Properties

Label 378.3.q.a.71.9
Level $378$
Weight $3$
Character 378.71
Analytic conductor $10.300$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(71,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.71"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 71.9
Character \(\chi\) \(=\) 378.71
Dual form 378.3.q.a.197.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 - 0.707107i) q^{2} +(1.00000 - 1.73205i) q^{4} +(-2.76866 - 1.59849i) q^{5} +(-1.32288 - 2.29129i) q^{7} -2.82843i q^{8} -4.52120 q^{10} +(16.3294 - 9.42781i) q^{11} +(-5.18593 + 8.98229i) q^{13} +(-3.24037 - 1.87083i) q^{14} +(-2.00000 - 3.46410i) q^{16} -24.4251i q^{17} -26.5935 q^{19} +(-5.53732 + 3.19697i) q^{20} +(13.3329 - 23.0933i) q^{22} +(-35.3991 - 20.4377i) q^{23} +(-7.38968 - 12.7993i) q^{25} +14.6680i q^{26} -5.29150 q^{28} +(18.8212 - 10.8664i) q^{29} +(1.37716 - 2.38532i) q^{31} +(-4.89898 - 2.82843i) q^{32} +(-17.2712 - 29.9145i) q^{34} +8.45840i q^{35} +45.6422 q^{37} +(-32.5702 + 18.8044i) q^{38} +(-4.52120 + 7.83095i) q^{40} +(12.8400 + 7.41318i) q^{41} +(14.4554 + 25.0374i) q^{43} -37.7112i q^{44} -57.8065 q^{46} +(25.7813 - 14.8849i) q^{47} +(-3.50000 + 6.06218i) q^{49} +(-18.1009 - 10.4506i) q^{50} +(10.3719 + 17.9646i) q^{52} +18.1401i q^{53} -60.2809 q^{55} +(-6.48074 + 3.74166i) q^{56} +(15.3674 - 26.6172i) q^{58} +(46.4112 + 26.7955i) q^{59} +(13.9337 + 24.1339i) q^{61} -3.89520i q^{62} -8.00000 q^{64} +(28.7161 - 16.5793i) q^{65} +(46.2776 - 80.1552i) q^{67} +(-42.3056 - 24.4251i) q^{68} +(5.98099 + 10.3594i) q^{70} +81.9005i q^{71} -81.2899 q^{73} +(55.9000 - 32.2739i) q^{74} +(-26.5935 + 46.0612i) q^{76} +(-43.2036 - 24.9436i) q^{77} +(42.3065 + 73.2770i) q^{79} +12.7879i q^{80} +20.9677 q^{82} +(99.9040 - 57.6796i) q^{83} +(-39.0432 + 67.6249i) q^{85} +(35.4083 + 20.4430i) q^{86} +(-26.6659 - 46.1866i) q^{88} +13.7346i q^{89} +27.4413 q^{91} +(-70.7982 + 40.8754i) q^{92} +(21.0504 - 36.4603i) q^{94} +(73.6282 + 42.5093i) q^{95} +(55.7929 + 96.6361i) q^{97} +9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} - 36 q^{5} - 48 q^{16} + 24 q^{19} - 72 q^{20} + 24 q^{22} + 72 q^{23} + 72 q^{25} + 108 q^{29} - 60 q^{31} - 48 q^{34} - 168 q^{37} - 144 q^{38} - 108 q^{41} + 60 q^{43} + 324 q^{47} - 84 q^{49}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 0.707107i 0.612372 0.353553i
\(3\) 0 0
\(4\) 1.00000 1.73205i 0.250000 0.433013i
\(5\) −2.76866 1.59849i −0.553732 0.319697i 0.196894 0.980425i \(-0.436915\pi\)
