Properties

Label 1166.2.c.b.529.11
Level $1166$
Weight $2$
Character 1166.529
Analytic conductor $9.311$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1166,2,Mod(529,1166)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1166, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1166.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1166 = 2 \cdot 11 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1166.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,0,0,-22,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.31055687568\)
Analytic rank: \(0\)
Dimension: \(22\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 529.11
Character \(\chi\) \(=\) 1166.529
Dual form 1166.2.c.b.529.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +3.24977i q^{3} -1.00000 q^{4} -1.22090i q^{5} +3.24977 q^{6} -3.83413 q^{7} +1.00000i q^{8} -7.56098 q^{9} -1.22090 q^{10} -1.00000 q^{11} -3.24977i q^{12} -1.39676 q^{13} +3.83413i q^{14} +3.96764 q^{15} +1.00000 q^{16} +7.82216 q^{17} +7.56098i q^{18} -6.90056i q^{19} +1.22090i q^{20} -12.4600i q^{21} +1.00000i q^{22} +5.07535i q^{23} -3.24977 q^{24} +3.50940 q^{25} +1.39676i q^{26} -14.8221i q^{27} +3.83413 q^{28} +0.736034 q^{29} -3.96764i q^{30} -5.86712i q^{31} -1.00000i q^{32} -3.24977i q^{33} -7.82216i q^{34} +4.68108i q^{35} +7.56098 q^{36} -7.76696 q^{37} -6.90056 q^{38} -4.53914i q^{39} +1.22090 q^{40} -11.4479i q^{41} -12.4600 q^{42} -2.75352 q^{43} +1.00000 q^{44} +9.23120i q^{45} +5.07535 q^{46} +9.74856 q^{47} +3.24977i q^{48} +7.70052 q^{49} -3.50940i q^{50} +25.4202i q^{51} +1.39676 q^{52} +(6.94700 - 2.17698i) q^{53} -14.8221 q^{54} +1.22090i q^{55} -3.83413i q^{56} +22.4252 q^{57} -0.736034i q^{58} -8.71833 q^{59} -3.96764 q^{60} +1.83687i q^{61} -5.86712 q^{62} +28.9897 q^{63} -1.00000 q^{64} +1.70530i q^{65} -3.24977 q^{66} -6.72228i q^{67} -7.82216 q^{68} -16.4937 q^{69} +4.68108 q^{70} +7.31463i q^{71} -7.56098i q^{72} -8.08412i q^{73} +7.76696i q^{74} +11.4047i q^{75} +6.90056i q^{76} +3.83413 q^{77} -4.53914 q^{78} +10.5961i q^{79} -1.22090i q^{80} +25.4855 q^{81} -11.4479 q^{82} -4.35919i q^{83} +12.4600i q^{84} -9.55007i q^{85} +2.75352i q^{86} +2.39194i q^{87} -1.00000i q^{88} -18.7159 q^{89} +9.23120 q^{90} +5.35536 q^{91} -5.07535i q^{92} +19.0668 q^{93} -9.74856i q^{94} -8.42490 q^{95} +3.24977 q^{96} +7.53326 q^{97} -7.70052i q^{98} +7.56098 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 22 q^{4} - 6 q^{6} - 24 q^{9} + 4 q^{10} - 22 q^{11} + 6 q^{13} + 30 q^{15} + 22 q^{16} + 18 q^{17} + 6 q^{24} - 30 q^{25} + 28 q^{29} + 24 q^{36} - 34 q^{37} - 18 q^{38} - 4 q^{40} + 4 q^{42} - 34 q^{43}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1166\mathbb{Z}\right)^\times\).

\(n\) \(849\) \(903\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 3.24977i 1.87625i 0.346292 + 0.938127i \(0.387440\pi\)
−0.346292 + 0.938127i \(0.612560\pi\)
\(4\) −1.00000 −0.500000
\(5\) 1.22090i 0.546003i −0.962014 0.273001i \(-0.911984\pi\)
0.962014 0.273001i \(-0.0880164\pi\)
\(6\) 3.24977 1.32671
\(7\) −3.83413 −1.44916 −0.724582 0.689189i \(-0.757967\pi\)
−0.724582 + 0.689189i \(0.757967\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −7.56098 −2.52033
\(10\) −1.22090 −0.386082
\(11\) −1.00000 −0.301511
\(12\) 3.24977i 0.938127i
\(13\) −1.39676 −0.387392 −0.193696 0.981062i \(-0.562047\pi\)
−0.193696 + 0.981062i \(0.562047\pi\)
\(14\) 3.83413i 1.02471i
\(15\) 3.96764 1.02444
\(16\) 1.00000 0.250000
\(17\) 7.82216 1.89715 0.948576 0.316550i \(-0.102524\pi\)
0.948576 + 0.316550i \(0.102524\pi\)
\(18\) 7.56098i 1.78214i
\(19\) 6.90056i 1.58310i −0.611106 0.791549i \(-0.709275\pi\)
0.611106 0.791549i \(-0.290725\pi\)
\(20\) 1.22090i 0.273001i
\(21\) 12.4600i 2.71900i
\(22\) 1.00000i 0.213201i
\(23\) 5.07535i 1.05828i 0.848534 + 0.529141i \(0.177486\pi\)
−0.848534 + 0.529141i \(0.822514\pi\)
\(24\) −3.24977 −0.663356
\(25\) 3.50940 0.701881
\(26\) 1.39676i 0.273927i
\(27\) 14.8221i 2.85252i
\(28\) 3.83413 0.724582
\(29\) 0.736034 0.136678 0.0683390 0.997662i \(-0.478230\pi\)
0.0683390 + 0.997662i \(0.478230\pi\)
\(30\) 3.96764i 0.724388i
\(31\) 5.86712i 1.05377i −0.849938 0.526883i \(-0.823361\pi\)
0.849938 0.526883i \(-0.176639\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 3.24977i 0.565712i
\(34\) 7.82216i 1.34149i
\(35\) 4.68108i 0.791247i
\(36\) 7.56098 1.26016
\(37\) −7.76696 −1.27688 −0.638440 0.769672i \(-0.720420\pi\)
−0.638440 + 0.769672i \(0.720420\pi\)
\(38\) −6.90056 −1.11942
\(39\) 4.53914i 0.726845i
\(40\) 1.22090 0.193041
\(41\) 11.4479i 1.78786i −0.448207 0.893930i \(-0.647937\pi\)
0.448207 0.893930i \(-0.352063\pi\)
\(42\) −12.4600 −1.92262
\(43\) −2.75352 −0.419909 −0.209954 0.977711i \(-0.567332\pi\)
−0.209954 + 0.977711i \(0.567332\pi\)
\(44\) 1.00000 0.150756
\(45\) 9.23120i 1.37611i
\(46\) 5.07535 0.748319
\(47\) 9.74856 1.42197 0.710987 0.703205i \(-0.248248\pi\)
0.710987 + 0.703205i \(0.248248\pi\)
\(48\) 3.24977i 0.469063i
\(49\) 7.70052 1.10007
\(50\) 3.50940i 0.496305i
\(51\) 25.4202i 3.55954i
\(52\) 1.39676 0.193696
\(53\) 6.94700 2.17698i 0.954243 0.299031i
\(54\) −14.8221 −2.01703
\(55\) 1.22090i 0.164626i
\(56\) 3.83413i 0.512357i
\(57\) 22.4252 2.97029
\(58\) 0.736034i 0.0966460i
\(59\) −8.71833 −1.13503 −0.567515 0.823363i \(-0.692095\pi\)
