Properties

Label 1166.2
Level 1166
Weight 2
Dimension 13799
Nonzero newspaces 12
Sturm bound 168480
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1166 = 2 \cdot 11 \cdot 53 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(168480\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1166))\).

Total New Old
Modular forms 43160 13799 29361
Cusp forms 41081 13799 27282
Eisenstein series 2079 0 2079

Trace form

\( 13799 q + 3 q^{2} + 12 q^{3} + 3 q^{4} + 18 q^{5} + 2 q^{6} + 4 q^{7} + 3 q^{8} - q^{9} - 2 q^{10} + 3 q^{11} - 8 q^{12} + 22 q^{13} + 4 q^{14} + 12 q^{15} + 3 q^{16} + 14 q^{17} + 29 q^{18} + 30 q^{19}+ \cdots - 221 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1166))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1166.2.a \(\chi_{1166}(1, \cdot)\) 1166.2.a.a 1 1
1166.2.a.b 1
1166.2.a.c 1
1166.2.a.d 1
1166.2.a.e 2
1166.2.a.f 3
1166.2.a.g 3
1166.2.a.h 4
1166.2.a.i 4
1166.2.a.j 4
1166.2.a.k 6
1166.2.a.l 7
1166.2.a.m 8
1166.2.c \(\chi_{1166}(529, \cdot)\) 1166.2.c.a 2 1
1166.2.c.b 22
1166.2.c.c 22
1166.2.f \(\chi_{1166}(659, \cdot)\) n/a 108 2
1166.2.g \(\chi_{1166}(213, \cdot)\) n/a 208 4
1166.2.i \(\chi_{1166}(317, \cdot)\) n/a 216 4
1166.2.k \(\chi_{1166}(89, \cdot)\) n/a 528 12
1166.2.l \(\chi_{1166}(83, \cdot)\) n/a 432 8
1166.2.o \(\chi_{1166}(199, \cdot)\) n/a 552 12
1166.2.q \(\chi_{1166}(21, \cdot)\) n/a 1296 24
1166.2.s \(\chi_{1166}(15, \cdot)\) n/a 2592 48
1166.2.u \(\chi_{1166}(9, \cdot)\) n/a 2592 48
1166.2.x \(\chi_{1166}(19, \cdot)\) n/a 5184 96

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1166))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1166)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(53))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(106))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(583))\)\(^{\oplus 2}\)