Properties

Label 1166.2.a
Level $1166$
Weight $2$
Character orbit 1166.a
Rep. character $\chi_{1166}(1,\cdot)$
Character field $\Q$
Dimension $45$
Newform subspaces $13$
Sturm bound $324$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1166 = 2 \cdot 11 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1166.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 13 \)
Sturm bound: \(324\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1166))\).

Total New Old
Modular forms 166 45 121
Cusp forms 159 45 114
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(11\)\(53\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(15\)\(3\)\(12\)\(15\)\(3\)\(12\)\(0\)\(0\)\(0\)
\(+\)\(+\)\(-\)\(-\)\(25\)\(9\)\(16\)\(24\)\(9\)\(15\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(25\)\(7\)\(18\)\(24\)\(7\)\(17\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(18\)\(4\)\(14\)\(17\)\(4\)\(13\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(21\)\(7\)\(14\)\(20\)\(7\)\(13\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(19\)\(4\)\(15\)\(18\)\(4\)\(14\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(22\)\(3\)\(19\)\(21\)\(3\)\(18\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(21\)\(8\)\(13\)\(20\)\(8\)\(12\)\(1\)\(0\)\(1\)
Plus space\(+\)\(74\)\(14\)\(60\)\(71\)\(14\)\(57\)\(3\)\(0\)\(3\)
Minus space\(-\)\(92\)\(31\)\(61\)\(88\)\(31\)\(57\)\(4\)\(0\)\(4\)

Trace form

\( 45 q - q^{2} + 45 q^{4} - 2 q^{5} + 4 q^{6} + 8 q^{7} - q^{8} + 49 q^{9} - 6 q^{10} - q^{11} + 2 q^{13} + 8 q^{14} - 8 q^{15} + 45 q^{16} - 10 q^{17} + 3 q^{18} + 20 q^{19} - 2 q^{20} + 8 q^{21} + q^{22}+ \cdots - 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1166))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 11 53
1166.2.a.a 1166.a 1.a $1$ $9.311$ \(\Q\) None 1166.2.a.a \(-1\) \(0\) \(-2\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{5}-q^{8}-3q^{9}+2q^{10}+\cdots\)
1166.2.a.b 1166.a 1.a $1$ $9.311$ \(\Q\) None 1166.2.a.b \(-1\) \(1\) \(0\) \(-2\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}-2q^{7}-q^{8}+\cdots\)
1166.2.a.c 1166.a 1.a $1$ $9.311$ \(\Q\) None 1166.2.a.c \(-1\) \(1\) \(0\) \(2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}+2q^{7}-q^{8}+\cdots\)
1166.2.a.d 1166.a 1.a $1$ $9.311$ \(\Q\) None 1166.2.a.d \(1\) \(-1\) \(-3\) \(4\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-3q^{5}-q^{6}+4q^{7}+\cdots\)
1166.2.a.e 1166.a 1.a $2$ $9.311$ \(\Q(\sqrt{2}) \) None 1166.2.a.e \(-2\) \(-2\) \(0\) \(4\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+(-1+\beta )q^{3}+q^{4}+(1-\beta )q^{6}+\cdots\)
1166.2.a.f 1166.a 1.a $3$ $9.311$ 3.3.148.1 None 1166.2.a.f \(3\) \(-3\) \(-6\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+(-1+\beta _{2})q^{3}+q^{4}-2q^{5}+\cdots\)
1166.2.a.g 1166.a 1.a $3$ $9.311$ \(\Q(\zeta_{14})^+\) None 1166.2.a.g \(3\) \(4\) \(4\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+(1+\beta _{1})q^{3}+q^{4}+(2-\beta _{1}+\beta _{2})q^{5}+\cdots\)
1166.2.a.h 1166.a 1.a $4$ $9.311$ 4.4.6224.1 None 1166.2.a.h \(-4\) \(0\) \(2\) \(-4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{1}q^{3}+q^{4}+(1-\beta _{1}-\beta _{3})q^{5}+\cdots\)
1166.2.a.i 1166.a 1.a $4$ $9.311$ 4.4.4352.1 None 1166.2.a.i \(4\) \(-4\) \(-4\) \(-4\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(-1-\beta _{1}+\beta _{3})q^{3}+q^{4}+(-1+\cdots)q^{5}+\cdots\)
1166.2.a.j 1166.a 1.a $4$ $9.311$ 4.4.67348.1 None 1166.2.a.j \(4\) \(2\) \(1\) \(6\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+(1-\beta _{1})q^{3}+q^{4}+\beta _{3}q^{5}+(1+\cdots)q^{6}+\cdots\)
1166.2.a.k 1166.a 1.a $6$ $9.311$ 6.6.390126348.1 None 1166.2.a.k \(-6\) \(-1\) \(-1\) \(-2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta _{3}q^{3}+q^{4}-\beta _{2}q^{5}-\beta _{3}q^{6}+\cdots\)
1166.2.a.l 1166.a 1.a $7$ $9.311$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 1166.2.a.l \(7\) \(4\) \(4\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(1-\beta _{1})q^{3}+q^{4}+(1-\beta _{5})q^{5}+\cdots\)
1166.2.a.m 1166.a 1.a $8$ $9.311$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 1166.2.a.m \(-8\) \(-1\) \(3\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta _{1}q^{3}+q^{4}-\beta _{2}q^{5}+\beta _{1}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1166))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1166)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(53))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(106))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(583))\)\(^{\oplus 2}\)