−0.567515 + 0.823363i \(0.692095\pi\)
\(60\) −3.96764 −0.512220
\(61\) 1.83687i 0.235187i 0.993062 + 0.117593i \(0.0375179\pi\)
−0.993062 + 0.117593i \(0.962482\pi\)
\(62\) −5.86712 −0.745125
\(63\) 28.9897 3.65236
\(64\) −1.00000 −0.125000
\(65\) 1.70530i 0.211517i
\(66\) −3.24977 −0.400019
\(67\) 6.72228i 0.821257i −0.911803 0.410629i \(-0.865309\pi\)
0.911803 0.410629i \(-0.134691\pi\)
\(68\) −7.82216 −0.948576
\(69\) −16.4937 −1.98561
\(70\) 4.68108 0.559496
\(71\) 7.31463i 0.868087i 0.900892 + 0.434043i \(0.142914\pi\)
−0.900892 + 0.434043i \(0.857086\pi\)
\(72\) 7.56098i 0.891070i
\(73\) 8.08412i 0.946175i −0.881015 0.473088i \(-0.843139\pi\)
0.881015 0.473088i \(-0.156861\pi\)
\(74\) 7.76696i 0.902890i
\(75\) 11.4047i 1.31691i
\(76\) 6.90056i 0.791549i
\(77\) 3.83413 0.436939
\(78\) −4.53914 −0.513957
\(79\) 10.5961i 1.19215i 0.802927 + 0.596077i \(0.203275\pi\)
−0.802927 + 0.596077i \(0.796725\pi\)
\(80\) 1.22090i 0.136501i
\(81\) 25.4855 2.83172
\(82\) −11.4479 −1.26421
\(83\) 4.35919i 0.478483i −0.970960 0.239242i \(-0.923101\pi\)
0.970960 0.239242i \(-0.0768988\pi\)
\(84\) 12.4600i 1.35950i
\(85\) 9.55007i 1.03585i
\(86\) 2.75352i 0.296920i
\(87\) 2.39194i 0.256443i
\(88\) 1.00000i 0.106600i
\(89\) −18.7159 −1.98388 −0.991942 0.126689i \(-0.959565\pi\)
−0.991942 + 0.126689i \(0.959565\pi\)
\(90\) 9.23120 0.973053
\(91\) 5.35536 0.561394
\(92\) 5.07535i 0.529141i
\(93\) 19.0668 1.97713
\(94\) 9.74856i 1.00549i
\(95\) −8.42490 −0.864376
\(96\) 3.24977 0.331678
\(97\) 7.53326 0.764886 0.382443 0.923979i \(-0.375083\pi\)
0.382443 + 0.923979i \(0.375083\pi\)
\(98\) 7.70052i 0.777870i
\(99\) 7.56098 0.759907
\(100\) −3.50940 −0.350940
\(101\) 17.8368i 1.77483i −0.460972 0.887415i \(-0.652499\pi\)
0.460972 0.887415i \(-0.347501\pi\)
\(102\) 25.4202 2.51697
\(103\) 4.13594i 0.407527i 0.979020 + 0.203763i \(0.0653173\pi\)
−0.979020 + 0.203763i \(0.934683\pi\)
\(104\) 1.39676i 0.136964i
\(105\) −15.2124 −1.48458
\(106\) −2.17698 6.94700i −0.211447 0.674752i
\(107\) −10.4395 −1.00923 −0.504614 0.863345i \(-0.668365\pi\)
−0.504614 + 0.863345i \(0.668365\pi\)
\(108\) 14.8221i 1.42626i
\(109\) 14.0315i 1.34397i −0.740564 0.671985i \(-0.765442\pi\)
0.740564 0.671985i \(-0.234558\pi\)
\(110\) 1.22090 0.116408
\(111\) 25.2408i 2.39575i
\(112\) −3.83413 −0.362291
\(113\) −14.8275 −1.39485 −0.697427 0.716656i \(-0.745672\pi\)
−0.697427 + 0.716656i \(0.745672\pi\)
\(114\) 22.4252i 2.10031i
\(115\) 6.19649 0.577825
\(116\) −0.736034 −0.0683390
\(117\) 10.5609 0.976353
\(118\) 8.71833i 0.802588i
\(119\) −29.9911 −2.74928
\(120\) 3.96764i 0.362194i
\(121\) 1.00000 0.0909091
\(122\) 1.83687 0.166302
\(123\) 37.2030 3.35448
\(124\) 5.86712i 0.526883i
\(125\) 10.3891i 0.929232i
\(126\) 28.9897i 2.58261i
\(127\) 4.51350i 0.400509i −0.979744 0.200254i \(-0.935823\pi\)
0.979744 0.200254i \(-0.0641769\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 8.94831i 0.787855i
\(130\) 1.70530 0.149565
\(131\) 13.3203 1.16380 0.581901 0.813260i \(-0.302309\pi\)
0.581901 + 0.813260i \(0.302309\pi\)
\(132\) 3.24977i 0.282856i
\(133\) 26.4576i 2.29417i
\(134\) −6.72228 −0.580716
\(135\) −18.0963 −1.55748
\(136\) 7.82216i 0.670744i
\(137\) 13.2256i 1.12994i −0.825112 0.564970i \(-0.808888\pi\)
0.825112 0.564970i \(-0.191112\pi\)
\(138\) 16.4937i 1.40404i
\(139\) 7.75109i 0.657439i −0.944428 0.328719i \(-0.893383\pi\)
0.944428 0.328719i \(-0.106617\pi\)
\(140\) 4.68108i 0.395624i
\(141\) 31.6806i 2.66798i
\(142\) 7.31463 0.613830
\(143\) 1.39676 0.116803
\(144\) −7.56098 −0.630082
\(145\) 0.898624i 0.0746266i
\(146\) −8.08412 −0.669047
\(147\) 25.0249i 2.06402i
\(148\) 7.76696 0.638440
\(149\) 4.95598 0.406010 0.203005 0.979178i \(-0.434929\pi\)
0.203005 + 0.979178i \(0.434929\pi\)
\(150\) 11.4047 0.931193
\(151\) 3.92758i 0.319622i 0.987148 + 0.159811i \(0.0510884\pi\)
−0.987148 + 0.159811i \(0.948912\pi\)
\(152\) 6.90056 0.559710
\(153\) −59.1432 −4.78144
\(154\) 3.83413i 0.308963i
\(155\) −7.16316 −0.575359
\(156\) 4.53914i 0.363422i
\(157\) 5.73996i 0.458099i 0.973415 + 0.229049i \(0.0735617\pi\)
−0.973415 + 0.229049i \(0.926438\pi\)
\(158\) 10.5961 0.842980
\(159\) 7.07466 + 22.5761i 0.561057 + 1.79040i
\(160\) −1.22090 −0.0965206
\(161\) 19.4595i 1.53362i
\(162\) 25.4855i 2.00233i
\(163\) −5.29170 −0.414478 −0.207239 0.978290i \(-0.566448\pi\)
−0.207239 + 0.978290i \(0.566448\pi\)
\(164\) 11.4479i 0.893930i
\(165\) −3.96764 −0.308880
\(166\) −4.35919 −0.338339
\(167\) 11.1589i 0.863499i 0.901993 + 0.431750i \(0.142104\pi\)
−0.901993 + 0.431750i \(0.857896\pi\)
\(168\) 12.4600 0.961311
\(169\) −11.0491 −0.849928
\(170\) −9.55007 −0.732457
\(171\) 52.1750i 3.98992i
\(172\) 2.75352 0.209954
\(173\) 5.33490i 0.405605i 0.979220 + 0.202803i \(0.0650050\pi\)
−0.979220 + 0.202803i \(0.934995\pi\)
\(174\) 2.39194 0.181332
\(175\) −13.4555 −1.01714
\(176\) −1.00000 −0.0753778
\(177\) 28.3325i 2.12960i
\(178\) 18.7159i 1.40282i
\(179\) 8.89259i 0.664663i −0.943163 0.332332i \(-0.892165\pi\)
0.943163 0.332332i \(-0.107835\pi\)
\(180\) 9.23120i 0.688053i
\(181\) 17.1667i 1.27599i −0.770039 0.637997i \(-0.779763\pi\)
0.770039 0.637997i \(-0.220237\pi\)
\(182\) 5.35536i 0.396965i
\(183\) −5.96939 −0.441270
\(184\) −5.07535 −0.374159
