Properties

Label 1134.3.b.c.323.20
Level $1134$
Weight $3$
Character 1134.323
Analytic conductor $30.899$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1134,3,Mod(323,1134)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1134, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1134.323"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1134.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.8992619785\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.20
Character \(\chi\) \(=\) 1134.323
Dual form 1134.3.b.c.323.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} +3.19697i q^{5} +2.64575 q^{7} -2.82843i q^{8} -4.52120 q^{10} +18.8556i q^{11} +10.3719 q^{13} +3.74166i q^{14} +4.00000 q^{16} -24.4251i q^{17} -26.5935 q^{19} -6.39395i q^{20} -26.6659 q^{22} +40.8754i q^{23} +14.7794 q^{25} +14.6680i q^{26} -5.29150 q^{28} +21.7328i q^{29} -2.75433 q^{31} +5.65685i q^{32} +34.5423 q^{34} +8.45840i q^{35} +45.6422 q^{37} -37.6088i q^{38} +9.04241 q^{40} -14.8264i q^{41} -28.9107 q^{43} -37.7112i q^{44} -57.8065 q^{46} +29.7697i q^{47} +7.00000 q^{49} +20.9012i q^{50} -20.7437 q^{52} +18.1401i q^{53} -60.2809 q^{55} -7.48331i q^{56} -30.7349 q^{58} -53.5911i q^{59} -27.8674 q^{61} -3.89520i q^{62} -8.00000 q^{64} +33.1585i q^{65} -92.5552 q^{67} +48.8502i q^{68} -11.9620 q^{70} +81.9005i q^{71} -81.2899 q^{73} +64.5478i q^{74} +53.1869 q^{76} +49.8873i q^{77} -84.6130 q^{79} +12.7879i q^{80} +20.9677 q^{82} +115.359i q^{83} +78.0865 q^{85} -40.8860i q^{86} +53.3317 q^{88} +13.7346i q^{89} +27.4413 q^{91} -81.7507i q^{92} -42.1007 q^{94} -85.0186i q^{95} -111.586 q^{97} +9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 48 q^{4} + 96 q^{16} + 24 q^{19} - 48 q^{22} - 144 q^{25} + 120 q^{31} + 96 q^{34} - 168 q^{37} - 120 q^{43} + 168 q^{49} + 264 q^{55} - 192 q^{64} - 144 q^{67} + 24 q^{73} - 48 q^{76} - 24 q^{79}+ \cdots - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) 3.19697i 0.639395i 0.947520 + 0.319697i \(0.103581\pi\)
−0.947520 + 0.319697i \(0.896419\pi\)
\(6\) 0 0
\(7\) 2.64575 0.377964
\(8\) − 2.82843i − 0.353553i
\(9\) 0 0
\(10\) −4.52120 −0.452120
\(11\) 18.8556i 1.71415i 0.515195 + 0.857073i \(0.327720\pi\)
−0.515195 + 0.857073i \(0.672280\pi\)
\(12\) 0 0
\(13\) 10.3719 0.797835 0.398917 0.916987i \(-0.369386\pi\)
0.398917 + 0.916987i \(0.369386\pi\)
\(14\) 3.74166i 0.267261i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) − 24.4251i − 1.43677i −0.695645 0.718386i \(-0.744881\pi\)
0.695645 0.718386i \(-0.255119\pi\)
\(18\) 0 0
\(19\) −26.5935 −1.39966 −0.699828 0.714312i \(-0.746740\pi\)
−0.699828 + 0.714312i \(0.746740\pi\)
\(20\) − 6.39395i − 0.319697i
\(21\) 0 0
\(22\) −26.6659 −1.21208
\(23\) 40.8754i 1.77719i 0.458692 + 0.888595i \(0.348318\pi\)
−0.458692 + 0.888595i \(0.651682\pi\)
\(24\) 0 0
\(25\) 14.7794 0.591175
\(26\) 14.6680i 0.564154i
\(27\) 0 0
\(28\) −5.29150 −0.188982
\(29\) 21.7328i 0.749408i 0.927145 + 0.374704i \(0.122256\pi\)
−0.927145 + 0.374704i \(0.877744\pi\)
\(30\) 0 0
\(31\) −2.75433 −0.0888492 −0.0444246 0.999013i \(-0.514145\pi\)
−0.0444246 + 0.999013i \(0.514145\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) 34.5423 1.01595
\(35\) 8.45840i 0.241668i
\(36\) 0 0
\(37\) 45.6422 1.23357 0.616786 0.787131i \(-0.288434\pi\)
0.616786 + 0.787131i \(0.288434\pi\)
\(38\) − 37.6088i − 0.989706i
\(39\) 0 0
\(40\) 9.04241 0.226060
\(41\) − 14.8264i − 0.361619i −0.983518 0.180809i \(-0.942128\pi\)
0.983518 0.180809i \(-0.0578717\pi\)
\(42\) 0 0
\(43\) −28.9107 −0.672343 −0.336171 0.941801i \(-0.609132\pi\)
−0.336171 + 0.941801i \(0.609132\pi\)
\(44\) − 37.7112i − 0.857073i
\(45\) 0 0
\(46\) −57.8065 −1.25666
\(47\) 29.7697i 0.633398i 0.948526 + 0.316699i \(0.102575\pi\)
−0.948526 + 0.316699i \(0.897425\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) 20.9012i 0.418024i
\(51\) 0 0
\(52\) −20.7437 −0.398917
\(53\) 18.1401i 0.342266i 0.985248 + 0.171133i \(0.0547428\pi\)
−0.985248 + 0.171133i \(0.945257\pi\)
\(54\) 0 0
\(55\) −60.2809 −1.09602
\(56\) − 7.48331i − 0.133631i
\(57\) 0 0
\(58\) −30.7349 −0.529911
\(59\) − 53.5911i − 0.908324i −0.890919 0.454162i \(-0.849939\pi\)
0.890919 0.454162i \(-0.150061\pi\)
\(60\) 0 0
\(61\) −27.8674 −0.456843 −0.228422 0.973562i \(-0.573356\pi\)
−0.228422 + 0.973562i \(0.573356\pi\)
\(62\) − 3.89520i − 0.0628259i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 33.1585i 0.510131i
\(66\) 0 0
\(67\) −92.5552 −1.38142 −0.690711 0.723131i \(-0.742702\pi\)
−0.690711 + 0.723131i \(0.742702\pi\)
\(68\) 48.8502i 0.718386i
\(69\) 0 0
\(70\) −11.9620 −0.170885
\(71\) 81.9005i 1.15353i 0.816911 + 0.576764i \(0.195685\pi\)
