L(s) = 1 | − i·2-s + 3.24i·3-s − 4-s − 1.22i·5-s + 3.24·6-s − 3.83·7-s + i·8-s − 7.56·9-s − 1.22·10-s − 11-s − 3.24i·12-s − 1.39·13-s + 3.83i·14-s + 3.96·15-s + 16-s + 7.82·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 1.87i·3-s − 0.5·4-s − 0.546i·5-s + 1.32·6-s − 1.44·7-s + 0.353i·8-s − 2.52·9-s − 0.386·10-s − 0.301·11-s − 0.938i·12-s − 0.387·13-s + 1.02i·14-s + 1.02·15-s + 0.250·16-s + 1.89·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1166 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.299 + 0.954i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1166 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.299 + 0.954i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7068657154\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7068657154\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 11 | \( 1 + T \) |
| 53 | \( 1 + (-6.94 + 2.17i)T \) |
good | 3 | \( 1 - 3.24iT - 3T^{2} \) |
| 5 | \( 1 + 1.22iT - 5T^{2} \) |
| 7 | \( 1 + 3.83T + 7T^{2} \) |
| 13 | \( 1 + 1.39T + 13T^{2} \) |
| 17 | \( 1 - 7.82T + 17T^{2} \) |
| 19 | \( 1 + 6.90iT - 19T^{2} \) |
| 23 | \( 1 - 5.07iT - 23T^{2} \) |
| 29 | \( 1 - 0.736T + 29T^{2} \) |
| 31 | \( 1 + 5.86iT - 31T^{2} \) |
| 37 | \( 1 + 7.76T + 37T^{2} \) |
| 41 | \( 1 + 11.4iT - 41T^{2} \) |
| 43 | \( 1 + 2.75T + 43T^{2} \) |
| 47 | \( 1 - 9.74T + 47T^{2} \) |
| 59 | \( 1 + 8.71T + 59T^{2} \) |
| 61 | \( 1 - 1.83iT - 61T^{2} \) |
| 67 | \( 1 + 6.72iT - 67T^{2} \) |
| 71 | \( 1 - 7.31iT - 71T^{2} \) |
| 73 | \( 1 + 8.08iT - 73T^{2} \) |
| 79 | \( 1 - 10.5iT - 79T^{2} \) |
| 83 | \( 1 + 4.35iT - 83T^{2} \) |
| 89 | \( 1 + 18.7T + 89T^{2} \) |
| 97 | \( 1 - 7.53T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.616790831926210558829082647880, −9.281457652682695218520470568880, −8.513072890113602112658243426148, −7.19180550394483191778624590758, −5.64305818319870796432158204922, −5.26998405161923890523420948722, −4.20214206937547529744687837898, −3.39247528565908932155712604310, −2.77901829492811735834555508756, −0.34463163216317546763480168101,
1.16961211942500447333347494717, 2.75728682372272547594239633683, 3.42081613035913207206519928226, 5.37279731980507275177392948181, 6.11821147475848170307763740229, 6.66950553533917378734837442909, 7.34091106124770681594459785402, 7.985966619775992914109760945608, 8.778036198503954696310757511195, 9.949559078620426086260649208652