\(185\) 9.48267i 0.697180i
\(186\) 19.0668i 1.39804i
\(187\) −7.82216 −0.572013
\(188\) −9.74856 −0.710987
\(189\) 56.8298i 4.13376i
\(190\) 8.42490i 0.611206i
\(191\) 15.4673i 1.11918i 0.828770 + 0.559589i \(0.189041\pi\)
−0.828770 + 0.559589i \(0.810959\pi\)
\(192\) 3.24977i 0.234532i
\(193\) 5.39018i 0.387993i 0.981002 + 0.193997i \(0.0621451\pi\)
−0.981002 + 0.193997i \(0.937855\pi\)
\(194\) 7.53326i 0.540856i
\(195\) −5.54184 −0.396859
\(196\) −7.70052 −0.550037
\(197\) 12.5461 0.893874 0.446937 0.894565i \(-0.352515\pi\)
0.446937 + 0.894565i \(0.352515\pi\)
\(198\) 7.56098i 0.537335i
\(199\) −6.05360 −0.429128 −0.214564 0.976710i \(-0.568833\pi\)
−0.214564 + 0.976710i \(0.568833\pi\)
\(200\) 3.50940i 0.248152i
\(201\) 21.8458 1.54089
\(202\) −17.8368 −1.25499
\(203\) −2.82205 −0.198069
\(204\) 25.4202i 1.77977i
\(205\) −13.9767 −0.976177
\(206\) 4.13594 0.288165
\(207\) 38.3746i 2.66722i
\(208\) −1.39676 −0.0968479
\(209\) 6.90056i 0.477322i
\(210\) 15.2124i 1.04976i
\(211\) 9.82786 0.676578 0.338289 0.941042i \(-0.390152\pi\)
0.338289 + 0.941042i \(0.390152\pi\)
\(212\) −6.94700 + 2.17698i −0.477122 + 0.149515i
\(213\) −23.7708 −1.62875
\(214\) 10.4395i 0.713631i
\(215\) 3.36178i 0.229271i
\(216\) 14.8221 1.00852
\(217\) 22.4953i 1.52708i
\(218\) −14.0315 −0.950331
\(219\) 26.2715 1.77526
\(220\) 1.22090i 0.0823130i
\(221\) −10.9257 −0.734941
\(222\) −25.2408 −1.69405
\(223\) 0.250033 0.0167434 0.00837172 0.999965i \(-0.497335\pi\)
0.00837172 + 0.999965i \(0.497335\pi\)
\(224\) 3.83413i 0.256178i
\(225\) −26.5345 −1.76897
\(226\) 14.8275i 0.986310i
\(227\) −0.820688 −0.0544710 −0.0272355 0.999629i \(-0.508670\pi\)
−0.0272355 + 0.999629i \(0.508670\pi\)
\(228\) −22.4252 −1.48515
\(229\) 4.63516 0.306300 0.153150 0.988203i \(-0.451058\pi\)
0.153150 + 0.988203i \(0.451058\pi\)
\(230\) 6.19649i 0.408584i
\(231\) 12.4600i 0.819809i
\(232\) 0.736034i 0.0483230i
\(233\) 24.1256i 1.58052i −0.612770 0.790261i \(-0.709945\pi\)
0.612770 0.790261i \(-0.290055\pi\)
\(234\) 10.5609i 0.690386i
\(235\) 11.9020i 0.776402i
\(236\) 8.71833 0.567515
\(237\) −34.4348 −2.23678
\(238\) 29.9911i 1.94404i
\(239\) 10.1487i 0.656466i 0.944597 + 0.328233i \(0.106453\pi\)
−0.944597 + 0.328233i \(0.893547\pi\)
\(240\) 3.96764 0.256110
\(241\) −9.00975 −0.580369 −0.290184 0.956971i \(-0.593717\pi\)
−0.290184 + 0.956971i \(0.593717\pi\)
\(242\) 1.00000i 0.0642824i
\(243\) 38.3554i 2.46050i
\(244\) 1.83687i 0.117593i
\(245\) 9.40156i 0.600644i
\(246\) 37.2030i 2.37197i
\(247\) 9.63843i 0.613279i
\(248\) 5.86712 0.372562
\(249\) 14.1663 0.897755
\(250\) −10.3891 −0.657066
\(251\) 3.07003i 0.193779i −0.995295 0.0968893i \(-0.969111\pi\)
0.995295 0.0968893i \(-0.0308893\pi\)
\(252\) −28.9897 −1.82618
\(253\) 5.07535i 0.319084i
\(254\) −4.51350 −0.283202
\(255\) 31.0355 1.94352
\(256\) 1.00000 0.0625000
\(257\) 31.3518i 1.95567i −0.209373 0.977836i \(-0.567142\pi\)
0.209373 0.977836i \(-0.432858\pi\)
\(258\) −8.94831 −0.557097
\(259\) 29.7795 1.85041
\(260\) 1.70530i 0.105758i
\(261\) −5.56514 −0.344473
\(262\) 13.3203i 0.822932i
\(263\) 8.77352i 0.540998i 0.962720 + 0.270499i \(0.0871888\pi\)
−0.962720 + 0.270499i \(0.912811\pi\)
\(264\) 3.24977 0.200009
\(265\) −2.65787 8.48159i −0.163272 0.521020i
\(266\) 26.4576 1.62222
\(267\) 60.8224i 3.72227i
\(268\) 6.72228i 0.410629i
\(269\) 9.26887 0.565133 0.282566 0.959248i \(-0.408814\pi\)
0.282566 + 0.959248i \(0.408814\pi\)
\(270\) 18.0963i 1.10131i
\(271\) −16.9647 −1.03053 −0.515265 0.857031i \(-0.672307\pi\)
−0.515265 + 0.857031i \(0.672307\pi\)
\(272\) 7.82216 0.474288
\(273\) 17.4037i 1.05332i
\(274\) −13.2256 −0.798988
\(275\) −3.50940 −0.211625
\(276\) 16.4937 0.992803
\(277\) 2.44388i 0.146839i 0.997301 + 0.0734194i \(0.0233912\pi\)
−0.997301 + 0.0734194i \(0.976609\pi\)
\(278\) −7.75109 −0.464879
\(279\) 44.3612i 2.65583i
\(280\) −4.68108 −0.279748
\(281\) 12.1898 0.727184 0.363592 0.931558i \(-0.381550\pi\)
0.363592 + 0.931558i \(0.381550\pi\)
\(282\) 31.6806 1.88655
\(283\) 19.2995i 1.14724i 0.819122 + 0.573619i \(0.194461\pi\)
−0.819122 + 0.573619i \(0.805539\pi\)
\(284\) 7.31463i 0.434043i
\(285\) 27.3789i 1.62179i
\(286\) 1.39676i 0.0825922i
\(287\) 43.8926i 2.59090i
\(288\) 7.56098i 0.445535i
\(289\) 44.1861 2.59918
\(290\) −0.898624 −0.0527690
\(291\) 24.4813i 1.43512i
\(292\) 8.08412i 0.473088i
\(293\) 19.4434 1.13590 0.567949 0.823064i \(-0.307737\pi\)
0.567949 + 0.823064i \(0.307737\pi\)
\(294\) 25.0249 1.45948
\(295\) 10.6442i 0.619730i
\(296\) 7.76696i 0.451445i
\(297\) 14.8221i 0.860066i
\(298\) 4.95598i 0.287092i
\(299\) 7.08904i 0.409970i
\(300\) 11.4047i 0.658453i
\(301\) 10.5574 0.608516
\(302\) 3.92758 0.226007
\(303\) 57.9655 3.33003
\(304\) 6.90056i 0.395774i
\(305\) 2.24263 0.128413
\(306\) 59.1432i 3.38099i
\(307\) 4.72499 0.269669 0.134835 0.990868i \(-0.456950\pi\)
0.134835 + 0.990868i \(0.456950\pi\)
\(308\) −3.83413 −0.218470
\(309\) −13.4408 −0.764623
\(310\) 7.16316i 0.406840i
\(311\) −16.2390 −0.920831 −0.460415 0.887704i \(-0.652300\pi\)
−0.460415 + 0.887704i \(0.652300\pi\)
\(312\) 4.53914 0.256978
\(313\) 1.59242i 0.0900090i 0.998987 + 0.0450045i \(0.0143302\pi\)
−0.998987 + 0.0450045i \(0.985670\pi\)
\(314\) 5.73996 0.323925
\(315\) 35.3936i 1.99420i
\(316\) 10.5961i 0.596077i