−0.816911 + 0.576764i \(0.804315\pi\)
\(72\) 0 0
\(73\) −81.2899 −1.11356 −0.556780 0.830660i \(-0.687964\pi\)
−0.556780 + 0.830660i \(0.687964\pi\)
\(74\) 64.5478i 0.872268i
\(75\) 0 0
\(76\) 53.1869 0.699828
\(77\) 49.8873i 0.647886i
\(78\) 0 0
\(79\) −84.6130 −1.07105 −0.535525 0.844519i \(-0.679886\pi\)
−0.535525 + 0.844519i \(0.679886\pi\)
\(80\) 12.7879i 0.159849i
\(81\) 0 0
\(82\) 20.9677 0.255703
\(83\) 115.359i 1.38987i 0.719073 + 0.694935i \(0.244567\pi\)
−0.719073 + 0.694935i \(0.755433\pi\)
\(84\) 0 0
\(85\) 78.0865 0.918664
\(86\) − 40.8860i − 0.475418i
\(87\) 0 0
\(88\) 53.3317 0.606042
\(89\) 13.7346i 0.154321i 0.997019 + 0.0771606i \(0.0245854\pi\)
−0.997019 + 0.0771606i \(0.975415\pi\)
\(90\) 0 0
\(91\) 27.4413 0.301553
\(92\) − 81.7507i − 0.888595i
\(93\) 0 0
\(94\) −42.1007 −0.447880
\(95\) − 85.0186i − 0.894932i
\(96\) 0 0
\(97\) −111.586 −1.15037 −0.575184 0.818024i \(-0.695070\pi\)
−0.575184 + 0.818024i \(0.695070\pi\)
\(98\) 9.89949i 0.101015i
\(99\) 0 0
\(100\) −29.5587 −0.295587
\(101\) − 144.932i − 1.43497i −0.696576 0.717483i \(-0.745294\pi\)
0.696576 0.717483i \(-0.254706\pi\)
\(102\) 0 0
\(103\) −44.8103 −0.435051 −0.217525 0.976055i \(-0.569799\pi\)
−0.217525 + 0.976055i \(0.569799\pi\)
\(104\) − 29.3360i − 0.282077i
\(105\) 0 0
\(106\) −25.6540 −0.242019
\(107\) − 100.220i − 0.936634i −0.883560 0.468317i \(-0.844861\pi\)
0.883560 0.468317i \(-0.155139\pi\)
\(108\) 0 0
\(109\) −60.7449 −0.557292 −0.278646 0.960394i \(-0.589886\pi\)
−0.278646 + 0.960394i \(0.589886\pi\)
\(110\) − 85.2500i − 0.775000i
\(111\) 0 0
\(112\) 10.5830 0.0944911
\(113\) 14.5640i 0.128885i 0.997921 + 0.0644424i \(0.0205269\pi\)
−0.997921 + 0.0644424i \(0.979473\pi\)
\(114\) 0 0
\(115\) −130.677 −1.13633
\(116\) − 43.4656i − 0.374704i
\(117\) 0 0
\(118\) 75.7892 0.642282
\(119\) − 64.6228i − 0.543049i
\(120\) 0 0
\(121\) −234.534 −1.93830
\(122\) − 39.4105i − 0.323037i
\(123\) 0 0
\(124\) 5.50865 0.0444246
\(125\) 127.174i 1.01739i
\(126\) 0 0
\(127\) 221.852 1.74687 0.873433 0.486944i \(-0.161888\pi\)
0.873433 + 0.486944i \(0.161888\pi\)
\(128\) − 11.3137i − 0.0883883i
\(129\) 0 0
\(130\) −46.8932 −0.360717
\(131\) 3.38630i 0.0258496i 0.999916 + 0.0129248i \(0.00411421\pi\)
−0.999916 + 0.0129248i \(0.995886\pi\)
\(132\) 0 0
\(133\) −70.3597 −0.529020
\(134\) − 130.893i − 0.976812i
\(135\) 0 0
\(136\) −69.0847 −0.507976
\(137\) 21.5878i 0.157575i 0.996891 + 0.0787877i \(0.0251049\pi\)
−0.996891 + 0.0787877i \(0.974895\pi\)
\(138\) 0 0
\(139\) −60.3228 −0.433977 −0.216988 0.976174i \(-0.569623\pi\)
−0.216988 + 0.976174i \(0.569623\pi\)
\(140\) − 16.9168i − 0.120834i
\(141\) 0 0
\(142\) −115.825 −0.815668
\(143\) 195.568i 1.36761i
\(144\) 0 0
\(145\) −69.4792 −0.479167
\(146\) − 114.961i − 0.787406i
\(147\) 0 0
\(148\) −91.2844 −0.616786
\(149\) 15.5380i 0.104282i 0.998640 + 0.0521409i \(0.0166045\pi\)
−0.998640 + 0.0521409i \(0.983396\pi\)
\(150\) 0 0
\(151\) 26.8234 0.177638 0.0888192 0.996048i \(-0.471691\pi\)
0.0888192 + 0.996048i \(0.471691\pi\)
\(152\) 75.2177i 0.494853i
\(153\) 0 0
\(154\) −70.5512 −0.458125
\(155\) − 8.80550i − 0.0568097i
\(156\) 0 0
\(157\) 106.134 0.676012 0.338006 0.941144i \(-0.390248\pi\)
0.338006 + 0.941144i \(0.390248\pi\)
\(158\) − 119.661i − 0.757347i
\(159\) 0 0
\(160\) −18.0848 −0.113030
\(161\) 108.146i 0.671715i
\(162\) 0 0
\(163\) 11.8953 0.0729774 0.0364887 0.999334i \(-0.488383\pi\)
0.0364887 + 0.999334i \(0.488383\pi\)
\(164\) 29.6527i 0.180809i
\(165\) 0 0
\(166\) −163.143 −0.982786
\(167\) 139.394i 0.834696i 0.908747 + 0.417348i \(0.137040\pi\)
−0.908747 + 0.417348i \(0.862960\pi\)
\(168\) 0 0
\(169\) −61.4247 −0.363460
\(170\) 110.431i 0.649594i
\(171\) 0 0
\(172\) 57.8215 0.336171
\(173\) 229.396i 1.32599i 0.748624 + 0.662994i \(0.230715\pi\)
−0.748624 + 0.662994i \(0.769285\pi\)
\(174\) 0 0
\(175\) 39.1025 0.223443
\(176\) 75.4224i 0.428537i
\(177\) 0 0
\(178\) −19.4236 −0.109122
\(179\) − 202.541i − 1.13152i −0.824571 0.565758i \(-0.808584\pi\)
0.824571 0.565758i \(-0.191416\pi\)
\(180\) 0 0
\(181\) 4.20404 0.0232267 0.0116134 0.999933i \(-0.496303\pi\)
0.0116134 + 0.999933i \(0.496303\pi\)
\(182\) 38.8079i 0.213230i
\(183\) 0 0
\(184\) 115.613 0.628332
\(185\) 145.917i 0.788740i
\(186\) 0 0
\(187\) 460.551 2.46284
\(188\) − 59.5395i − 0.316699i
\(189\) 0 0
\(190\) 120.234 0.632813
\(191\) 271.910i 1.42361i 0.702376 + 0.711806i \(0.252123\pi\)
−0.702376 + 0.711806i \(0.747877\pi\)
\(192\) 0 0
\(193\) −144.553 −0.748981 −0.374490 0.927231i \(-0.622182\pi\)
−0.374490 + 0.927231i \(0.622182\pi\)
\(194\) − 157.806i − 0.813433i
\(195\) 0 0
\(196\) −14.0000 −0.0714286