−0.750626 + 0.660728i \(0.770248\pi\)
\(6\) 0 0
\(7\) −1.32288 2.29129i −0.188982 0.327327i
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) −4.52120 −0.452120
\(11\) 16.3294 9.42781i 1.48449 0.857073i 0.484650 0.874708i \(-0.338947\pi\)
0.999844 + 0.0176350i \(0.00561367\pi\)
\(12\) 0 0
\(13\) −5.18593 + 8.98229i −0.398917 + 0.690945i −0.993593 0.113021i \(-0.963947\pi\)
0.594675 + 0.803966i \(0.297281\pi\)
\(14\) −3.24037 1.87083i −0.231455 0.133631i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 24.4251i 1.43677i −0.695645 0.718386i \(-0.744881\pi\)
0.695645 0.718386i \(-0.255119\pi\)
\(18\) 0 0
\(19\) −26.5935 −1.39966 −0.699828 0.714312i \(-0.746740\pi\)
−0.699828 + 0.714312i \(0.746740\pi\)
\(20\) −5.53732 + 3.19697i −0.276866 + 0.159849i
\(21\) 0 0
\(22\) 13.3329 23.0933i 0.606042 1.04970i
\(23\) −35.3991 20.4377i −1.53909 0.888595i −0.998892 0.0470582i \(-0.985015\pi\)
−0.540200 0.841537i \(-0.681651\pi\)
\(24\) 0 0
\(25\) −7.38968 12.7993i −0.295587 0.511972i
\(26\) 14.6680i 0.564154i
\(27\) 0 0
\(28\) −5.29150 −0.188982
\(29\) 18.8212 10.8664i 0.649006 0.374704i −0.139069 0.990283i \(-0.544411\pi\)
0.788075 + 0.615579i \(0.211078\pi\)
\(30\) 0 0
\(31\) 1.37716 2.38532i 0.0444246 0.0769457i −0.842958 0.537979i \(-0.819188\pi\)
0.887383 + 0.461034i \(0.152521\pi\)
\(32\) −4.89898 2.82843i −0.153093 0.0883883i
\(33\) 0 0
\(34\) −17.2712 29.9145i −0.507976 0.879840i
\(35\) 8.45840i 0.241668i
\(36\) 0 0
\(37\) 45.6422 1.23357 0.616786 0.787131i \(-0.288434\pi\)
0.616786 + 0.787131i \(0.288434\pi\)
\(38\) −32.5702 + 18.8044i −0.857111 + 0.494853i
\(39\) 0 0
\(40\) −4.52120 + 7.83095i −0.113030 + 0.195774i
\(41\) 12.8400 + 7.41318i 0.313171 + 0.180809i 0.648345 0.761347i \(-0.275462\pi\)
−0.335174 + 0.942156i \(0.608795\pi\)
\(42\) 0 0
\(43\) 14.4554 + 25.0374i 0.336171 + 0.582266i 0.983709 0.179767i \(-0.0575345\pi\)
−0.647538 + 0.762033i \(0.724201\pi\)
\(44\) 37.7112i 0.857073i
\(45\) 0 0
\(46\) −57.8065 −1.25666
\(47\) 25.7813 14.8849i 0.548539 0.316699i −0.199993 0.979797i \(-0.564092\pi\)
0.748533 + 0.663098i \(0.230759\pi\)
\(48\) 0 0
\(49\) −3.50000 + 6.06218i −0.0714286 + 0.123718i
\(50\) −18.1009 10.4506i −0.362019 0.209012i
\(51\) 0 0
\(52\) 10.3719 + 17.9646i 0.199459 + 0.345473i
\(53\) 18.1401i 0.342266i 0.985248 + 0.171133i \(0.0547428\pi\)
−0.985248 + 0.171133i \(0.945257\pi\)
\(54\) 0 0
\(55\) −60.2809 −1.09602
\(56\) −6.48074 + 3.74166i −0.115728 + 0.0668153i
\(57\) 0 0