\(317\) −21.7876 −1.22372 −0.611858 0.790968i \(-0.709578\pi\)
−0.611858 + 0.790968i \(0.709578\pi\)
\(318\) 22.5761 7.07466i 1.26601 0.396727i
\(319\) −0.736034 −0.0412100
\(320\) 1.22090i 0.0682504i
\(321\) 33.9260i 1.89357i
\(322\) −19.4595 −1.08444
\(323\) 53.9773i 3.00338i
\(324\) −25.4855 −1.41586
\(325\) −4.90180 −0.271903
\(326\) 5.29170i 0.293080i
\(327\) 45.5990 2.52163
\(328\) 11.4479 0.632104
\(329\) −37.3772 −2.06067
\(330\) 3.96764i 0.218411i
\(331\) −28.7611 −1.58085 −0.790427 0.612556i \(-0.790141\pi\)
−0.790427 + 0.612556i \(0.790141\pi\)
\(332\) 4.35919i 0.239242i
\(333\) 58.7258 3.21815
\(334\) 11.1589 0.610586
\(335\) −8.20723 −0.448409
\(336\) 12.4600i 0.679749i
\(337\) 14.1276i 0.769579i 0.923004 + 0.384790i \(0.125726\pi\)
−0.923004 + 0.384790i \(0.874274\pi\)
\(338\) 11.0491i 0.600990i
\(339\) 48.1859i 2.61710i
\(340\) 9.55007i 0.517925i
\(341\) 5.86712i 0.317722i
\(342\) 52.1750 2.82130
\(343\) −2.68589 −0.145024
\(344\) 2.75352i 0.148460i
\(345\) 20.1371i 1.08415i
\(346\) 5.33490 0.286806
\(347\) −13.5977 −0.729960 −0.364980 0.931015i \(-0.618924\pi\)
−0.364980 + 0.931015i \(0.618924\pi\)
\(348\) 2.39194i 0.128221i
\(349\) 7.01389i 0.375445i 0.982222 + 0.187722i \(0.0601106\pi\)
−0.982222 + 0.187722i \(0.939889\pi\)
\(350\) 13.4555i 0.719227i
\(351\) 20.7029i 1.10504i
\(352\) 1.00000i 0.0533002i
\(353\) 2.25186i 0.119854i 0.998203 + 0.0599271i \(0.0190868\pi\)
−0.998203 + 0.0599271i \(0.980913\pi\)
\(354\) −28.3325 −1.50586
\(355\) 8.93043 0.473978
\(356\) 18.7159 0.991942
\(357\) 97.4642i 5.15835i
\(358\) −8.89259 −0.469988
\(359\) 12.9911i 0.685645i −0.939400 0.342823i \(-0.888617\pi\)
0.939400 0.342823i \(-0.111383\pi\)
\(360\) −9.23120 −0.486527
\(361\) −28.6178 −1.50620
\(362\) −17.1667 −0.902264
\(363\) 3.24977i 0.170568i
\(364\) −5.35536 −0.280697
\(365\) −9.86990 −0.516614
\(366\) 5.96939i 0.312025i
\(367\) −3.61151 −0.188519 −0.0942596 0.995548i \(-0.530048\pi\)
−0.0942596 + 0.995548i \(0.530048\pi\)
\(368\) 5.07535i 0.264571i
\(369\) 86.5572i 4.50599i
\(370\) 9.48267 0.492981
\(371\) −26.6357 + 8.34680i −1.38285 + 0.433344i
\(372\) −19.0668 −0.988566
\(373\) 20.6459i 1.06901i 0.845167 + 0.534503i \(0.179501\pi\)
−0.845167 + 0.534503i \(0.820499\pi\)
\(374\) 7.82216i 0.404474i
\(375\) 33.7622 1.74347
\(376\) 9.74856i 0.502744i
\(377\) −1.02806 −0.0529479
\(378\) 56.8298 2.92301
\(379\) 17.0098i 0.873732i −0.899526 0.436866i \(-0.856088\pi\)
0.899526 0.436866i \(-0.143912\pi\)
\(380\) 8.42490 0.432188
\(381\) 14.6678 0.751456
\(382\) 15.4673 0.791378
\(383\) 13.2034i 0.674661i −0.941386 0.337330i \(-0.890476\pi\)
0.941386 0.337330i \(-0.109524\pi\)
\(384\) −3.24977 −0.165839
\(385\) 4.68108i 0.238570i
\(386\) 5.39018 0.274353
\(387\) 20.8193 1.05831
\(388\) −7.53326 −0.382443
\(389\) 26.3757i 1.33730i 0.743578 + 0.668650i \(0.233127\pi\)
−0.743578 + 0.668650i \(0.766873\pi\)
\(390\) 5.54184i 0.280622i
\(391\) 39.7002i 2.00772i
\(392\) 7.70052i 0.388935i
\(393\) 43.2879i 2.18359i
\(394\) 12.5461i 0.632064i
\(395\) 12.9368 0.650919
\(396\) −7.56098 −0.379953
\(397\) 0.560584i 0.0281349i 0.999901 + 0.0140675i \(0.00447796\pi\)
−0.999901 + 0.0140675i \(0.995522\pi\)
\(398\) 6.05360i 0.303439i
\(399\) −85.9811 −4.30444
\(400\) 3.50940 0.175470
\(401\) 19.1575i 0.956679i 0.878175 + 0.478339i \(0.158761\pi\)
−0.878175 + 0.478339i \(0.841239\pi\)
\(402\) 21.8458i 1.08957i
\(403\) 8.19496i 0.408220i
\(404\) 17.8368i 0.887415i
\(405\) 31.1152i 1.54613i
\(406\) 2.82205i 0.140056i
\(407\) 7.76696 0.384994
\(408\) −25.4202 −1.25849
\(409\) 23.1556 1.14497 0.572485 0.819915i \(-0.305979\pi\)
0.572485 + 0.819915i \(0.305979\pi\)
\(410\) 13.9767i 0.690261i
\(411\) 42.9801 2.12005
\(412\) 4.13594i 0.203763i
\(413\) 33.4272 1.64484
\(414\) −38.3746 −1.88601
\(415\) −5.32213 −0.261253
\(416\) 1.39676i 0.0684818i
\(417\) 25.1892 1.23352
\(418\) 6.90056 0.337518
\(419\) 15.7794i 0.770874i −0.922734 0.385437i \(-0.874051\pi\)
0.922734 0.385437i \(-0.125949\pi\)
\(420\) 15.2124 0.742290
\(421\) 12.1231i 0.590845i −0.955367 0.295422i \(-0.904540\pi\)
0.955367 0.295422i \(-0.0954604\pi\)
\(422\) 9.82786i 0.478413i
\(423\) −73.7087 −3.58384
\(424\) 2.17698 + 6.94700i 0.105723 + 0.337376i
\(425\) 27.4511 1.33157
\(426\) 23.7708i 1.15170i
\(427\) 7.04278i 0.340824i
\(428\) 10.4395 0.504614
\(429\) 4.53914i 0.219152i
\(430\) 3.36178 0.162119
\(431\) −23.0942 −1.11241 −0.556204 0.831046i \(-0.687743\pi\)
−0.556204 + 0.831046i \(0.687743\pi\)
\(432\) 14.8221i 0.713129i
\(433\) 0.295719 0.0142113 0.00710567 0.999975i \(-0.497738\pi\)
0.00710567 + 0.999975i \(0.497738\pi\)
\(434\) 22.4953 1.07981
\(435\) 2.92032 0.140018
\(436\) 14.0315i 0.671985i
\(437\) 35.0228 1.67537
\(438\) 26.2715i 1.25530i
\(439\) 16.1019 0.768501 0.384251 0.923229i \(-0.374460\pi\)
0.384251 + 0.923229i \(0.374460\pi\)
\(440\) −1.22090 −0.0582041
\(441\) −58.2235 −2.77255
\(442\) 10.9257i 0.519682i
\(443\) 17.8170i 0.846511i −0.906010 0.423255i \(-0.860887\pi\)
0.906010 0.423255i \(-0.139113\pi\)
\(444\) 25.2408i 1.19787i
\(445\) 22.8503i 1.08321i
\(446\) 0.250033i 0.0118394i
\(447\) 16.1058i 0.761777i
\(448\) 3.83413 0.181145
\(449\) −3.69734 −0.174488 −0.0872440 0.996187i \(-0.527806\pi\)
−0.0872440 + 0.996187i \(0.527806\pi\)
\(450\) 26.5345i 1.25085i
