Defining parameters
Level: | \( N \) | \(=\) | \( 1166 = 2 \cdot 11 \cdot 53 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1166.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 53 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(324\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1166, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 166 | 46 | 120 |
Cusp forms | 158 | 46 | 112 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1166, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1166.2.c.a | $2$ | $9.311$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(-8\) | \(q-i q^{2}+i q^{3}-q^{4}-i q^{5}+q^{6}+\cdots\) |
1166.2.c.b | $22$ | $9.311$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
1166.2.c.c | $22$ | $9.311$ | None | \(0\) | \(0\) | \(0\) | \(8\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1166, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1166, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(53, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(106, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(583, [\chi])\)\(^{\oplus 2}\)