\(58\) 15.3674 26.6172i 0.264956 0.458917i
\(59\) 46.4112 + 26.7955i 0.786631 + 0.454162i 0.838775 0.544478i \(-0.183272\pi\)
−0.0521440 + 0.998640i \(0.516605\pi\)
\(60\) 0 0
\(61\) 13.9337 + 24.1339i 0.228422 + 0.395638i 0.957341 0.288962i \(-0.0933102\pi\)
−0.728919 + 0.684600i \(0.759977\pi\)
\(62\) 3.89520i 0.0628259i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) 28.7161 16.5793i 0.441787 0.255066i
\(66\) 0 0
\(67\) 46.2776 80.1552i 0.690711 1.19635i −0.280895 0.959739i \(-0.590631\pi\)
0.971605 0.236607i \(-0.0760355\pi\)
\(68\) −42.3056 24.4251i −0.622141 0.359193i
\(69\) 0 0
\(70\) 5.98099 + 10.3594i 0.0854427 + 0.147991i
\(71\) 81.9005i 1.15353i 0.816911 + 0.576764i \(0.195685\pi\)
−0.816911 + 0.576764i \(0.804315\pi\)
\(72\) 0 0
\(73\) −81.2899 −1.11356 −0.556780 0.830660i \(-0.687964\pi\)
−0.556780 + 0.830660i \(0.687964\pi\)
\(74\) 55.9000 32.2739i 0.755406 0.436134i
\(75\) 0 0
\(76\) −26.5935 + 46.0612i −0.349914 + 0.606069i
\(77\) −43.2036 24.9436i −0.561086 0.323943i
\(78\) 0 0
\(79\) 42.3065 + 73.2770i 0.535525 + 0.927557i 0.999138 + 0.0415187i \(0.0132196\pi\)
−0.463613 + 0.886038i \(0.653447\pi\)
\(80\) 12.7879i 0.159849i
\(81\) 0 0
\(82\) 20.9677 0.255703
\(83\) 99.9040 57.6796i 1.20366 0.694935i 0.242295 0.970203i \(-0.422100\pi\)
0.961368 + 0.275268i \(0.0887665\pi\)
\(84\) 0 0
\(85\) −39.0432 + 67.6249i −0.459332 + 0.795587i
\(86\) 35.4083 + 20.4430i 0.411724 + 0.237709i
\(87\) 0 0
\(88\) −26.6659 46.1866i −0.303021 0.524848i
\(89\) 13.7346i 0.154321i 0.997019 + 0.0771606i \(0.0245854\pi\)
−0.997019 + 0.0771606i \(0.975415\pi\)
\(90\) 0 0
\(91\) 27.4413 0.301553
\(92\) −70.7982 + 40.8754i −0.769546 + 0.444298i
\(93\) 0 0
\(94\) 21.0504 36.4603i 0.223940 0.387876i
\(95\) 73.6282 + 42.5093i 0.775034 + 0.447466i
\(96\) 0 0
\(97\) 55.7929 + 96.6361i 0.575184 + 0.996248i 0.996022 + 0.0891122i \(0.0284030\pi\)
−0.420837 + 0.907136i \(0.638264\pi\)
\(98\) 9.89949i 0.101015i
\(99\) 0 0
\(100\) −29.5587 −0.295587
\(101\) −125.514 + 72.4658i −1.24272 + 0.717483i −0.969647 0.244510i \(-0.921373\pi\)
−0.273071 + 0.961994i \(0.588039\pi\)
\(102\) 0 0
\(103\) 22.4051 38.8068i 0.217525 0.376765i −0.736525 0.676410i \(-0.763535\pi\)
0.954051 + 0.299645i \(0.0968681\pi\)
\(104\) 25.4057 + 14.6680i 0.244286 + 0.141039i
\(105\) 0 0
\(106\) 12.8270 + 22.2170i 0.121009 + 0.209594i
\(107\) 100.220i 0.936634i −0.883560 0.468317i \(-0.844861\pi\)
0.883560 0.468317i \(-0.155139\pi\)
\(108\) 0 0
\(109\) −60.7449 −0.557292 −0.278646 0.960394i \(-0.589886\pi\)
