) −6.94254 + 12.0248i −0.228640 + 0.396017i
\(923\) 26.8141 20.0220i 0.882595 0.659033i
\(924\) 0 0
\(925\) −36.8328 −1.21105
\(926\) −18.2764 + 31.6557i −0.600601 + 1.04027i
\(927\) 0 0
\(928\) 29.0142 0.952438
\(929\) 17.2035 29.7974i 0.564429 0.977620i −0.432673 0.901551i \(-0.642430\pi\)
0.997103 0.0760691i \(-0.0242370\pi\)
\(930\) 0 0
\(931\) 5.73442 9.93231i 0.187938 0.325518i
\(932\) 1.37318 0.0449801
\(933\) 0 0
\(934\) 1.98416 0.0649238
\(935\) 25.6482 0.838786
\(936\) 0 0
\(937\) −3.49544 −0.114191 −0.0570956 0.998369i \(-0.518184\pi\)
−0.0570956 + 0.998369i \(0.518184\pi\)
\(938\) 3.00730 0.0981917
\(939\) 0 0
\(940\) −3.96957 −0.129473
\(941\) 11.7060 20.2754i 0.381605 0.660959i −0.609687 0.792642i \(-0.708705\pi\)
0.991292 + 0.131684i \(0.0420383\pi\)
\(942\) 0 0
\(943\) 4.79995 8.31375i 0.156308 0.270733i
\(944\) 22.7043 0.738963
\(945\) 0 0
\(946\) −0.0161230 + 0.0279258i −0.000524203 + 0.000907946i
\(947\) 40.6066 1.31954 0.659769 0.751468i \(-0.270654\pi\)
0.659769 + 0.751468i \(0.270654\pi\)
\(948\) 0 0
\(949\) −1.98931 16.8109i −0.0645756 0.545705i
\(950\) −9.30984 + 16.1251i −0.302051 + 0.523168i
\(951\) 0 0
\(952\) 4.86838 0.157785
\(953\) −24.9334 43.1859i −0.807672 1.39893i −0.914473 0.404648i \(-0.867394\pi\)
0.106801 0.994280i \(-0.465939\pi\)
\(954\) 0 0
\(955\) −26.2564 45.4774i −0.849637 1.47161i
\(956\) −2.33997 + 4.05294i −0.0756799 + 0.131082i
\(957\) 0 0
\(958\) 12.7501 0.411936
\(959\) −2.36695 4.09968i −0.0764328 0.132385i
\(960\) 0 0
\(961\) −6.24036 10.8086i −0.201302 0.348665i
\(962\) 15.7742 + 6.77756i 0.508580 + 0.218517i
\(963\) 0 0
\(964\) 4.46138 7.72734i 0.143691 0.248881i
\(965\) 30.4281 0.979515
\(966\) 0 0
\(967\) 5.80396 10.0528i 0.186643 0.323275i −0.757486 0.652851i \(-0.773573\pi\)
0.944129 + 0.329576i \(0.106906\pi\)
\(968\) 28.7091 0.922745
\(969\) 0 0
\(970\) 8.57489 + 14.8522i 0.275323 + 0.476874i
\(971\) −7.04458 12.2016i −0.226071 0.391567i 0.730569 0.682839i \(-0.239255\pi\)
−0.956640 + 0.291272i \(0.905922\pi\)
\(972\) 0 0
\(973\) −3.23753 + 5.60756i −0.103790 + 0.179770i
\(974\) 16.0389 + 27.7802i 0.513920 + 0.890136i
\(975\) 0 0
\(976\) 6.67336 11.5586i 0.213609 0.369982i
\(977\) −6.67495 11.5613i −0.213550 0.369880i 0.739273 0.673406i \(-0.235169\pi\)
−0.952823 + 0.303526i \(0.901836\pi\)
\(978\) 0 0
\(979\) 4.10959 7.11802i 0.131343 0.227493i
\(980\) 14.3723 0.459107
\(981\) 0 0
\(982\) 14.0606 + 24.3536i 0.448690 + 0.777154i
\(983\) 8.77579 + 15.2001i 0.279904 + 0.484808i 0.971361 0.237610i \(-0.0763639\pi\)
−0.691456 + 0.722418i \(0.743031\pi\)
\(984\) 0 0
\(985\) −5.69049 9.85622i −0.181314 0.314045i
\(986\) 30.6062 + 53.0115i 0.974701 + 1.68823i
\(987\) 0 0
\(988\) −2.63618 + 1.96844i −0.0838681 + 0.0626243i
\(989\) −0.0697851 −0.00221904
\(990\) 0 0
\(991\) 12.8289 22.2202i 0.407522 0.705849i −0.587089 0.809522i \(-0.699726\pi\)
0.994611 + 0.103673i \(0.0330596\pi\)
\(992\) −9.93104 + 17.2011i −0.315311 + 0.546134i
\(993\) 0 0
\(994\) 3.35827 0.106518
\(995\) 78.9988 2.50443
\(996\) 0 0
\(997\) −9.11468 + 15.7871i −0.288665 + 0.499982i −0.973491 0.228724i \(-0.926545\pi\)
0.684826 + 0.728706i \(0.259878\pi\)
\(998\) −0.477110 + 0.826379i −0.0151027 + 0.0261586i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.h.a.334.9 24
3.2 odd 2 117.2.h.a.22.4 yes 24
9.2 odd 6 117.2.f.a.61.9 24
9.7 even 3 351.2.f.a.100.4 24
13.3 even 3 351.2.f.a.172.4 24
39.29 odd 6 117.2.f.a.94.9 yes 24
117.16 even 3 inner 351.2.h.a.289.9 24
117.29 odd 6 117.2.h.a.16.4 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.f.a.61.9 24 9.2 odd 6
117.2.f.a.94.9 yes 24 39.29 odd 6
117.2.h.a.16.4 yes 24 117.29 odd 6
117.2.h.a.22.4 yes 24 3.2 odd 2
351.2.f.a.100.4 24 9.7 even 3
351.2.f.a.172.4 24 13.3 even 3
351.2.h.a.289.9 24 117.16 even 3 inner
351.2.h.a.334.9 24 1.1 even 1 trivial