Properties

Label 1166.2.a.l
Level $1166$
Weight $2$
Character orbit 1166.a
Self dual yes
Analytic conductor $9.311$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1166,2,Mod(1,1166)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1166, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1166.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1166 = 2 \cdot 11 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1166.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,7,4,7,4,4,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.31055687568\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 10x^{5} + 17x^{4} + 42x^{3} + 2x^{2} - 20x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + ( - \beta_1 + 1) q^{3} + q^{4} + ( - \beta_{5} + 1) q^{5} + ( - \beta_1 + 1) q^{6} + \beta_{3} q^{7} + q^{8} + (\beta_{6} + \beta_{5} + 1) q^{9} + ( - \beta_{5} + 1) q^{10} + q^{11} + ( - \beta_1 + 1) q^{12}+ \cdots + (\beta_{6} + \beta_{5} + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} + 4 q^{3} + 7 q^{4} + 4 q^{5} + 4 q^{6} + 2 q^{7} + 7 q^{8} + 9 q^{9} + 4 q^{10} + 7 q^{11} + 4 q^{12} + 6 q^{13} + 2 q^{14} - 5 q^{15} + 7 q^{16} - 4 q^{17} + 9 q^{18} + 18 q^{19} + 4 q^{20}+ \cdots + 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 3x^{6} - 10x^{5} + 17x^{4} + 42x^{3} + 2x^{2} - 20x - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{6} - 10\nu^{5} - 3\nu^{4} + 52\nu^{3} - 5\nu^{2} - 46\nu + 13 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{6} + 4\nu^{5} + 6\nu^{4} - 22\nu^{3} - 21\nu^{2} + 11\nu + 6 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{6} - 4\nu^{5} - 6\nu^{4} + 23\nu^{3} + 19\nu^{2} - 16\nu - 5 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -4\nu^{6} + 17\nu^{5} + 18\nu^{4} - 89\nu^{3} - 50\nu^{2} + 50\nu + 1 ) / 3 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 4\nu^{6} - 17\nu^{5} - 18\nu^{4} + 89\nu^{3} + 53\nu^{2} - 56\nu - 10 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + \beta_{5} + 2\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{6} + 2\beta_{5} + \beta_{4} + \beta_{3} + 9\beta _1 + 5 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 11\beta_{6} + 9\beta_{5} + 2\beta_{4} + 4\beta_{3} - \beta_{2} + 28\beta _1 + 24 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 34\beta_{6} + 25\beta_{5} + 13\beta_{4} + 21\beta_{3} - 6\beta_{2} + 103\beta _1 + 70 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 137\beta_{6} + 89\beta_{5} + 42\beta_{4} + 85\beta_{3} - 30\beta_{2} + 351\beta _1 + 257 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.56081
3.10691
0.670112
−0.101052
−1.15455
−1.29068
−1.79155
1.00000 −2.56081 1.00000 1.41575 −2.56081 1.64447 1.00000 3.55774 1.41575
1.2 1.00000 −2.10691 1.00000 −0.807854 −2.10691 −4.71309 1.00000 1.43907 −0.807854
1.3 1.00000 0.329888 1.00000 4.05456 0.329888 −1.01910 1.00000 −2.89117 4.05456
1.4 1.00000 1.10105 1.00000 2.48988 1.10105 4.69727 1.00000 −1.78768 2.48988
1.5 1.00000 2.15455 1.00000 0.590473 2.15455 −0.748024 1.00000 1.64209 0.590473
1.6 1.00000 2.29068 1.00000 −4.03371 2.29068 1.82206 1.00000 2.24721 −4.03371
1.7 1.00000 2.79155 1.00000 0.290901 2.79155 0.316408 1.00000 4.79275 0.290901
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( -1 \)
\(53\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1166.2.a.l 7
4.b odd 2 1 9328.2.a.bg 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1166.2.a.l 7 1.a even 1 1 trivial
9328.2.a.bg 7 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1166))\):

\( T_{3}^{7} - 4T_{3}^{6} - 7T_{3}^{5} + 43T_{3}^{4} - 15T_{3}^{3} - 106T_{3}^{2} + 117T_{3} - 27 \) Copy content Toggle raw display
\( T_{7}^{7} - 2T_{7}^{6} - 24T_{7}^{5} + 48T_{7}^{4} + 42T_{7}^{3} - 76T_{7}^{2} - 32T_{7} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{7} \) Copy content Toggle raw display
$3$ \( T^{7} - 4 T^{6} + \cdots - 27 \) Copy content Toggle raw display
$5$ \( T^{7} - 4 T^{6} + \cdots - 8 \) Copy content Toggle raw display
$7$ \( T^{7} - 2 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$11$ \( (T - 1)^{7} \) Copy content Toggle raw display
$13$ \( T^{7} - 6 T^{6} + \cdots - 717 \) Copy content Toggle raw display
$17$ \( T^{7} + 4 T^{6} + \cdots - 24 \) Copy content Toggle raw display
$19$ \( T^{7} - 18 T^{6} + \cdots + 6840 \) Copy content Toggle raw display
$23$ \( T^{7} - 8 T^{6} + \cdots + 2496 \) Copy content Toggle raw display
$29$ \( T^{7} + 11 T^{6} + \cdots - 15775 \) Copy content Toggle raw display
$31$ \( T^{7} - 16 T^{6} + \cdots + 85248 \) Copy content Toggle raw display
$37$ \( T^{7} + 8 T^{6} + \cdots - 714808 \) Copy content Toggle raw display
$41$ \( T^{7} + 4 T^{6} + \cdots + 5242 \) Copy content Toggle raw display
$43$ \( T^{7} - 7 T^{6} + \cdots - 846854 \) Copy content Toggle raw display
$47$ \( T^{7} - 2 T^{6} + \cdots + 7734 \) Copy content Toggle raw display
$53$ \( (T - 1)^{7} \) Copy content Toggle raw display
$59$ \( T^{7} + 16 T^{6} + \cdots - 4560 \) Copy content Toggle raw display
$61$ \( T^{7} - 26 T^{6} + \cdots - 37888 \) Copy content Toggle raw display
$67$ \( T^{7} + 16 T^{6} + \cdots + 331136 \) Copy content Toggle raw display
$71$ \( T^{7} - 2 T^{6} + \cdots - 1547528 \) Copy content Toggle raw display
$73$ \( T^{7} + 3 T^{6} + \cdots + 2120936 \) Copy content Toggle raw display
$79$ \( T^{7} - 26 T^{6} + \cdots + 536345 \) Copy content Toggle raw display
$83$ \( T^{7} - 22 T^{6} + \cdots - 12568 \) Copy content Toggle raw display
$89$ \( T^{7} - 3 T^{6} + \cdots + 66300 \) Copy content Toggle raw display
$97$ \( T^{7} + 25 T^{6} + \cdots + 114623 \) Copy content Toggle raw display
show more
show less