−0.278646 + 0.960394i \(0.589886\pi\)
\(110\) −73.8287 + 42.6250i −0.671170 + 0.387500i
\(111\) 0 0
\(112\) −5.29150 + 9.16515i −0.0472456 + 0.0818317i
\(113\) −12.6128 7.28199i −0.111617 0.0644424i 0.443152 0.896446i \(-0.353860\pi\)
−0.554769 + 0.832004i \(0.687194\pi\)
\(114\) 0 0
\(115\) 65.3387 + 113.170i 0.568163 + 0.984087i
\(116\) 43.4656i 0.374704i
\(117\) 0 0
\(118\) 75.7892 0.642282
\(119\) −55.9650 + 32.3114i −0.470294 + 0.271524i
\(120\) 0 0
\(121\) 117.267 203.112i 0.969149 1.67862i
\(122\) 34.1305 + 19.7053i 0.279758 + 0.161519i
\(123\) 0 0
\(124\) −2.75433 4.77063i −0.0222123 0.0384728i
\(125\) 127.174i 1.01739i
\(126\) 0 0
\(127\) 221.852 1.74687 0.873433 0.486944i \(-0.161888\pi\)
0.873433 + 0.486944i \(0.161888\pi\)
\(128\) −9.79796 + 5.65685i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 23.4466 40.6107i 0.180359 0.312390i
\(131\) −2.93262 1.69315i −0.0223864 0.0129248i 0.488765 0.872415i \(-0.337448\pi\)
−0.511151 + 0.859491i \(0.670781\pi\)
\(132\) 0 0
\(133\) 35.1798 + 60.9333i 0.264510 + 0.458145i
\(134\) 130.893i 0.976812i
\(135\) 0 0
\(136\) −69.0847 −0.507976
\(137\) 18.6956 10.7939i 0.136464 0.0787877i −0.430214 0.902727i \(-0.641562\pi\)
0.566678 + 0.823939i \(0.308228\pi\)
\(138\) 0 0
\(139\) 30.1614 52.2410i 0.216988 0.375835i −0.736897 0.676005i \(-0.763710\pi\)
0.953886 + 0.300170i \(0.0970433\pi\)
\(140\) 14.6504 + 8.45840i 0.104646 + 0.0604171i
\(141\) 0 0
\(142\) 57.9124 + 100.307i 0.407834 + 0.706389i
\(143\) 195.568i 1.36761i
\(144\) 0 0
\(145\) −69.4792 −0.479167
\(146\) −99.5594 + 57.4807i −0.681914 + 0.393703i
\(147\) 0 0
\(148\) 45.6422 79.0546i 0.308393 0.534153i
\(149\) −13.4563 7.76899i −0.0903107 0.0521409i 0.454165 0.890918i \(-0.349938\pi\)
−0.544475 + 0.838777i \(0.683271\pi\)
\(150\) 0 0
\(151\) −13.4117 23.2297i −0.0888192 0.153839i 0.818193 0.574944i \(-0.194976\pi\)
−0.907012 + 0.421104i \(0.861643\pi\)
\(152\) 75.2177i 0.494853i
\(153\) 0 0
\(154\) −70.5512 −0.458125
\(155\) −7.62579 + 4.40275i −0.0491987 + 0.0284049i
\(156\) 0 0
\(157\) −53.0669 + 91.9146i −0.338006 + 0.585444i −0.984058 0.177850i \(-0.943086\pi\)
0.646052 + 0.763294i \(0.276419\pi\)
\(158\) 103.629 + 59.8304i 0.655882 + 0.378673i
\(159\) 0 0
\(160\) 9.04241 + 15.6619i 0.0565150 + 0.0978869i
\(161\) 108.146i 0.671715i
\(162\) 0 0
\(163\) 11.8953 0.0729774 0.0364887 0.999334i \(-0.488383\pi\)
0.0364887 + 0.999334i \(0.488383\pi\)
\(164\) 25.6800 14.8264i 0.156586 0.0904047i