\(451\) 11.4479i 0.539060i
\(452\) 14.8275 0.697427
\(453\) −12.7637 −0.599691
\(454\) 0.820688i 0.0385168i
\(455\) 6.53835i 0.306523i
\(456\) 22.4252i 1.05016i
\(457\) 17.9502i 0.839677i 0.907599 + 0.419838i \(0.137913\pi\)
−0.907599 + 0.419838i \(0.862087\pi\)
\(458\) 4.63516i 0.216587i
\(459\) 115.941i 5.41166i
\(460\) −6.19649 −0.288913
\(461\) −27.9701 −1.30270 −0.651348 0.758779i \(-0.725796\pi\)
−0.651348 + 0.758779i \(0.725796\pi\)
\(462\) 12.4600 0.579692
\(463\) 12.5739i 0.584359i −0.956364 0.292179i \(-0.905620\pi\)
0.956364 0.292179i \(-0.0943804\pi\)
\(464\) 0.736034 0.0341695
\(465\) 23.2786i 1.07952i
\(466\) −24.1256 −1.11760
\(467\) 25.3693 1.17395 0.586975 0.809605i \(-0.300319\pi\)
0.586975 + 0.809605i \(0.300319\pi\)
\(468\) −10.5609 −0.488177
\(469\) 25.7741i 1.19014i
\(470\) −11.9020 −0.548999
\(471\) −18.6535 −0.859509
\(472\) 8.71833i 0.401294i
\(473\) 2.75352 0.126607
\(474\) 34.4348i 1.58164i
\(475\) 24.2169i 1.11115i
\(476\) 29.9911 1.37464
\(477\) −52.5261 + 16.4601i −2.40500 + 0.753655i
\(478\) 10.1487 0.464191
\(479\) 16.4541i 0.751806i 0.926659 + 0.375903i \(0.122667\pi\)
−0.926659 + 0.375903i \(0.877333\pi\)
\(480\) 3.96764i 0.181097i
\(481\) 10.8486 0.494653
\(482\) 9.00975i 0.410383i
\(483\) 63.2389 2.87747
\(484\) −1.00000 −0.0454545
\(485\) 9.19735i 0.417630i
\(486\) 38.3554 1.73984
\(487\) −27.0440 −1.22548 −0.612740 0.790284i \(-0.709933\pi\)
−0.612740 + 0.790284i \(0.709933\pi\)
\(488\) −1.83687 −0.0831511
\(489\) 17.1968i 0.777665i
\(490\) −9.40156 −0.424719
\(491\) 38.8353i 1.75261i −0.481756 0.876306i \(-0.660001\pi\)
0.481756 0.876306i \(-0.339999\pi\)
\(492\) −37.2030 −1.67724
\(493\) 5.75737 0.259299
\(494\) 9.63843 0.433654
\(495\) 9.23120i 0.414911i
\(496\) 5.86712i 0.263441i
\(497\) 28.0452i 1.25800i
\(498\) 14.1663i 0.634809i
\(499\) 14.3490i 0.642348i 0.947020 + 0.321174i \(0.104077\pi\)
−0.947020 + 0.321174i \(0.895923\pi\)
\(500\) 10.3891i 0.464616i
\(501\) −36.2637 −1.62014
\(502\) −3.07003 −0.137022
\(503\) 28.0960i 1.25274i −0.779526 0.626370i \(-0.784540\pi\)
0.779526 0.626370i \(-0.215460\pi\)
\(504\) 28.9897i 1.29131i
\(505\) −21.7770 −0.969062
\(506\) −5.07535 −0.225627
\(507\) 35.9069i 1.59468i
\(508\) 4.51350i 0.200254i
\(509\) 5.66864i 0.251258i 0.992077 + 0.125629i \(0.0400949\pi\)
−0.992077 + 0.125629i \(0.959905\pi\)
\(510\) 31.0355i 1.37427i
\(511\) 30.9955i 1.37116i
\(512\) 1.00000i 0.0441942i
\(513\) −102.281 −4.51581
\(514\) −31.3518 −1.38287
\(515\) 5.04957 0.222511
\(516\) 8.94831i 0.393927i
\(517\) −9.74856 −0.428741
\(518\) 29.7795i 1.30844i
\(519\) −17.3372 −0.761018
\(520\) −1.70530 −0.0747825
\(521\) 14.6382 0.641313 0.320656 0.947196i \(-0.396097\pi\)
0.320656 + 0.947196i \(0.396097\pi\)
\(522\) 5.56514i 0.243579i
\(523\) −30.4325 −1.33072 −0.665361 0.746522i \(-0.731722\pi\)
−0.665361 + 0.746522i \(0.731722\pi\)
\(524\) −13.3203 −0.581901
\(525\) 43.7272i 1.90841i
\(526\) 8.77352 0.382544
\(527\) 45.8935i 1.99915i
\(528\) 3.24977i 0.141428i
\(529\) −2.75914 −0.119963
\(530\) −8.48159 + 2.65787i −0.368417 + 0.115450i
\(531\) 65.9191 2.86065
\(532\) 26.4576i 1.14708i
\(533\) 15.9900i 0.692602i
\(534\) −60.8224 −2.63204
\(535\) 12.7456i 0.551041i
\(536\) 6.72228 0.290358
\(537\) 28.8988 1.24708
\(538\) 9.26887i 0.399609i
\(539\) −7.70052 −0.331685
\(540\) 18.0963 0.778741
\(541\) 32.1645 1.38286 0.691429 0.722444i \(-0.256981\pi\)
0.691429 + 0.722444i \(0.256981\pi\)
\(542\) 16.9647i 0.728695i
\(543\) 55.7879 2.39409
\(544\) 7.82216i 0.335372i
\(545\) −17.1310 −0.733812
\(546\) 17.4037 0.744808
\(547\) 39.6552 1.69553 0.847767 0.530369i \(-0.177947\pi\)
0.847767 + 0.530369i \(0.177947\pi\)
\(548\) 13.2256i 0.564970i
\(549\) 13.8885i 0.592747i
\(550\) 3.50940i 0.149641i
\(551\) 5.07905i 0.216375i
\(552\) 16.4937i 0.702018i
\(553\) 40.6268i 1.72763i
\(554\) 2.44388 0.103831
\(555\) −30.8165 −1.30809
\(556\) 7.75109i 0.328719i
\(557\) 22.2356i 0.942152i −0.882093 0.471076i \(-0.843866\pi\)
0.882093 0.471076i \(-0.156134\pi\)
\(558\) 44.3612 1.87796
\(559\) 3.84601 0.162669
\(560\) 4.68108i 0.197812i
\(561\) 25.4202i 1.07324i
\(562\) 12.1898i 0.514197i
\(563\) 21.9261i 0.924073i −0.886861 0.462037i \(-0.847119\pi\)
0.886861 0.462037i \(-0.152881\pi\)
\(564\) 31.6806i 1.33399i
\(565\) 18.1029i 0.761594i
\(566\) 19.2995 0.811219
\(567\) −97.7145 −4.10362
\(568\) −7.31463 −0.306915
\(569\) 5.93260i 0.248707i −0.992238 0.124354i \(-0.960314\pi\)
0.992238 0.124354i \(-0.0396857\pi\)
\(570\) −27.3789 −1.14678
\(571\) 8.08531i 0.338360i 0.985585 + 0.169180i \(0.0541119\pi\)
−0.985585 + 0.169180i \(0.945888\pi\)
\(572\) −1.39676 −0.0584015
\(573\) −50.2652 −2.09986
\(574\) 43.8926 1.83204
\(575\) 17.8114i 0.742788i
\(576\) 7.56098 0.315041
\(577\) 3.06176 0.127463 0.0637313 0.997967i \(-0.479700\pi\)
0.0637313 + 0.997967i \(0.479700\pi\)
\(578\) 44.1861i 1.83790i
\(579\) −17.5168 −0.727974
\(580\) 0.898624i 0.0373133i
\(581\) 16.7137i 0.693400i
\(582\) 24.4813 1.01478
\(583\) −6.94700 + 2.17698i −0.287715 + 0.0901612i
\(584\) 8.08412 0.334523
\(585\) 12.8938i 0.533092i
\(586\) 19.4434i 0.803201i
\(587\) −29.7494 −1.22789 −0.613945 0.789349i \(-0.710418\pi\)
−0.613945 + 0.789349i \(0.710418\pi\)
\(588\) 25.0249i 1.03201i
\(589\) −40.4864 −1.66821
\(590\) 10.6442 0.438215