\(197\) − 53.0627i − 0.269354i −0.990890 0.134677i \(-0.957000\pi\)
0.990890 0.134677i \(-0.0429996\pi\)
\(198\) 0 0
\(199\) −114.808 −0.576923 −0.288461 0.957491i \(-0.593144\pi\)
−0.288461 + 0.957491i \(0.593144\pi\)
\(200\) − 41.8024i − 0.209012i
\(201\) 0 0
\(202\) 204.964 1.01467
\(203\) 57.4996i 0.283249i
\(204\) 0 0
\(205\) 47.3995 0.231217
\(206\) − 63.3713i − 0.307628i
\(207\) 0 0
\(208\) 41.4874 0.199459
\(209\) − 501.436i − 2.39921i
\(210\) 0 0
\(211\) 360.959 1.71071 0.855353 0.518045i \(-0.173340\pi\)
0.855353 + 0.518045i \(0.173340\pi\)
\(212\) − 36.2802i − 0.171133i
\(213\) 0 0
\(214\) 141.732 0.662300
\(215\) − 92.4269i − 0.429892i
\(216\) 0 0
\(217\) −7.28726 −0.0335818
\(218\) − 85.9062i − 0.394065i
\(219\) 0 0
\(220\) 120.562 0.548008
\(221\) − 253.334i − 1.14631i
\(222\) 0 0
\(223\) −206.857 −0.927610 −0.463805 0.885937i \(-0.653516\pi\)
−0.463805 + 0.885937i \(0.653516\pi\)
\(224\) 14.9666i 0.0668153i
\(225\) 0 0
\(226\) −20.5966 −0.0911353
\(227\) − 131.641i − 0.579916i −0.957039 0.289958i \(-0.906359\pi\)
0.957039 0.289958i \(-0.0936413\pi\)
\(228\) 0 0
\(229\) 236.528 1.03287 0.516436 0.856326i \(-0.327258\pi\)
0.516436 + 0.856326i \(0.327258\pi\)
\(230\) − 184.806i − 0.803504i
\(231\) 0 0
\(232\) 61.4697 0.264956
\(233\) 155.574i 0.667699i 0.942626 + 0.333849i \(0.108348\pi\)
−0.942626 + 0.333849i \(0.891652\pi\)
\(234\) 0 0
\(235\) −95.1730 −0.404992
\(236\) 107.182i 0.454162i
\(237\) 0 0
\(238\) 91.3904 0.383993
\(239\) − 59.5962i − 0.249357i −0.992197 0.124678i \(-0.960210\pi\)
0.992197 0.124678i \(-0.0397899\pi\)
\(240\) 0 0
\(241\) −119.491 −0.495811 −0.247906 0.968784i \(-0.579742\pi\)
−0.247906 + 0.968784i \(0.579742\pi\)
\(242\) − 331.681i − 1.37058i
\(243\) 0 0
\(244\) 55.7349 0.228422
\(245\) 22.3788i 0.0913421i
\(246\) 0 0
\(247\) −275.823 −1.11669
\(248\) 7.79041i 0.0314129i
\(249\) 0 0
\(250\) −179.851 −0.719402
\(251\) − 483.177i − 1.92501i −0.271267 0.962504i \(-0.587443\pi\)
0.271267 0.962504i \(-0.412557\pi\)
\(252\) 0 0
\(253\) −770.730 −3.04636
\(254\) 313.746i 1.23522i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 158.001i 0.614788i 0.951582 + 0.307394i \(0.0994570\pi\)
−0.951582 + 0.307394i \(0.900543\pi\)
\(258\) 0 0
\(259\) 120.758 0.466247
\(260\) − 66.3171i − 0.255066i
\(261\) 0 0
\(262\) −4.78895 −0.0182784
\(263\) 282.878i 1.07558i 0.843078 + 0.537792i \(0.180741\pi\)
−0.843078 + 0.537792i \(0.819259\pi\)
\(264\) 0 0
\(265\) −57.9934 −0.218843
\(266\) − 99.5036i − 0.374074i
\(267\) 0 0
\(268\) 185.110 0.690711
\(269\) 125.436i 0.466303i 0.972440 + 0.233152i \(0.0749039\pi\)
−0.972440 + 0.233152i \(0.925096\pi\)
\(270\) 0 0
\(271\) 418.065 1.54268 0.771338 0.636426i \(-0.219588\pi\)
0.771338 + 0.636426i \(0.219588\pi\)
\(272\) − 97.7005i − 0.359193i
\(273\) 0 0
\(274\) −30.5298 −0.111423
\(275\) 278.674i 1.01336i
\(276\) 0 0
\(277\) 456.711 1.64878 0.824389 0.566024i \(-0.191519\pi\)
0.824389 + 0.566024i \(0.191519\pi\)
\(278\) − 85.3093i − 0.306868i
\(279\) 0 0
\(280\) 23.9240 0.0854427
\(281\) − 255.330i − 0.908649i −0.890836 0.454324i \(-0.849881\pi\)
0.890836 0.454324i \(-0.150119\pi\)
\(282\) 0 0
\(283\) 8.23376 0.0290946 0.0145473 0.999894i \(-0.495369\pi\)
0.0145473 + 0.999894i \(0.495369\pi\)
\(284\) − 163.801i − 0.576764i
\(285\) 0 0
\(286\) −276.574 −0.967043
\(287\) − 39.2269i − 0.136679i
\(288\) 0 0
\(289\) −307.587 −1.06431
\(290\) − 98.2585i − 0.338822i
\(291\) 0 0
\(292\) 162.580 0.556780
\(293\) 107.000i 0.365189i 0.983188 + 0.182594i \(0.0584495\pi\)
−0.983188 + 0.182594i \(0.941550\pi\)
\(294\) 0 0
\(295\) 171.329 0.580777
\(296\) − 129.096i − 0.436134i
\(297\) 0 0
\(298\) −21.9740 −0.0737384
\(299\) 423.953i 1.41790i
\(300\) 0 0
\(301\) −76.4906 −0.254122
\(302\) 37.9340i 0.125609i
\(303\) 0 0
\(304\) −106.374 −0.349914
\(305\) − 89.0915i − 0.292103i
\(306\) 0 0
\(307\) 540.799 1.76156 0.880780 0.473526i \(-0.157019\pi\)
0.880780 + 0.473526i \(0.157019\pi\)
\(308\) − 99.7745i − 0.323943i
\(309\) 0 0
\(310\) 12.4529 0.0401705
\(311\) 262.025i 0.842523i 0.906939 + 0.421261i \(0.138413\pi\)
−0.906939 + 0.421261i \(0.861587\pi\)
\(312\) 0 0
\(313\) 604.880 1.93252 0.966262 0.257561i \(-0.0829188\pi\)
0.966262 + 0.257561i \(0.0829188\pi\)
\(314\) 150.096i 0.478013i
\(315\) 0 0
\(316\) 169.226 0.535525
\(317\) − 87.4826i − 0.275970i −0.990434 0.137985i \(-0.955937\pi\)
0.990434 0.137985i \(-0.0440626\pi\)
\(318\) 0 0
\(319\) −409.786 −1.28459
\(320\) − 25.5758i − 0.0799243i
\(321\) 0 0
\(322\) −152.942 −0.474974
\(323\) 649.549i 2.01099i
\(324\) 0 0
\(325\) 153.289 0.471660
\(326\) 16.8225i 0.0516028i
\(327\) 0 0
\(328\) −41.9353 −0.127852