\(165\) 0 0
\(166\) 81.5713 141.286i 0.491393 0.851118i
\(167\) −120.719 69.6971i −0.722868 0.417348i 0.0929395 0.995672i \(-0.470374\pi\)
−0.815807 + 0.578324i \(0.803707\pi\)
\(168\) 0 0
\(169\) 30.7123 + 53.1953i 0.181730 + 0.314765i
\(170\) 110.431i 0.649594i
\(171\) 0 0
\(172\) 57.8215 0.336171
\(173\) 198.663 114.698i 1.14834 0.662994i 0.199858 0.979825i \(-0.435952\pi\)
0.948482 + 0.316830i \(0.102619\pi\)
\(174\) 0 0
\(175\) −19.5513 + 33.8638i −0.111721 + 0.193507i
\(176\) −65.3178 37.7112i −0.371124 0.214268i
\(177\) 0 0
\(178\) 9.71182 + 16.8214i 0.0545608 + 0.0945021i
\(179\) 202.541i 1.13152i −0.824571 0.565758i \(-0.808584\pi\)
0.824571 0.565758i \(-0.191416\pi\)
\(180\) 0 0
\(181\) 4.20404 0.0232267 0.0116134 0.999933i \(-0.496303\pi\)
0.0116134 + 0.999933i \(0.496303\pi\)
\(182\) 33.6086 19.4040i 0.184663 0.106615i
\(183\) 0 0
\(184\) −57.8065 + 100.124i −0.314166 + 0.544151i
\(185\) −126.368 72.9584i −0.683069 0.394370i
\(186\) 0 0
\(187\) −230.275 398.849i −1.23142 2.13288i
\(188\) 59.5395i 0.316699i
\(189\) 0 0
\(190\) 120.234 0.632813
\(191\) 235.481 135.955i 1.23288 0.711806i 0.265255 0.964178i \(-0.414544\pi\)
0.967630 + 0.252372i \(0.0812106\pi\)
\(192\) 0 0
\(193\) 72.2766 125.187i 0.374490 0.648636i −0.615760 0.787934i \(-0.711151\pi\)
0.990251 + 0.139297i \(0.0444843\pi\)
\(194\) 136.664 + 78.9030i 0.704454 + 0.406717i
\(195\) 0 0
\(196\) 7.00000 + 12.1244i 0.0357143 + 0.0618590i
\(197\) 53.0627i 0.269354i −0.990890 0.134677i \(-0.957000\pi\)
0.990890 0.134677i \(-0.0429996\pi\)
\(198\) 0 0
\(199\) −114.808 −0.576923 −0.288461 0.957491i \(-0.593144\pi\)
−0.288461 + 0.957491i \(0.593144\pi\)
\(200\) −36.2019 + 20.9012i −0.181009 + 0.104506i
\(201\) 0 0
\(202\) −102.482 + 177.504i −0.507337 + 0.878734i
\(203\) −49.7962 28.7498i −0.245301 0.141625i
\(204\) 0 0
\(205\) −23.6997 41.0492i −0.115609 0.200240i
\(206\) 63.3713i 0.307628i
\(207\) 0 0
\(208\) 41.4874 0.199459
\(209\) −434.256 + 250.718i −2.07778 + 1.19961i
\(210\) 0 0
\(211\) −180.480 + 312.600i −0.855353 + 1.48152i 0.0209634 + 0.999780i \(0.493327\pi\)
−0.876317 + 0.481735i \(0.840007\pi\)
\(212\) 31.4196 + 18.1401i 0.148206 + 0.0855665i
\(213\) 0 0
\(214\) −70.8661 122.744i −0.331150 0.573569i
\(215\) 92.4269i 0.429892i
\(216\) 0 0
\(217\) −7.28726 −0.0335818
\(218\) −74.3970 + 42.9531i −0.341271 + 0.197033i
\(219\) 0 0
\(220\) −60.2809 + 104.410i −0.274004 + 0.474589i
\(221\) 219.393 + 126.667i 0.992731 + 0.573153i
\(222\) 0 0
