Properties

Label 1166.2.c
Level $1166$
Weight $2$
Character orbit 1166.c
Rep. character $\chi_{1166}(529,\cdot)$
Character field $\Q$
Dimension $46$
Newform subspaces $3$
Sturm bound $324$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1166 = 2 \cdot 11 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1166.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 53 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(324\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1166, [\chi])\).

Total New Old
Modular forms 166 46 120
Cusp forms 158 46 112
Eisenstein series 8 0 8

Trace form

\( 46 q - 46 q^{4} - 54 q^{9} - 8 q^{10} - 2 q^{11} + 8 q^{13} + 24 q^{15} + 46 q^{16} + 24 q^{17} - 70 q^{25} + 24 q^{29} + 54 q^{36} + 16 q^{37} - 4 q^{38} + 8 q^{40} - 16 q^{42} - 24 q^{43} + 2 q^{44} - 24 q^{46}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1166, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1166.2.c.a 1166.c 53.b $2$ $9.311$ \(\Q(\sqrt{-1}) \) None 1166.2.c.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q-i q^{2}+i q^{3}-q^{4}-i q^{5}+q^{6}+\cdots\)
1166.2.c.b 1166.c 53.b $22$ $9.311$ None 1166.2.c.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
1166.2.c.c 1166.c 53.b $22$ $9.311$ None 1166.2.c.c \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1166, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1166, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(53, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(106, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(583, [\chi])\)\(^{\oplus 2}\)