\(329\) 78.7633i 0.239402i
\(330\) 0 0
\(331\) 136.276 0.411709 0.205855 0.978583i \(-0.434003\pi\)
0.205855 + 0.978583i \(0.434003\pi\)
\(332\) − 230.718i − 0.694935i
\(333\) 0 0
\(334\) −197.133 −0.590219
\(335\) − 295.897i − 0.883273i
\(336\) 0 0
\(337\) 242.483 0.719534 0.359767 0.933042i \(-0.382856\pi\)
0.359767 + 0.933042i \(0.382856\pi\)
\(338\) − 86.8676i − 0.257005i
\(339\) 0 0
\(340\) −156.173 −0.459332
\(341\) − 51.9345i − 0.152301i
\(342\) 0 0
\(343\) 18.5203 0.0539949
\(344\) 81.7719i 0.237709i
\(345\) 0 0
\(346\) −324.415 −0.937616
\(347\) 644.674i 1.85785i 0.370269 + 0.928924i \(0.379265\pi\)
−0.370269 + 0.928924i \(0.620735\pi\)
\(348\) 0 0
\(349\) 605.831 1.73590 0.867952 0.496648i \(-0.165436\pi\)
0.867952 + 0.496648i \(0.165436\pi\)
\(350\) 55.2993i 0.157998i
\(351\) 0 0
\(352\) −106.663 −0.303021
\(353\) − 163.042i − 0.461875i −0.972969 0.230938i \(-0.925821\pi\)
0.972969 0.230938i \(-0.0741793\pi\)
\(354\) 0 0
\(355\) −261.834 −0.737560
\(356\) − 27.4692i − 0.0771606i
\(357\) 0 0
\(358\) 286.437 0.800103
\(359\) 227.325i 0.633217i 0.948556 + 0.316608i \(0.102544\pi\)
−0.948556 + 0.316608i \(0.897456\pi\)
\(360\) 0 0
\(361\) 346.212 0.959036
\(362\) 5.94541i 0.0164238i
\(363\) 0 0
\(364\) −54.8827 −0.150777
\(365\) − 259.882i − 0.712005i
\(366\) 0 0
\(367\) −675.506 −1.84062 −0.920308 0.391194i \(-0.872062\pi\)
−0.920308 + 0.391194i \(0.872062\pi\)
\(368\) 163.501i 0.444298i
\(369\) 0 0
\(370\) −206.358 −0.557723
\(371\) 47.9942i 0.129364i
\(372\) 0 0
\(373\) 444.784 1.19245 0.596225 0.802817i \(-0.296667\pi\)
0.596225 + 0.802817i \(0.296667\pi\)
\(374\) 651.317i 1.74149i
\(375\) 0 0
\(376\) 84.2015 0.223940
\(377\) 225.410i 0.597903i
\(378\) 0 0
\(379\) 586.241 1.54681 0.773405 0.633912i \(-0.218552\pi\)
0.773405 + 0.633912i \(0.218552\pi\)
\(380\) 170.037i 0.447466i
\(381\) 0 0
\(382\) −384.539 −1.00665
\(383\) − 150.256i − 0.392313i −0.980573 0.196157i \(-0.937154\pi\)
0.980573 0.196157i \(-0.0628461\pi\)
\(384\) 0 0
\(385\) −159.488 −0.414255
\(386\) − 204.429i − 0.529609i
\(387\) 0 0
\(388\) 223.171 0.575184
\(389\) 539.970i 1.38810i 0.719928 + 0.694048i \(0.244175\pi\)
−0.719928 + 0.694048i \(0.755825\pi\)
\(390\) 0 0
\(391\) 998.386 2.55342
\(392\) − 19.7990i − 0.0505076i
\(393\) 0 0
\(394\) 75.0419 0.190462
\(395\) − 270.505i − 0.684824i
\(396\) 0 0
\(397\) 491.223 1.23734 0.618669 0.785652i \(-0.287672\pi\)
0.618669 + 0.785652i \(0.287672\pi\)
\(398\) − 162.363i − 0.407946i
\(399\) 0 0
\(400\) 59.1175 0.147794
\(401\) − 216.027i − 0.538721i −0.963039 0.269361i \(-0.913188\pi\)
0.963039 0.269361i \(-0.0868123\pi\)
\(402\) 0 0
\(403\) −28.5675 −0.0708870
\(404\) 289.863i 0.717483i
\(405\) 0 0
\(406\) −81.3168 −0.200288
\(407\) 860.611i 2.11452i
\(408\) 0 0
\(409\) 105.752 0.258563 0.129282 0.991608i \(-0.458733\pi\)
0.129282 + 0.991608i \(0.458733\pi\)
\(410\) 67.0330i 0.163495i
\(411\) 0 0
\(412\) 89.6205 0.217525
\(413\) − 141.789i − 0.343314i
\(414\) 0 0
\(415\) −368.800 −0.888675
\(416\) 58.6721i 0.141039i
\(417\) 0 0
\(418\) 709.137 1.69650
\(419\) 13.3505i 0.0318628i 0.999873 + 0.0159314i \(0.00507134\pi\)
−0.999873 + 0.0159314i \(0.994929\pi\)
\(420\) 0 0
\(421\) −475.240 −1.12884 −0.564419 0.825489i \(-0.690900\pi\)
−0.564419 + 0.825489i \(0.690900\pi\)
\(422\) 510.473i 1.20965i
\(423\) 0 0
\(424\) 51.3080 0.121009
\(425\) − 360.988i − 0.849383i
\(426\) 0 0
\(427\) −73.7303 −0.172671
\(428\) 200.440i 0.468317i
\(429\) 0 0
\(430\) 130.711 0.303980
\(431\) 235.192i 0.545690i 0.962058 + 0.272845i \(0.0879646\pi\)
−0.962058 + 0.272845i \(0.912035\pi\)
\(432\) 0 0
\(433\) −21.0400 −0.0485913 −0.0242957 0.999705i \(-0.507734\pi\)
−0.0242957 + 0.999705i \(0.507734\pi\)
\(434\) − 10.3057i − 0.0237460i
\(435\) 0 0
\(436\) 121.490 0.278646
\(437\) − 1087.02i − 2.48745i
\(438\) 0 0
\(439\) −249.151 −0.567543 −0.283772 0.958892i \(-0.591586\pi\)
−0.283772 + 0.958892i \(0.591586\pi\)
\(440\) 170.500i 0.387500i
\(441\) 0 0
\(442\) 358.268 0.810561
\(443\) − 326.742i − 0.737566i −0.929515 0.368783i \(-0.879775\pi\)
0.929515 0.368783i \(-0.120225\pi\)
\(444\) 0 0
\(445\) −43.9091 −0.0986722
\(446\) − 292.540i − 0.655920i
\(447\) 0 0
\(448\) −21.1660 −0.0472456
\(449\) 510.632i 1.13727i 0.822592 + 0.568633i \(0.192527\pi\)
−0.822592 + 0.568633i \(0.807473\pi\)
\(450\) 0 0
\(451\) 279.560 0.619868
\(452\) − 29.1280i − 0.0644424i
\(453\) 0 0
\(454\) 186.168 0.410063
\(455\) 87.7292i 0.192811i
\(456\) 0 0
\(457\) −181.097 −0.396274 −0.198137 0.980174i \(-0.563489\pi\)
−0.198137 + 0.980174i \(0.563489\pi\)
\(458\) 334.501i 0.730351i
\(459\) 0 0
\(460\) 261.355 0.568163
\(461\) − 296.193i − 0.642502i −0.946994 0.321251i \(-0.895897\pi\)