\(223\) 103.429 + 179.144i 0.463805 + 0.803334i 0.999147 0.0413015i \(-0.0131504\pi\)
−0.535342 + 0.844636i \(0.679817\pi\)
\(224\) 14.9666i 0.0668153i
\(225\) 0 0
\(226\) −20.5966 −0.0911353
\(227\) −114.004 + 65.8205i −0.502222 + 0.289958i −0.729631 0.683841i \(-0.760308\pi\)
0.227409 + 0.973799i \(0.426975\pi\)
\(228\) 0 0
\(229\) −118.264 + 204.839i −0.516436 + 0.894494i 0.483381 + 0.875410i \(0.339408\pi\)
−0.999818 + 0.0190842i \(0.993925\pi\)
\(230\) 160.047 + 92.4029i 0.695855 + 0.401752i
\(231\) 0 0
\(232\) −30.7349 53.2343i −0.132478 0.229458i
\(233\) 155.574i 0.667699i 0.942626 + 0.333849i \(0.108348\pi\)
−0.942626 + 0.333849i \(0.891652\pi\)
\(234\) 0 0
\(235\) −95.1730 −0.404992
\(236\) 92.8225 53.5911i 0.393316 0.227081i
\(237\) 0 0
\(238\) −45.6952 + 79.1465i −0.191997 + 0.332548i
\(239\) 51.6119 + 29.7981i 0.215949 + 0.124678i 0.604073 0.796929i \(-0.293543\pi\)
−0.388124 + 0.921607i \(0.626877\pi\)
\(240\) 0 0
\(241\) 59.7453 + 103.482i 0.247906 + 0.429385i 0.962945 0.269699i \(-0.0869243\pi\)
−0.715039 + 0.699085i \(0.753591\pi\)
\(242\) 331.681i 1.37058i
\(243\) 0 0
\(244\) 55.7349 0.228422
\(245\) 19.3806 11.1894i 0.0791046 0.0456710i
\(246\) 0 0
\(247\) 137.912 238.870i 0.558347 0.967085i
\(248\) −6.74669 3.89520i −0.0272044 0.0157065i
\(249\) 0 0
\(250\) 89.9253 + 155.755i 0.359701 + 0.623021i
\(251\) 483.177i 1.92501i −0.271267 0.962504i \(-0.587443\pi\)
0.271267 0.962504i \(-0.412557\pi\)
\(252\) 0 0
\(253\) −770.730 −3.04636
\(254\) 271.712 156.873i 1.06973 0.617611i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −136.833 79.0003i −0.532422 0.307394i 0.209580 0.977792i \(-0.432790\pi\)
−0.742002 + 0.670397i \(0.766124\pi\)
\(258\) 0 0
\(259\) −60.3789 104.579i −0.233123 0.403781i
\(260\) 66.3171i 0.255066i
\(261\) 0 0
\(262\) −4.78895 −0.0182784
\(263\) 244.980 141.439i 0.931483 0.537792i 0.0442024 0.999023i \(-0.485925\pi\)
0.887280 + 0.461231i \(0.152592\pi\)
\(264\) 0 0
\(265\) 28.9967 50.2238i 0.109422 0.189524i
\(266\) 86.1726 + 49.7518i 0.323957 + 0.187037i
\(267\) 0 0
\(268\) −92.5552 160.310i −0.345355 0.598173i
\(269\) 125.436i 0.466303i 0.972440 + 0.233152i \(0.0749039\pi\)
−0.972440 + 0.233152i \(0.925096\pi\)
\(270\) 0 0
\(271\) 418.065 1.54268 0.771338 0.636426i \(-0.219588\pi\)
0.771338 + 0.636426i \(0.219588\pi\)
\(272\) −84.6111 + 48.8502i −0.311070 + 0.179597i
\(273\) 0 0
\(274\) 15.2649 26.4396i 0.0557113 0.0964948i
\(275\) −241.339 139.337i −0.877595 0.506680i