\(591\) 40.7719i 1.67713i
\(592\) −7.76696 −0.319220
\(593\) −7.51588 −0.308640 −0.154320 0.988021i \(-0.549319\pi\)
−0.154320 + 0.988021i \(0.549319\pi\)
\(594\) 14.8221 0.608159
\(595\) 36.6162i 1.50112i
\(596\) −4.95598 −0.203005
\(597\) 19.6728i 0.805153i
\(598\) −7.08904 −0.289893
\(599\) −9.76420 −0.398954 −0.199477 0.979902i \(-0.563924\pi\)
−0.199477 + 0.979902i \(0.563924\pi\)
\(600\) −11.4047 −0.465597
\(601\) 9.09763i 0.371100i 0.982635 + 0.185550i \(0.0594067\pi\)
−0.982635 + 0.185550i \(0.940593\pi\)
\(602\) 10.5574i 0.430286i
\(603\) 50.8270i 2.06984i
\(604\) 3.92758i 0.159811i
\(605\) 1.22090i 0.0496366i
\(606\) 57.9655i 2.35469i
\(607\) 22.9170 0.930170 0.465085 0.885266i \(-0.346024\pi\)
0.465085 + 0.885266i \(0.346024\pi\)
\(608\) −6.90056 −0.279855
\(609\) 9.17099i 0.371627i
\(610\) 2.24263i 0.0908014i
\(611\) −13.6164 −0.550861
\(612\) 59.1432 2.39072
\(613\) 7.50411i 0.303088i 0.988451 + 0.151544i \(0.0484245\pi\)
−0.988451 + 0.151544i \(0.951575\pi\)
\(614\) 4.72499i 0.190685i
\(615\) 45.4211i 1.83155i
\(616\) 3.83413i 0.154481i
\(617\) 14.0679i 0.566351i −0.959068 0.283175i \(-0.908612\pi\)
0.959068 0.283175i \(-0.0913878\pi\)
\(618\) 13.4408i 0.540670i
\(619\) 14.7916 0.594524 0.297262 0.954796i \(-0.403926\pi\)
0.297262 + 0.954796i \(0.403926\pi\)
\(620\) 7.16316 0.287680
\(621\) 75.2274 3.01877
\(622\) 16.2390i 0.651126i
\(623\) 71.7592 2.87497
\(624\) 4.53914i 0.181711i
\(625\) 4.86294 0.194518
\(626\) 1.59242 0.0636460
\(627\) −22.4252 −0.895577
\(628\) 5.73996i 0.229049i
\(629\) −60.7544 −2.42243
\(630\) −35.3936 −1.41011
\(631\) 16.6338i 0.662182i 0.943599 + 0.331091i \(0.107417\pi\)
−0.943599 + 0.331091i \(0.892583\pi\)
\(632\) −10.5961 −0.421490
\(633\) 31.9383i 1.26943i
\(634\) 21.7876i 0.865298i
\(635\) −5.51054 −0.218679
\(636\) −7.07466 22.5761i −0.280529 0.895201i
\(637\) −10.7558 −0.426160
\(638\) 0.736034i 0.0291399i
\(639\) 55.3058i 2.18786i
\(640\) 1.22090 0.0482603
\(641\) 38.0492i 1.50285i 0.659817 + 0.751427i \(0.270634\pi\)
−0.659817 + 0.751427i \(0.729366\pi\)
\(642\) −33.9260 −1.33895
\(643\) 44.7335 1.76412 0.882059 0.471138i \(-0.156157\pi\)
0.882059 + 0.471138i \(0.156157\pi\)
\(644\) 19.4595i 0.766812i
\(645\) −10.9250 −0.430171
\(646\) −53.9773 −2.12371
\(647\) −9.09773 −0.357668 −0.178834 0.983879i \(-0.557233\pi\)
−0.178834 + 0.983879i \(0.557233\pi\)
\(648\) 25.4855i 1.00116i
\(649\) 8.71833 0.342224
\(650\) 4.90180i 0.192264i
\(651\) −73.1044 −2.86519
\(652\) 5.29170 0.207239
\(653\) 14.4818 0.566717 0.283358 0.959014i \(-0.408551\pi\)
0.283358 + 0.959014i \(0.408551\pi\)
\(654\) 45.5990i 1.78306i
\(655\) 16.2628i 0.635439i
\(656\) 11.4479i 0.446965i
\(657\) 61.1239i 2.38467i
\(658\) 37.3772i 1.45712i
\(659\) 8.61282i 0.335508i −0.985829 0.167754i \(-0.946349\pi\)
0.985829 0.167754i \(-0.0536514\pi\)
\(660\) 3.96764 0.154440
\(661\) 18.7707 0.730094 0.365047 0.930989i \(-0.381053\pi\)
0.365047 + 0.930989i \(0.381053\pi\)
\(662\) 28.7611i 1.11783i
\(663\) 35.5059i 1.37893i
\(664\) 4.35919 0.169169
\(665\) 32.3021 1.25262
\(666\) 58.7258i 2.27558i
\(667\) 3.73563i 0.144644i
\(668\) 11.1589i 0.431750i
\(669\) 0.812548i 0.0314149i
\(670\) 8.20723i 0.317073i
\(671\) 1.83687i 0.0709115i
\(672\) −12.4600 −0.480655
\(673\) 6.56774 0.253168 0.126584 0.991956i \(-0.459599\pi\)
0.126584 + 0.991956i \(0.459599\pi\)
\(674\) 14.1276 0.544175
\(675\) 52.0168i 2.00213i
\(676\) 11.0491 0.424964
\(677\) 37.7402i 1.45047i 0.688500 + 0.725236i \(0.258270\pi\)
−0.688500 + 0.725236i \(0.741730\pi\)
\(678\) −48.1859 −1.85057
\(679\) −28.8835 −1.10845
\(680\) 9.55007 0.366228
\(681\) 2.66704i 0.102201i
\(682\) 5.86712 0.224664
\(683\) −18.5382 −0.709344 −0.354672 0.934991i \(-0.615408\pi\)
−0.354672 + 0.934991i \(0.615408\pi\)
\(684\) 52.1750i 1.99496i
\(685\) −16.1471 −0.616950
\(686\) 2.68589i 0.102548i
\(687\) 15.0632i 0.574696i
\(688\) −2.75352 −0.104977
\(689\) −9.70329 + 3.04071i −0.369666 + 0.115842i
\(690\) 20.1371 0.766608
\(691\) 21.1890i 0.806067i 0.915185 + 0.403034i \(0.132044\pi\)
−0.915185 + 0.403034i \(0.867956\pi\)
\(692\) 5.33490i 0.202803i
\(693\) −28.9897 −1.10123
\(694\) 13.5977i 0.516160i
\(695\) −9.46330 −0.358963
\(696\) −2.39194 −0.0906662
\(697\) 89.5472i 3.39184i
\(698\) 7.01389 0.265480
\(699\) 78.4026 2.96546
\(700\) 13.4555 0.508570
\(701\) 37.8356i 1.42903i −0.699619 0.714516i \(-0.746647\pi\)
0.699619 0.714516i \(-0.253353\pi\)
\(702\) 20.7029 0.781382
\(703\) 53.5964i 2.02143i
\(704\) 1.00000 0.0376889
\(705\) 38.6788 1.45673
\(706\) 2.25186 0.0847498
\(707\) 68.3886i 2.57202i
\(708\) 28.3325i 1.06480i
\(709\) 10.2158i 0.383661i −0.981428 0.191831i \(-0.938558\pi\)
0.981428 0.191831i \(-0.0614424\pi\)
\(710\) 8.93043i 0.335153i
\(711\) 80.1168i 3.00462i
\(712\) 18.7159i 0.701409i
\(713\) 29.7777 1.11518
\(714\) −97.4642 −3.64750
\(715\) 1.70530i 0.0637748i
\(716\) 8.89259i 0.332332i
\(717\) −32.9809 −1.23170
\(718\) −12.9911 −0.484824
\(719\) 5.82593i 0.217270i 0.994082 + 0.108635i \(0.0346480\pi\)
−0.994082 + 0.108635i \(0.965352\pi\)
\(720\) 9.23120i 0.344026i
\(721\) 15.8577i 0.590573i
\(722\) 28.6178i 1.06504i
\(723\) 29.2796i 1.08892i
\(724\) 17.1667i 0.637997i
\(725\) 2.58304 0.0959317
\(726\) 3.24977 0.120610
\(727\) −20.6676 −0.766519 −0.383259 0.923641i \(-0.625198\pi\)