0.946994 0.321251i \(-0.104103\pi\)
\(462\) 0 0
\(463\) 536.310 1.15834 0.579169 0.815208i \(-0.303377\pi\)
0.579169 + 0.815208i \(0.303377\pi\)
\(464\) 86.9313i 0.187352i
\(465\) 0 0
\(466\) −220.015 −0.472134
\(467\) − 87.9169i − 0.188259i −0.995560 0.0941294i \(-0.969993\pi\)
0.995560 0.0941294i \(-0.0300068\pi\)
\(468\) 0 0
\(469\) −244.878 −0.522128
\(470\) − 134.595i − 0.286372i
\(471\) 0 0
\(472\) −151.578 −0.321141
\(473\) − 545.130i − 1.15249i
\(474\) 0 0
\(475\) −393.034 −0.827441
\(476\) 129.246i 0.271524i
\(477\) 0 0
\(478\) 84.2818 0.176322
\(479\) 297.878i 0.621874i 0.950431 + 0.310937i \(0.100643\pi\)
−0.950431 + 0.310937i \(0.899357\pi\)
\(480\) 0 0
\(481\) 473.394 0.984187
\(482\) − 168.985i − 0.350592i
\(483\) 0 0
\(484\) 469.068 0.969149
\(485\) − 356.737i − 0.735539i
\(486\) 0 0
\(487\) −441.814 −0.907215 −0.453608 0.891202i \(-0.649863\pi\)
−0.453608 + 0.891202i \(0.649863\pi\)
\(488\) 78.8210i 0.161519i
\(489\) 0 0
\(490\) −31.6484 −0.0645886
\(491\) 333.309i 0.678838i 0.940635 + 0.339419i \(0.110230\pi\)
−0.940635 + 0.339419i \(0.889770\pi\)
\(492\) 0 0
\(493\) 530.827 1.07673
\(494\) − 390.073i − 0.789622i
\(495\) 0 0
\(496\) −11.0173 −0.0222123
\(497\) 216.688i 0.435993i
\(498\) 0 0
\(499\) −844.487 −1.69236 −0.846179 0.532899i \(-0.821103\pi\)
−0.846179 + 0.532899i \(0.821103\pi\)
\(500\) − 254.347i − 0.508694i
\(501\) 0 0
\(502\) 683.316 1.36119
\(503\) 60.3243i 0.119929i 0.998201 + 0.0599645i \(0.0190987\pi\)
−0.998201 + 0.0599645i \(0.980901\pi\)
\(504\) 0 0
\(505\) 463.343 0.917510
\(506\) − 1089.98i − 2.15410i
\(507\) 0 0
\(508\) −443.704 −0.873433
\(509\) 392.469i 0.771059i 0.922696 + 0.385529i \(0.125981\pi\)
−0.922696 + 0.385529i \(0.874019\pi\)
\(510\) 0 0
\(511\) −215.073 −0.420886
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) −223.447 −0.434721
\(515\) − 143.257i − 0.278169i
\(516\) 0 0
\(517\) −561.326 −1.08574
\(518\) 170.777i 0.329686i
\(519\) 0 0
\(520\) 93.7865 0.180359
\(521\) − 45.5654i − 0.0874577i −0.999043 0.0437288i \(-0.986076\pi\)
0.999043 0.0437288i \(-0.0139238\pi\)
\(522\) 0 0
\(523\) 445.063 0.850980 0.425490 0.904963i \(-0.360102\pi\)
0.425490 + 0.904963i \(0.360102\pi\)
\(524\) − 6.77259i − 0.0129248i
\(525\) 0 0
\(526\) −400.051 −0.760552
\(527\) 67.2747i 0.127656i
\(528\) 0 0
\(529\) −1141.80 −2.15840
\(530\) − 82.0151i − 0.154745i
\(531\) 0 0
\(532\) 140.719 0.264510
\(533\) − 153.777i − 0.288512i
\(534\) 0 0
\(535\) 320.400 0.598879
\(536\) 261.786i 0.488406i
\(537\) 0 0
\(538\) −177.393 −0.329726
\(539\) 131.989i 0.244878i
\(540\) 0 0
\(541\) 302.399 0.558964 0.279482 0.960151i \(-0.409837\pi\)
0.279482 + 0.960151i \(0.409837\pi\)
\(542\) 591.233i 1.09084i
\(543\) 0 0
\(544\) 138.169 0.253988
\(545\) − 194.200i − 0.356330i
\(546\) 0 0
\(547\) 338.352 0.618559 0.309279 0.950971i \(-0.399912\pi\)
0.309279 + 0.950971i \(0.399912\pi\)
\(548\) − 43.1756i − 0.0787877i
\(549\) 0 0
\(550\) −394.104 −0.716554
\(551\) − 577.951i − 1.04891i
\(552\) 0 0
\(553\) −223.865 −0.404819
\(554\) 645.887i 1.16586i
\(555\) 0 0
\(556\) 120.646 0.216988
\(557\) 250.404i 0.449559i 0.974410 + 0.224780i \(0.0721662\pi\)
−0.974410 + 0.224780i \(0.927834\pi\)
\(558\) 0 0
\(559\) −299.858 −0.536418
\(560\) 33.8336i 0.0604171i
\(561\) 0 0
\(562\) 361.092 0.642512
\(563\) − 833.366i − 1.48022i −0.672484 0.740112i \(-0.734773\pi\)
0.672484 0.740112i \(-0.265227\pi\)
\(564\) 0 0
\(565\) −46.5606 −0.0824082
\(566\) 11.6443i 0.0205730i
\(567\) 0 0
\(568\) 231.650 0.407834
\(569\) 237.538i 0.417466i 0.977973 + 0.208733i \(0.0669339\pi\)
−0.977973 + 0.208733i \(0.933066\pi\)
\(570\) 0 0
\(571\) 793.494 1.38966 0.694829 0.719175i \(-0.255480\pi\)
0.694829 + 0.719175i \(0.255480\pi\)
\(572\) − 391.135i − 0.683803i
\(573\) 0 0
\(574\) 55.4752 0.0966467
\(575\) 604.112i 1.05063i
\(576\) 0 0
\(577\) −164.298 −0.284745 −0.142372 0.989813i \(-0.545473\pi\)
−0.142372 + 0.989813i \(0.545473\pi\)
\(578\) − 434.993i − 0.752584i
\(579\) 0 0
\(580\) 138.958 0.239584
\(581\) 305.212i 0.525321i
\(582\) 0 0
\(583\) −342.043 −0.586694
\(584\) 229.923i 0.393703i
\(585\) 0 0
\(586\) −151.321 −0.258227
\(587\) 919.758i 1.56688i 0.621468 + 0.783439i \(0.286536\pi\)
−0.621468 + 0.783439i \(0.713464\pi\)
\(588\) 0 0
\(589\) 73.2470 0.124358
\(590\) 242.296i 0.410671i
\(591\) 0 0
\(592\) 182.569 0.308393
\(593\) − 1156.90i − 1.95092i −0.220178 0.975460i \(-0.570664\pi\)
0.220178 0.975460i \(-0.429336\pi\)
\(594\) 0 0
\(595\) 206.597 0.347222
\(596\) − 31.0760i − 0.0521409i
\(597\) 0 0
\(598\) −599.561 −1.00261
\(599\) − 906.097i − 1.51268i −0.654177 0.756342i \(-0.726985\pi\)
