Defining parameters
Level: | \( N \) | = | \( 1166 = 2 \cdot 11 \cdot 53 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 12 \) | ||
Sturm bound: | \(168480\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1166))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 43160 | 13799 | 29361 |
Cusp forms | 41081 | 13799 | 27282 |
Eisenstein series | 2079 | 0 | 2079 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1166))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
1166.2.a | \(\chi_{1166}(1, \cdot)\) | 1166.2.a.a | 1 | 1 |
1166.2.a.b | 1 | |||
1166.2.a.c | 1 | |||
1166.2.a.d | 1 | |||
1166.2.a.e | 2 | |||
1166.2.a.f | 3 | |||
1166.2.a.g | 3 | |||
1166.2.a.h | 4 | |||
1166.2.a.i | 4 | |||
1166.2.a.j | 4 | |||
1166.2.a.k | 6 | |||
1166.2.a.l | 7 | |||
1166.2.a.m | 8 | |||
1166.2.c | \(\chi_{1166}(529, \cdot)\) | 1166.2.c.a | 2 | 1 |
1166.2.c.b | 22 | |||
1166.2.c.c | 22 | |||
1166.2.f | \(\chi_{1166}(659, \cdot)\) | n/a | 108 | 2 |
1166.2.g | \(\chi_{1166}(213, \cdot)\) | n/a | 208 | 4 |
1166.2.i | \(\chi_{1166}(317, \cdot)\) | n/a | 216 | 4 |
1166.2.k | \(\chi_{1166}(89, \cdot)\) | n/a | 528 | 12 |
1166.2.l | \(\chi_{1166}(83, \cdot)\) | n/a | 432 | 8 |
1166.2.o | \(\chi_{1166}(199, \cdot)\) | n/a | 552 | 12 |
1166.2.q | \(\chi_{1166}(21, \cdot)\) | n/a | 1296 | 24 |
1166.2.s | \(\chi_{1166}(15, \cdot)\) | n/a | 2592 | 48 |
1166.2.u | \(\chi_{1166}(9, \cdot)\) | n/a | 2592 | 48 |
1166.2.x | \(\chi_{1166}(19, \cdot)\) | n/a | 5184 | 96 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1166))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(1166)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(53))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(106))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(583))\)\(^{\oplus 2}\)