−0.383259 + 0.923641i \(0.625198\pi\)
\(728\) 5.35536i 0.198483i
\(729\) −48.1898 −1.78481
\(730\) 9.86990i 0.365302i
\(731\) −21.5385 −0.796630
\(732\) 5.96939 0.220635
\(733\) −4.88537 −0.180445 −0.0902226 0.995922i \(-0.528758\pi\)
−0.0902226 + 0.995922i \(0.528758\pi\)
\(734\) 3.61151i 0.133303i
\(735\) 30.5529 1.12696
\(736\) 5.07535 0.187080
\(737\) 6.72228i 0.247618i
\(738\) 86.5572 3.18622
\(739\) 0.378755i 0.0139327i −0.999976 0.00696636i \(-0.997783\pi\)
0.999976 0.00696636i \(-0.00221748\pi\)
\(740\) 9.48267i 0.348590i
\(741\) −31.3227 −1.15067
\(742\) 8.34680 + 26.6357i 0.306421 + 0.977826i
\(743\) 43.2980 1.58845 0.794224 0.607625i \(-0.207877\pi\)
0.794224 + 0.607625i \(0.207877\pi\)
\(744\) 19.0668i 0.699022i
\(745\) 6.05075i 0.221682i
\(746\) 20.6459 0.755901
\(747\) 32.9597i 1.20593i
\(748\) 7.82216 0.286006
\(749\) 40.0265 1.46253
\(750\) 33.7622i 1.23282i
\(751\) 12.3249 0.449742 0.224871 0.974389i \(-0.427804\pi\)
0.224871 + 0.974389i \(0.427804\pi\)
\(752\) 9.74856 0.355494
\(753\) 9.97688 0.363578
\(754\) 1.02806i 0.0374399i
\(755\) 4.79518 0.174514
\(756\) 56.8298i 2.06688i
\(757\) 23.8630 0.867314 0.433657 0.901078i \(-0.357223\pi\)
0.433657 + 0.901078i \(0.357223\pi\)
\(758\) −17.0098 −0.617822
\(759\) 16.4937 0.598683
\(760\) 8.42490i 0.305603i
\(761\) 3.71404i 0.134634i 0.997732 + 0.0673169i \(0.0214439\pi\)
−0.997732 + 0.0673169i \(0.978556\pi\)
\(762\) 14.6678i 0.531360i
\(763\) 53.7984i 1.94763i
\(764\) 15.4673i 0.559589i
\(765\) 72.2079i 2.61068i
\(766\) −13.2034 −0.477057
\(767\) 12.1774 0.439701
\(768\) 3.24977i 0.117266i
\(769\) 2.64721i 0.0954607i 0.998860 + 0.0477304i \(0.0151988\pi\)
−0.998860 + 0.0477304i \(0.984801\pi\)
\(770\) −4.68108 −0.168695
\(771\) 101.886 3.66933
\(772\) 5.39018i 0.193997i
\(773\) 19.5200i 0.702085i −0.936360 0.351042i \(-0.885827\pi\)
0.936360 0.351042i \(-0.114173\pi\)
\(774\) 20.8193i 0.748336i
\(775\) 20.5901i 0.739618i
\(776\) 7.53326i 0.270428i
\(777\) 96.7764i 3.47183i
\(778\) 26.3757 0.945613
\(779\) −78.9969 −2.83036
\(780\) 5.54184 0.198430
\(781\) 7.31463i 0.261738i
\(782\) 39.7002 1.41967
\(783\) 10.9096i 0.389877i
\(784\) 7.70052 0.275019
\(785\) 7.00791 0.250123
\(786\) 43.2879 1.54403
\(787\) 15.6371i 0.557403i −0.960378 0.278702i \(-0.910096\pi\)
0.960378 0.278702i \(-0.0899040\pi\)
\(788\) −12.5461 −0.446937
\(789\) −28.5119 −1.01505
\(790\) 12.9368i 0.460270i
\(791\) 56.8505 2.02137
\(792\) 7.56098i 0.268668i
\(793\) 2.56566i 0.0911094i
\(794\) 0.560584 0.0198944
\(795\) 27.5632 8.63745i 0.977565 0.306339i
\(796\) 6.05360 0.214564
\(797\) 15.3519i 0.543794i 0.962326 + 0.271897i \(0.0876509\pi\)
−0.962326 + 0.271897i \(0.912349\pi\)
\(798\) 85.9811i 3.04370i
\(799\) 76.2548 2.69770
\(800\) 3.50940i 0.124076i
\(801\) 141.511 5.00004
\(802\) 19.1575 0.676474
\(803\) 8.08412i 0.285283i
\(804\) −21.8458 −0.770443
\(805\) −23.7581 −0.837364
\(806\) 8.19496 0.288655
\(807\) 30.1216i 1.06033i
\(808\) 17.8368 0.627497
\(809\) 4.86408i 0.171012i −0.996338 0.0855059i \(-0.972749\pi\)
0.996338 0.0855059i \(-0.0272506\pi\)
\(810\) −31.1152 −1.09328
\(811\) −9.09904 −0.319510 −0.159755 0.987157i \(-0.551070\pi\)
−0.159755 + 0.987157i \(0.551070\pi\)
\(812\) 2.82205 0.0990344
\(813\) 55.1312i 1.93354i
\(814\) 7.76696i 0.272232i
\(815\) 6.46063i 0.226306i
\(816\) 25.4202i 0.889884i
\(817\) 19.0009i 0.664756i
\(818\) 23.1556i 0.809616i
\(819\) −40.4917 −1.41490
\(820\) 13.9767 0.488088
\(821\) 35.5478i 1.24063i 0.784355 + 0.620313i \(0.212994\pi\)
−0.784355 + 0.620313i \(0.787006\pi\)
\(822\) 42.9801i 1.49910i
\(823\) −9.33661 −0.325454 −0.162727 0.986671i \(-0.552029\pi\)
−0.162727 + 0.986671i \(0.552029\pi\)
\(824\) −4.13594 −0.144082
\(825\) 11.4047i 0.397062i
\(826\) 33.4272i 1.16308i
\(827\) 12.0565i 0.419244i −0.977782 0.209622i \(-0.932777\pi\)
0.977782 0.209622i \(-0.0672234\pi\)
\(828\) 38.3746i 1.33361i
\(829\) 44.7279i 1.55347i 0.629830 + 0.776733i \(0.283124\pi\)
−0.629830 + 0.776733i \(0.716876\pi\)
\(830\) 5.32213i 0.184734i
\(831\) −7.94205 −0.275507
\(832\) 1.39676 0.0484240
\(833\) 60.2347 2.08701
\(834\) 25.1892i 0.872231i
\(835\) 13.6239 0.471473
\(836\) 6.90056i 0.238661i
\(837\) −86.9631 −3.00588
\(838\) −15.7794 −0.545090
\(839\) −34.9434 −1.20638 −0.603191 0.797597i \(-0.706104\pi\)
−0.603191 + 0.797597i \(0.706104\pi\)
\(840\) 15.2124i 0.524878i
\(841\) −28.4583 −0.981319
\(842\) −12.1231 −0.417790
\(843\) 39.6141i 1.36438i
\(844\) −9.82786 −0.338289
\(845\) 13.4898i 0.464063i
\(846\) 73.7087i 2.53416i
\(847\) −3.83413 −0.131742
\(848\) 6.94700 2.17698i 0.238561 0.0747577i
\(849\) −62.7189 −2.15251
\(850\) 27.4511i 0.941565i
\(851\) 39.4200i 1.35130i
\(852\) 23.7708 0.814375
\(853\) 38.9810i 1.33468i −0.744752 0.667341i \(-0.767432\pi\)
0.744752 0.667341i \(-0.232568\pi\)
\(854\) −7.04278 −0.240999
\(855\) 63.7005 2.17851
\(856\) 10.4395i 0.356816i
\(857\) 25.4403 0.869026 0.434513 0.900666i \(-0.356921\pi\)
0.434513 + 0.900666i \(0.356921\pi\)
\(858\) 4.53914 0.154964
\(859\) 25.7585 0.878869 0.439434 0.898275i \(-0.355179\pi\)
0.439434 + 0.898275i \(0.355179\pi\)
\(860\) 3.36178i 0.114636i
\(861\) −142.641 −4.86119
\(862\) 23.0942i 0.786591i
\(863\) 26.0007 0.885073 0.442537 0.896750i \(-0.354079\pi\)