0.654177 0.756342i \(-0.273015\pi\)
\(600\) 0 0
\(601\) 1058.44 1.76112 0.880562 0.473932i \(-0.157166\pi\)
0.880562 + 0.473932i \(0.157166\pi\)
\(602\) − 108.174i − 0.179691i
\(603\) 0 0
\(604\) −53.6468 −0.0888192
\(605\) − 749.799i − 1.23934i
\(606\) 0 0
\(607\) −923.151 −1.52084 −0.760421 0.649430i \(-0.775007\pi\)
−0.760421 + 0.649430i \(0.775007\pi\)
\(608\) − 150.435i − 0.247426i
\(609\) 0 0
\(610\) 125.994 0.206548
\(611\) 308.767i 0.505347i
\(612\) 0 0
\(613\) −613.947 −1.00154 −0.500772 0.865579i \(-0.666951\pi\)
−0.500772 + 0.865579i \(0.666951\pi\)
\(614\) 764.805i 1.24561i
\(615\) 0 0
\(616\) 141.102 0.229062
\(617\) 531.192i 0.860927i 0.902608 + 0.430464i \(0.141650\pi\)
−0.902608 + 0.430464i \(0.858350\pi\)
\(618\) 0 0
\(619\) 421.781 0.681391 0.340695 0.940174i \(-0.389337\pi\)
0.340695 + 0.940174i \(0.389337\pi\)
\(620\) 17.6110i 0.0284049i
\(621\) 0 0
\(622\) −370.559 −0.595754
\(623\) 36.3383i 0.0583279i
\(624\) 0 0
\(625\) −37.0863 −0.0593381
\(626\) 855.430i 1.36650i
\(627\) 0 0
\(628\) −212.268 −0.338006
\(629\) − 1114.82i − 1.77236i
\(630\) 0 0
\(631\) −552.102 −0.874964 −0.437482 0.899227i \(-0.644130\pi\)
−0.437482 + 0.899227i \(0.644130\pi\)
\(632\) 239.322i 0.378673i
\(633\) 0 0
\(634\) 123.719 0.195141
\(635\) 709.255i 1.11694i
\(636\) 0 0
\(637\) 72.6030 0.113976
\(638\) − 579.524i − 0.908346i
\(639\) 0 0
\(640\) 36.1696 0.0565150
\(641\) − 451.659i − 0.704616i −0.935884 0.352308i \(-0.885397\pi\)
0.935884 0.352308i \(-0.114603\pi\)
\(642\) 0 0
\(643\) −819.014 −1.27374 −0.636869 0.770972i \(-0.719771\pi\)
−0.636869 + 0.770972i \(0.719771\pi\)
\(644\) − 216.292i − 0.335857i
\(645\) 0 0
\(646\) −918.600 −1.42198
\(647\) − 908.400i − 1.40402i −0.712168 0.702009i \(-0.752286\pi\)
0.712168 0.702009i \(-0.247714\pi\)
\(648\) 0 0
\(649\) 1010.49 1.55700
\(650\) 216.784i 0.333514i
\(651\) 0 0
\(652\) −23.7906 −0.0364887
\(653\) − 230.798i − 0.353443i −0.984261 0.176721i \(-0.943451\pi\)
0.984261 0.176721i \(-0.0565491\pi\)
\(654\) 0 0
\(655\) −10.8259 −0.0165281
\(656\) − 59.3055i − 0.0904047i
\(657\) 0 0
\(658\) −111.388 −0.169283
\(659\) 45.9156i 0.0696747i 0.999393 + 0.0348373i \(0.0110913\pi\)
−0.999393 + 0.0348373i \(0.988909\pi\)
\(660\) 0 0
\(661\) 339.503 0.513620 0.256810 0.966462i \(-0.417329\pi\)
0.256810 + 0.966462i \(0.417329\pi\)
\(662\) 192.723i 0.291122i
\(663\) 0 0
\(664\) 326.285 0.491393
\(665\) − 224.938i − 0.338253i
\(666\) 0 0
\(667\) −888.337 −1.33184
\(668\) − 278.788i − 0.417348i
\(669\) 0 0
\(670\) 418.461 0.624569
\(671\) − 525.458i − 0.783096i
\(672\) 0 0
\(673\) −527.771 −0.784207 −0.392104 0.919921i \(-0.628252\pi\)
−0.392104 + 0.919921i \(0.628252\pi\)
\(674\) 342.923i 0.508787i
\(675\) 0 0
\(676\) 122.849 0.181730
\(677\) − 187.263i − 0.276608i −0.990390 0.138304i \(-0.955835\pi\)
0.990390 0.138304i \(-0.0441651\pi\)
\(678\) 0 0
\(679\) −295.228 −0.434798
\(680\) − 220.862i − 0.324797i
\(681\) 0 0
\(682\) 73.4465 0.107693
\(683\) − 575.317i − 0.842338i −0.906982 0.421169i \(-0.861620\pi\)
0.906982 0.421169i \(-0.138380\pi\)
\(684\) 0 0
\(685\) −69.0157 −0.100753
\(686\) 26.1916i 0.0381802i
\(687\) 0 0
\(688\) −115.643 −0.168086
\(689\) 188.147i 0.273072i
\(690\) 0 0
\(691\) 538.231 0.778916 0.389458 0.921044i \(-0.372662\pi\)
0.389458 + 0.921044i \(0.372662\pi\)
\(692\) − 458.792i − 0.662994i
\(693\) 0 0
\(694\) −911.706 −1.31370
\(695\) − 192.850i − 0.277482i
\(696\) 0 0
\(697\) −362.136 −0.519564
\(698\) 856.774i 1.22747i
\(699\) 0 0
\(700\) −78.2050 −0.111721
\(701\) − 356.636i − 0.508753i −0.967105 0.254376i \(-0.918130\pi\)
0.967105 0.254376i \(-0.0818702\pi\)
\(702\) 0 0
\(703\) −1213.78 −1.72658
\(704\) − 150.845i − 0.214268i
\(705\) 0 0
\(706\) 230.576 0.326595
\(707\) − 383.453i − 0.542367i
\(708\) 0 0
\(709\) −401.615 −0.566452 −0.283226 0.959053i \(-0.591405\pi\)
−0.283226 + 0.959053i \(0.591405\pi\)
\(710\) − 370.289i − 0.521533i
\(711\) 0 0
\(712\) 38.8473 0.0545608
\(713\) − 112.584i − 0.157902i
\(714\) 0 0
\(715\) −625.224 −0.874440
\(716\) 405.083i 0.565758i
\(717\) 0 0
\(718\) −321.486 −0.447752
\(719\) 916.413i 1.27457i 0.770630 + 0.637283i \(0.219942\pi\)
−0.770630 + 0.637283i \(0.780058\pi\)
\(720\) 0 0
\(721\) −118.557 −0.164434
\(722\) 489.618i 0.678141i
\(723\) 0 0
\(724\) −8.40808 −0.0116134
\(725\) 321.197i 0.443031i
\(726\) 0 0
\(727\) 708.685 0.974808 0.487404 0.873177i \(-0.337944\pi\)
0.487404 + 0.873177i \(0.337944\pi\)
\(728\) − 77.6158i − 0.106615i
\(729\) 0 0
\(730\) 367.528 0.503463
\(731\) 706.148i 0.966003i
\(732\) 0 0
\(733\) 1281.72 1.74860 0.874298 0.485389i \(-0.161322\pi\)
0.874298 + 0.485389i \(0.161322\pi\)
