Properties

Label 2-1166-1.1-c1-0-32
Degree $2$
Conductor $1166$
Sign $1$
Analytic cond. $9.31055$
Root an. cond. $3.05132$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2.79·3-s + 4-s + 0.290·5-s + 2.79·6-s + 0.316·7-s + 8-s + 4.79·9-s + 0.290·10-s + 11-s + 2.79·12-s + 3.48·13-s + 0.316·14-s + 0.812·15-s + 16-s − 3.21·17-s + 4.79·18-s − 4.71·19-s + 0.290·20-s + 0.883·21-s + 22-s − 0.819·23-s + 2.79·24-s − 4.91·25-s + 3.48·26-s + 5.00·27-s + 0.316·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.61·3-s + 0.5·4-s + 0.130·5-s + 1.13·6-s + 0.119·7-s + 0.353·8-s + 1.59·9-s + 0.0919·10-s + 0.301·11-s + 0.805·12-s + 0.965·13-s + 0.0845·14-s + 0.209·15-s + 0.250·16-s − 0.780·17-s + 1.12·18-s − 1.08·19-s + 0.0650·20-s + 0.192·21-s + 0.213·22-s − 0.170·23-s + 0.569·24-s − 0.983·25-s + 0.682·26-s + 0.963·27-s + 0.0597·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1166 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1166 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1166\)    =    \(2 \cdot 11 \cdot 53\)
Sign: $1$
Analytic conductor: \(9.31055\)
Root analytic conductor: \(3.05132\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1166,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.450399461\)
\(L(\frac12)\) \(\approx\) \(4.450399461\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
11 \( 1 - T \)
53 \( 1 - T \)
good3 \( 1 - 2.79T + 3T^{2} \)
5 \( 1 - 0.290T + 5T^{2} \)
7 \( 1 - 0.316T + 7T^{2} \)
13 \( 1 - 3.48T + 13T^{2} \)
17 \( 1 + 3.21T + 17T^{2} \)
19 \( 1 + 4.71T + 19T^{2} \)
23 \( 1 + 0.819T + 23T^{2} \)
29 \( 1 + 3.32T + 29T^{2} \)
31 \( 1 + 8.55T + 31T^{2} \)
37 \( 1 + 7.45T + 37T^{2} \)
41 \( 1 - 7.16T + 41T^{2} \)
43 \( 1 - 11.1T + 43T^{2} \)
47 \( 1 - 11.3T + 47T^{2} \)
59 \( 1 + 12.7T + 59T^{2} \)
61 \( 1 - 11.5T + 61T^{2} \)
67 \( 1 - 14.6T + 67T^{2} \)
71 \( 1 + 5.51T + 71T^{2} \)
73 \( 1 - 16.1T + 73T^{2} \)
79 \( 1 - 10.3T + 79T^{2} \)
83 \( 1 + 7.02T + 83T^{2} \)
89 \( 1 + 10.3T + 89T^{2} \)
97 \( 1 + 15.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.485360504542138795779976299941, −8.957673025265923178872045764521, −8.177155575233862539175677292063, −7.39831677617733301195102081193, −6.48353346547178987354982347286, −5.51531044735401931940213485279, −4.00045437663005137406587618780, −3.86150205845430117685185163966, −2.50774892424078626704790376812, −1.77873609165437473619620730807, 1.77873609165437473619620730807, 2.50774892424078626704790376812, 3.86150205845430117685185163966, 4.00045437663005137406587618780, 5.51531044735401931940213485279, 6.48353346547178987354982347286, 7.39831677617733301195102081193, 8.177155575233862539175677292063, 8.957673025265923178872045764521, 9.485360504542138795779976299941

Graph of the $Z$-function along the critical line