0.442537 + 0.896750i \(0.354079\pi\)
\(864\) −14.8221 −0.504259
\(865\) 6.51338 0.221462
\(866\) 0.295719i 0.0100489i
\(867\) 143.595i 4.87673i
\(868\) 22.4953i 0.763539i
\(869\) 10.5961i 0.359448i
\(870\) 2.92032i 0.0990080i
\(871\) 9.38941i 0.318148i
\(872\) 14.0315 0.475165
\(873\) −56.9588 −1.92776
\(874\) 35.0228i 1.18466i
\(875\) 39.8332i 1.34661i
\(876\) −26.2715 −0.887632
\(877\) −54.4581 −1.83892 −0.919460 0.393183i \(-0.871374\pi\)
−0.919460 + 0.393183i \(0.871374\pi\)
\(878\) 16.1019i 0.543412i
\(879\) 63.1866i 2.13123i
\(880\) 1.22090i 0.0411565i
\(881\) 3.97885i 0.134051i 0.997751 + 0.0670254i \(0.0213509\pi\)
−0.997751 + 0.0670254i \(0.978649\pi\)
\(882\) 58.2235i 1.96049i
\(883\) 39.4812i 1.32865i −0.747444 0.664324i \(-0.768719\pi\)
0.747444 0.664324i \(-0.231281\pi\)
\(884\) 10.9257 0.367470
\(885\) −34.5912 −1.16277
\(886\) −17.8170 −0.598573
\(887\) 12.2457i 0.411170i −0.978639 0.205585i \(-0.934090\pi\)
0.978639 0.205585i \(-0.0659098\pi\)
\(888\) 25.2408 0.847026
\(889\) 17.3053i 0.580403i
\(890\) 22.8503 0.765943
\(891\) −25.4855 −0.853795
\(892\) −0.250033 −0.00837172
\(893\) 67.2706i 2.25112i
\(894\) 16.1058 0.538657
\(895\) −10.8570 −0.362908
\(896\) 3.83413i 0.128089i
\(897\) 23.0377 0.769207
\(898\) 3.69734i 0.123382i
\(899\) 4.31840i 0.144027i
\(900\) 26.5345 0.884484
\(901\) 54.3405 17.0287i 1.81034 0.567307i
\(902\) 11.4479 0.381173
\(903\) 34.3089i 1.14173i
\(904\) 14.8275i 0.493155i
\(905\) −20.9589 −0.696696
\(906\) 12.7637i 0.424046i
\(907\) 14.6670 0.487011 0.243505 0.969900i \(-0.421703\pi\)
0.243505 + 0.969900i \(0.421703\pi\)
\(908\) 0.820688 0.0272355
\(909\) 134.864i 4.47315i
\(910\) −6.53835 −0.216744
\(911\) −49.9797 −1.65590 −0.827951 0.560800i \(-0.810494\pi\)
−0.827951 + 0.560800i \(0.810494\pi\)
\(912\) 22.4252 0.742573
\(913\) 4.35919i 0.144268i
\(914\) 17.9502 0.593741
\(915\) 7.28802i 0.240935i
\(916\) −4.63516 −0.153150
\(917\) −51.0718 −1.68654
\(918\) −115.941 −3.82662
\(919\) 50.7824i 1.67516i −0.546316 0.837579i \(-0.683970\pi\)
0.546316 0.837579i \(-0.316030\pi\)
\(920\) 6.19649i 0.204292i
\(921\) 15.3551i 0.505968i
\(922\) 27.9701i 0.921146i
\(923\) 10.2168i 0.336290i
\(924\) 12.4600i 0.409904i
\(925\) −27.2574 −0.896218
\(926\) −12.5739 −0.413204
\(927\) 31.2718i 1.02710i
\(928\) 0.736034i 0.0241615i
\(929\) 13.9260 0.456898 0.228449 0.973556i \(-0.426635\pi\)
0.228449 + 0.973556i \(0.426635\pi\)
\(930\) −23.2786 −0.763336
\(931\) 53.1379i 1.74153i
\(932\) 24.1256i 0.790261i
\(933\) 52.7730i 1.72771i
\(934\) 25.3693i 0.830107i
\(935\) 9.55007i 0.312321i
\(936\) 10.5609i 0.345193i
\(937\) −31.3183 −1.02312 −0.511562 0.859247i \(-0.670933\pi\)
−0.511562 + 0.859247i \(0.670933\pi\)
\(938\) 25.7741 0.841553
\(939\) −5.17500 −0.168880
\(940\) 11.9020i 0.388201i
\(941\) 34.8317 1.13548 0.567741 0.823207i \(-0.307818\pi\)
0.567741 + 0.823207i \(0.307818\pi\)
\(942\) 18.6535i 0.607765i
\(943\) 58.1020 1.89206
\(944\) −8.71833 −0.283758
\(945\) 69.3835 2.25705
\(946\) 2.75352i 0.0895248i
\(947\) 20.1329 0.654232 0.327116 0.944984i \(-0.393923\pi\)
0.327116 + 0.944984i \(0.393923\pi\)
\(948\) 34.4348 1.11839
\(949\) 11.2916i 0.366540i
\(950\) −24.2169 −0.785699
\(951\) 70.8047i 2.29600i
\(952\) 29.9911i 0.972018i
\(953\) 24.1486 0.782250 0.391125 0.920338i \(-0.372086\pi\)
0.391125 + 0.920338i \(0.372086\pi\)
\(954\) 16.4601 + 52.5261i 0.532915 + 1.70060i
\(955\) 18.8841 0.611074
\(956\) 10.1487i 0.328233i
\(957\) 2.39194i 0.0773204i
\(958\) 16.4541 0.531607
\(959\) 50.7086i 1.63747i
\(960\) −3.96764 −0.128055
\(961\) −3.42310 −0.110423
\(962\) 10.8486i 0.349772i
\(963\) 78.9330 2.54358
\(964\) 9.00975 0.290184
\(965\) 6.58087 0.211846
\(966\) 63.2389i 2.03468i
\(967\) 23.2277 0.746951 0.373476 0.927640i \(-0.378166\pi\)
0.373476 + 0.927640i \(0.378166\pi\)
\(968\) 1.00000i 0.0321412i
\(969\) 175.414 5.63510
\(970\) −9.19735 −0.295309
\(971\) 32.4706 1.04203 0.521016 0.853547i \(-0.325553\pi\)
0.521016 + 0.853547i \(0.325553\pi\)
\(972\) 38.3554i 1.23025i
\(973\) 29.7187i 0.952736i
\(974\) 27.0440i 0.866545i
\(975\) 15.9297i 0.510158i
\(976\) 1.83687i 0.0587967i
\(977\) 55.1757i 1.76523i 0.470101 + 0.882613i \(0.344218\pi\)
−0.470101 + 0.882613i \(0.655782\pi\)
\(978\) −17.1968 −0.549892
\(979\) 18.7159 0.598164
\(980\) 9.40156i 0.300322i
\(981\) 106.092i 3.38725i
\(982\) −38.8353 −1.23928
\(983\) 18.7696 0.598658 0.299329 0.954150i \(-0.403237\pi\)
0.299329 + 0.954150i \(0.403237\pi\)
\(984\) 37.2030i 1.18599i
\(985\) 15.3175i 0.488058i
\(986\) 5.75737i 0.183352i
\(987\) 121.467i 3.86634i
\(988\) 9.63843i 0.306639i
\(989\) 13.9751i 0.444382i
\(990\) −9.23120 −0.293387
\(991\) −3.24382 −0.103043 −0.0515217 0.998672i \(-0.516407\pi\)
−0.0515217 + 0.998672i \(0.516407\pi\)
\(992\) −5.86712 −0.186281
\(993\) 93.4669i 2.96608i
\(994\) −28.0452 −0.889540
\(995\) 7.39083i 0.234305i
\(996\) −14.1663 −0.448878
\(997\) 10.6207 0.336360 0.168180 0.985756i \(-0.446211\pi\)
0.168180 + 0.985756i \(0.446211\pi\)
\(998\) 14.3490 0.454209
\(999\) 115.123i 3.64232i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1166.2.c.b.529.11 22
53.52 even 2 inner 1166.2.c.b.529.12 yes 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1166.2.c.b.529.11 22 1.1 even 1 trivial
1166.2.c.b.529.12 yes 22 53.52 even 2 inner