\(734\) − 955.310i − 1.30151i
\(735\) 0 0
\(736\) −231.226 −0.314166
\(737\) − 1745.19i − 2.36796i
\(738\) 0 0
\(739\) −1077.96 −1.45867 −0.729336 0.684155i \(-0.760171\pi\)
−0.729336 + 0.684155i \(0.760171\pi\)
\(740\) − 291.834i − 0.394370i
\(741\) 0 0
\(742\) −67.8741 −0.0914745
\(743\) − 264.701i − 0.356259i −0.984007 0.178130i \(-0.942995\pi\)
0.984007 0.178130i \(-0.0570046\pi\)
\(744\) 0 0
\(745\) −49.6745 −0.0666772
\(746\) 629.019i 0.843189i
\(747\) 0 0
\(748\) −921.101 −1.23142
\(749\) − 265.157i − 0.354014i
\(750\) 0 0
\(751\) −36.5467 −0.0486640 −0.0243320 0.999704i \(-0.507746\pi\)
−0.0243320 + 0.999704i \(0.507746\pi\)
\(752\) 119.079i 0.158350i
\(753\) 0 0
\(754\) −318.777 −0.422782
\(755\) 85.7536i 0.113581i
\(756\) 0 0
\(757\) 299.469 0.395600 0.197800 0.980242i \(-0.436620\pi\)
0.197800 + 0.980242i \(0.436620\pi\)
\(758\) 829.070i 1.09376i
\(759\) 0 0
\(760\) −240.469 −0.316406
\(761\) − 504.968i − 0.663558i −0.943357 0.331779i \(-0.892351\pi\)
0.943357 0.331779i \(-0.107649\pi\)
\(762\) 0 0
\(763\) −160.716 −0.210637
\(764\) − 543.820i − 0.711806i
\(765\) 0 0
\(766\) 212.494 0.277407
\(767\) − 555.839i − 0.724692i
\(768\) 0 0
\(769\) −752.647 −0.978735 −0.489368 0.872078i \(-0.662772\pi\)
−0.489368 + 0.872078i \(0.662772\pi\)
\(770\) − 225.550i − 0.292923i
\(771\) 0 0
\(772\) 289.107 0.374490
\(773\) 4.76817i 0.00616840i 0.999995 + 0.00308420i \(0.000981732\pi\)
−0.999995 + 0.00308420i \(0.999018\pi\)
\(774\) 0 0
\(775\) −40.7072 −0.0525254
\(776\) 315.612i 0.406717i
\(777\) 0 0
\(778\) −763.632 −0.981533
\(779\) 394.284i 0.506142i
\(780\) 0 0
\(781\) −1544.28 −1.97732
\(782\) 1411.93i 1.80554i
\(783\) 0 0
\(784\) 28.0000 0.0357143
\(785\) 339.307i 0.432238i
\(786\) 0 0
\(787\) −849.743 −1.07972 −0.539862 0.841754i \(-0.681524\pi\)
−0.539862 + 0.841754i \(0.681524\pi\)
\(788\) 106.125i 0.134677i
\(789\) 0 0
\(790\) 382.552 0.484244
\(791\) 38.5327i 0.0487139i
\(792\) 0 0
\(793\) −289.037 −0.364485
\(794\) 694.694i 0.874930i
\(795\) 0 0
\(796\) 229.615 0.288461
\(797\) − 192.021i − 0.240929i −0.992718 0.120465i \(-0.961562\pi\)
0.992718 0.120465i \(-0.0384385\pi\)
\(798\) 0 0
\(799\) 727.129 0.910049
\(800\) 83.6047i 0.104506i
\(801\) 0 0
\(802\) 305.508 0.380933
\(803\) − 1532.77i − 1.90881i
\(804\) 0 0
\(805\) −345.740 −0.429491
\(806\) − 40.4005i − 0.0501247i
\(807\) 0 0
\(808\) −409.929 −0.507337
\(809\) 1015.55i 1.25532i 0.778488 + 0.627660i \(0.215987\pi\)
−0.778488 + 0.627660i \(0.784013\pi\)
\(810\) 0 0
\(811\) 481.576 0.593805 0.296902 0.954908i \(-0.404046\pi\)
0.296902 + 0.954908i \(0.404046\pi\)
\(812\) − 114.999i − 0.141625i
\(813\) 0 0
\(814\) −1217.09 −1.49519
\(815\) 38.0290i 0.0466614i
\(816\) 0 0
\(817\) 768.837 0.941048
\(818\) 149.556i 0.182832i
\(819\) 0 0
\(820\) −94.7990 −0.115609
\(821\) − 480.333i − 0.585058i −0.956257 0.292529i \(-0.905503\pi\)
0.956257 0.292529i \(-0.0944968\pi\)
\(822\) 0 0
\(823\) 588.804 0.715437 0.357718 0.933830i \(-0.383555\pi\)
0.357718 + 0.933830i \(0.383555\pi\)
\(824\) 126.743i 0.153814i
\(825\) 0 0
\(826\) 200.519 0.242760
\(827\) − 280.409i − 0.339068i −0.985524 0.169534i \(-0.945774\pi\)
0.985524 0.169534i \(-0.0542262\pi\)
\(828\) 0 0
\(829\) 190.758 0.230106 0.115053 0.993359i \(-0.463296\pi\)
0.115053 + 0.993359i \(0.463296\pi\)
\(830\) − 521.562i − 0.628388i
\(831\) 0 0
\(832\) −82.9748 −0.0997293
\(833\) − 170.976i − 0.205253i
\(834\) 0 0
\(835\) −445.639 −0.533700
\(836\) 1002.87i 1.19961i
\(837\) 0 0
\(838\) −18.8805 −0.0225304
\(839\) 1073.07i 1.27899i 0.768797 + 0.639493i \(0.220856\pi\)
−0.768797 + 0.639493i \(0.779144\pi\)
\(840\) 0 0
\(841\) 368.684 0.438388
\(842\) − 672.092i − 0.798208i
\(843\) 0 0
\(844\) −721.918 −0.855353
\(845\) − 196.373i − 0.232394i
\(846\) 0 0
\(847\) −620.519 −0.732608
\(848\) 72.5604i 0.0855665i
\(849\) 0 0
\(850\) 510.514 0.600605
\(851\) 1865.64i 2.19229i
\(852\) 0 0
\(853\) −1008.68 −1.18251 −0.591253 0.806486i \(-0.701366\pi\)
−0.591253 + 0.806486i \(0.701366\pi\)
\(854\) − 104.270i − 0.122097i
\(855\) 0 0
\(856\) −283.465 −0.331150
\(857\) 301.759i 0.352111i 0.984380 + 0.176055i \(0.0563338\pi\)
−0.984380 + 0.176055i \(0.943666\pi\)
\(858\) 0 0
\(859\) 1088.50 1.26717 0.633587 0.773672i \(-0.281582\pi\)
0.633587 + 0.773672i \(0.281582\pi\)
\(860\) 184.854i 0.214946i
\(861\) 0 0
\(862\) −332.612 −0.385861
\(863\) 1120.50i 1.29838i 0.760627 + 0.649189i \(0.224892\pi\)
−0.760627 + 0.649189i \(0.775108\pi\)
\(864\) 0 0
\(865\) −733.373 −0.847830
\(866\) − 29.7551i − 0.0343593i
\(867\) 0 0
\(868\) 14.5745 0.0167909
\(869\) − 1595.43i − 1.83594i
\(870\) 0 0
\(871\) −959.969 −1.10215
\(872\) 171.812i 0.197033i
\(873\) 0 0