\(276\) 0 0
\(277\) −228.356 395.524i −0.824389 1.42788i −0.902386 0.430929i \(-0.858186\pi\)
0.0779971 0.996954i \(-0.475148\pi\)
\(278\) 85.3093i 0.306868i
\(279\) 0 0
\(280\) 23.9240 0.0854427
\(281\) −221.123 + 127.665i −0.786913 + 0.454324i −0.838875 0.544325i \(-0.816786\pi\)
0.0519617 + 0.998649i \(0.483453\pi\)
\(282\) 0 0
\(283\) −4.11688 + 7.13065i −0.0145473 + 0.0251966i −0.873207 0.487349i \(-0.837964\pi\)
0.858660 + 0.512545i \(0.171297\pi\)
\(284\) 141.856 + 81.9005i 0.499492 + 0.288382i
\(285\) 0 0
\(286\) 138.287 + 239.520i 0.483522 + 0.837484i
\(287\) 39.2269i 0.136679i
\(288\) 0 0
\(289\) −307.587 −1.06431
\(290\) −85.0944 + 49.1292i −0.293429 + 0.169411i
\(291\) 0 0
\(292\) −81.2899 + 140.798i −0.278390 + 0.482186i
\(293\) −92.6650 53.5002i −0.316263 0.182594i 0.333463 0.942763i \(-0.391783\pi\)
−0.649726 + 0.760169i \(0.725116\pi\)
\(294\) 0 0
\(295\) −85.6646 148.375i −0.290389 0.502968i
\(296\) 129.096i 0.436134i
\(297\) 0 0
\(298\) −21.9740 −0.0737384
\(299\) 367.154 211.977i 1.22794 0.708952i
\(300\) 0 0
\(301\) 38.2453 66.2428i 0.127061 0.220076i
\(302\) −32.8518 18.9670i −0.108781 0.0628046i
\(303\) 0 0
\(304\) 53.1869 + 92.1224i 0.174957 + 0.303034i
\(305\) 89.0915i 0.292103i
\(306\) 0 0
\(307\) 540.799 1.76156 0.880780 0.473526i \(-0.157019\pi\)
0.880780 + 0.473526i \(0.157019\pi\)
\(308\) −86.4073 + 49.8873i −0.280543 + 0.161972i
\(309\) 0 0
\(310\) −6.22643 + 10.7845i −0.0200853 + 0.0347887i
\(311\) −226.920 131.012i −0.729646 0.421261i 0.0886465 0.996063i \(-0.471746\pi\)
−0.818293 + 0.574802i \(0.805079\pi\)
\(312\) 0 0
\(313\) −302.440 523.842i −0.966262 1.67362i −0.706185 0.708027i \(-0.749585\pi\)
−0.260077 0.965588i \(-0.583748\pi\)
\(314\) 150.096i 0.478013i
\(315\) 0 0
\(316\) 169.226 0.535525
\(317\) −75.7622 + 43.7413i −0.238997 + 0.137985i −0.614716 0.788749i \(-0.710729\pi\)
0.375718 + 0.926734i \(0.377396\pi\)
\(318\) 0 0
\(319\) 204.893 354.885i 0.642297 1.11249i
\(320\) 22.1493 + 12.7879i 0.0692165 + 0.0399622i
\(321\) 0 0
\(322\) 76.4708 + 132.451i 0.237487 + 0.411340i
\(323\) 649.549i 2.01099i
\(324\) 0 0
\(325\) 153.289 0.471660
\(326\) 14.5687 8.41126i 0.0446894 0.0258014i
\(327\) 0 0
\(328\) 20.9677 36.3170i 0.0639258 0.110723i
\(329\) −68.2110 39.3816i −0.207328 0.119701i
\(330\) 0 0
\(331\) −68.1379 118.018i −0.205855 0.356551i 0.744550 0.667567i \(-0.232664\pi\)
−0.950405 + 0.311016i \(0.899331\pi\)
\(332\) 230.718i 0.694935i
\(333\) 0 0
\(334\) −197.133 −0.590219