\(874\) 1537.27 1.75890
\(875\) 336.470i 0.384537i
\(876\) 0 0
\(877\) 45.9628 0.0524091 0.0262046 0.999657i \(-0.491658\pi\)
0.0262046 + 0.999657i \(0.491658\pi\)
\(878\) − 352.353i − 0.401314i
\(879\) 0 0
\(880\) −241.124 −0.274004
\(881\) 881.775i 1.00088i 0.865771 + 0.500440i \(0.166828\pi\)
−0.865771 + 0.500440i \(0.833172\pi\)
\(882\) 0 0
\(883\) 216.488 0.245174 0.122587 0.992458i \(-0.460881\pi\)
0.122587 + 0.992458i \(0.460881\pi\)
\(884\) 506.668i 0.573153i
\(885\) 0 0
\(886\) 462.083 0.521538
\(887\) 142.061i 0.160159i 0.996788 + 0.0800796i \(0.0255175\pi\)
−0.996788 + 0.0800796i \(0.974483\pi\)
\(888\) 0 0
\(889\) 586.965 0.660254
\(890\) − 62.0969i − 0.0697718i
\(891\) 0 0
\(892\) 413.714 0.463805
\(893\) − 791.680i − 0.886540i
\(894\) 0 0
\(895\) 647.519 0.723485
\(896\) − 29.9333i − 0.0334077i
\(897\) 0 0
\(898\) −722.143 −0.804168
\(899\) − 59.8593i − 0.0665843i
\(900\) 0 0
\(901\) 443.074 0.491758
\(902\) 395.358i 0.438313i
\(903\) 0 0
\(904\) 41.1931 0.0455676
\(905\) 13.4402i 0.0148510i
\(906\) 0 0
\(907\) −451.060 −0.497309 −0.248655 0.968592i \(-0.579988\pi\)
−0.248655 + 0.968592i \(0.579988\pi\)
\(908\) 263.282i 0.289958i
\(909\) 0 0
\(910\) −124.068 −0.136338
\(911\) − 989.545i − 1.08622i −0.839662 0.543109i \(-0.817247\pi\)
0.839662 0.543109i \(-0.182753\pi\)
\(912\) 0 0
\(913\) −2175.17 −2.38244
\(914\) − 256.110i − 0.280208i
\(915\) 0 0
\(916\) −473.056 −0.516436
\(917\) 8.95930i 0.00977023i
\(918\) 0 0
\(919\) 942.500 1.02557 0.512786 0.858517i \(-0.328614\pi\)
0.512786 + 0.858517i \(0.328614\pi\)
\(920\) 369.612i 0.401752i
\(921\) 0 0
\(922\) 418.881 0.454318
\(923\) 849.460i 0.920325i
\(924\) 0 0
\(925\) 674.562 0.729257
\(926\) 758.457i 0.819068i
\(927\) 0 0
\(928\) −122.939 −0.132478
\(929\) 630.378i 0.678555i 0.940686 + 0.339278i \(0.110183\pi\)
−0.940686 + 0.339278i \(0.889817\pi\)
\(930\) 0 0
\(931\) −186.154 −0.199951
\(932\) − 311.148i − 0.333849i
\(933\) 0 0
\(934\) 124.333 0.133119
\(935\) 1472.37i 1.57473i
\(936\) 0 0
\(937\) 236.083 0.251956 0.125978 0.992033i \(-0.459793\pi\)
0.125978 + 0.992033i \(0.459793\pi\)
\(938\) − 346.310i − 0.369200i
\(939\) 0 0
\(940\) 190.346 0.202496
\(941\) 833.633i 0.885901i 0.896546 + 0.442950i \(0.146068\pi\)
−0.896546 + 0.442950i \(0.853932\pi\)
\(942\) 0 0
\(943\) 606.033 0.642665
\(944\) − 214.364i − 0.227081i
\(945\) 0 0
\(946\) 770.930 0.814936
\(947\) − 785.821i − 0.829801i −0.909867 0.414900i \(-0.863816\pi\)
0.909867 0.414900i \(-0.136184\pi\)
\(948\) 0 0
\(949\) −843.127 −0.888438
\(950\) − 555.835i − 0.585089i
\(951\) 0 0
\(952\) −182.781 −0.191997
\(953\) − 1096.70i − 1.15079i −0.817875 0.575396i \(-0.804848\pi\)
0.817875 0.575396i \(-0.195152\pi\)
\(954\) 0 0
\(955\) −869.289 −0.910250
\(956\) 119.192i 0.124678i
\(957\) 0 0
\(958\) −421.263 −0.439731
\(959\) 57.1160i 0.0595579i
\(960\) 0 0
\(961\) −953.414 −0.992106
\(962\) 669.480i 0.695925i
\(963\) 0 0
\(964\) 238.981 0.247906
\(965\) − 462.133i − 0.478894i
\(966\) 0 0
\(967\) 1295.95 1.34018 0.670088 0.742282i \(-0.266256\pi\)
0.670088 + 0.742282i \(0.266256\pi\)
\(968\) 663.363i 0.685292i
\(969\) 0 0
\(970\) 504.502 0.520105
\(971\) 830.704i 0.855514i 0.903894 + 0.427757i \(0.140696\pi\)
−0.903894 + 0.427757i \(0.859304\pi\)
\(972\) 0 0
\(973\) −159.599 −0.164028
\(974\) − 624.819i − 0.641498i
\(975\) 0 0
\(976\) −111.470 −0.114211
\(977\) − 513.423i − 0.525510i −0.964863 0.262755i \(-0.915369\pi\)
0.964863 0.262755i \(-0.0846311\pi\)
\(978\) 0 0
\(979\) −258.974 −0.264529
\(980\) − 44.7576i − 0.0456710i
\(981\) 0 0
\(982\) −471.371 −0.480011
\(983\) − 883.906i − 0.899192i −0.893232 0.449596i \(-0.851568\pi\)
0.893232 0.449596i \(-0.148432\pi\)
\(984\) 0 0
\(985\) 169.640 0.172223
\(986\) 750.703i 0.761362i
\(987\) 0 0
\(988\) 551.647 0.558347
\(989\) − 1181.74i − 1.19488i
\(990\) 0 0
\(991\) 1014.86 1.02407 0.512036 0.858964i \(-0.328891\pi\)
0.512036 + 0.858964i \(0.328891\pi\)
\(992\) − 15.5808i − 0.0157065i
\(993\) 0 0
\(994\) −306.444 −0.308293
\(995\) − 367.037i − 0.368881i
\(996\) 0 0
\(997\) 1234.91 1.23862 0.619312 0.785145i \(-0.287411\pi\)
0.619312 + 0.785145i \(0.287411\pi\)
\(998\) − 1194.28i − 1.19668i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.3.b.c.323.20 24
3.2 odd 2 inner 1134.3.b.c.323.5 24
9.2 odd 6 126.3.q.a.113.1 yes 24
9.4 even 3 126.3.q.a.29.1 24
9.5 odd 6 378.3.q.a.197.9 24
9.7 even 3 378.3.q.a.71.9 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.q.a.29.1 24 9.4 even 3
126.3.q.a.113.1 yes 24 9.2 odd 6
378.3.q.a.71.9 24 9.7 even 3
378.3.q.a.197.9 24 9.5 odd 6
1134.3.b.c.323.5 24 3.2 odd 2 inner
1134.3.b.c.323.20 24 1.1 even 1 trivial