\(335\) −256.254 + 147.948i −0.764937 + 0.441637i
\(336\) 0 0
\(337\) −121.241 + 209.996i −0.359767 + 0.623135i −0.987922 0.154954i \(-0.950477\pi\)
0.628155 + 0.778088i \(0.283810\pi\)
\(338\) 75.2296 + 43.4338i 0.222573 + 0.128502i
\(339\) 0 0
\(340\) 78.0865 + 135.250i 0.229666 + 0.397793i
\(341\) 51.9345i 0.152301i
\(342\) 0 0
\(343\) 18.5203 0.0539949
\(344\) 70.8166 40.8860i 0.205862 0.118855i
\(345\) 0 0
\(346\) 162.208 280.952i 0.468808 0.811999i
\(347\) −558.304 322.337i −1.60894 0.928924i −0.989607 0.143800i \(-0.954068\pi\)
−0.619338 0.785125i \(-0.712599\pi\)
\(348\) 0 0
\(349\) −302.915 524.665i −0.867952 1.50334i −0.864086 0.503345i \(-0.832103\pi\)
−0.00386633 0.999993i \(-0.501231\pi\)
\(350\) 55.2993i 0.157998i
\(351\) 0 0
\(352\) −106.663 −0.303021
\(353\) −141.198 + 81.5210i −0.399996 + 0.230938i −0.686482 0.727147i \(-0.740846\pi\)
0.286487 + 0.958084i \(0.407513\pi\)
\(354\) 0 0
\(355\) 130.917 226.755i 0.368780 0.638745i
\(356\) 23.7890 + 13.7346i 0.0668231 + 0.0385803i
\(357\) 0 0
\(358\) −143.218 248.062i −0.400051 0.692909i
\(359\) 227.325i 0.633217i 0.948556 + 0.316608i \(0.102544\pi\)
−0.948556 + 0.316608i \(0.897456\pi\)
\(360\) 0 0
\(361\) 346.212 0.959036
\(362\) 5.14888 2.97270i 0.0142234 0.00821189i
\(363\) 0 0
\(364\) 27.4413 47.5298i 0.0753883 0.130576i
\(365\) 225.064 + 129.941i 0.616614 + 0.356002i
\(366\) 0 0
\(367\) 337.753 + 585.006i 0.920308 + 1.59402i 0.798938 + 0.601413i \(0.205395\pi\)
0.121370 + 0.992607i \(0.461271\pi\)
\(368\) 163.501i 0.444298i
\(369\) 0 0
\(370\) −206.358 −0.557723
\(371\) 41.5642 23.9971i 0.112033 0.0646822i
\(372\) 0 0
\(373\) −222.392 + 385.194i −0.596225 + 1.03269i 0.397148 + 0.917755i \(0.370000\pi\)
−0.993373 + 0.114937i \(0.963333\pi\)
\(374\) −564.057 325.658i −1.50817 0.870745i
\(375\) 0 0
\(376\) −42.1007 72.9206i −0.111970 0.193938i
\(377\) 225.410i 0.597903i
\(378\) 0 0
\(379\) 586.241 1.54681 0.773405 0.633912i \(-0.218552\pi\)
0.773405 + 0.633912i \(0.218552\pi\)
\(380\) 147.256 85.0186i 0.387517 0.223733i
\(381\) 0 0
\(382\) 192.269 333.020i 0.503323 0.871781i
\(383\) 130.125 + 75.1280i 0.339753 + 0.196157i 0.660163 0.751122i \(-0.270487\pi\)
−0.320410 + 0.947279i \(0.603821\pi\)
\(384\) 0 0
\(385\) 79.7441 + 138.121i 0.207128 + 0.358755i
\(386\) 204.429i 0.529609i
\(387\) 0 0
\(388\) 223.171 0.575184
\(389\) 467.627 269.985i 1.20213 0.694048i 0.241099 0.970500i \(-0.422492\pi\)
0.961028 + 0.276452i \(0.0891587\pi\)
\(390\) 0 0
\(391\) −499.193 + 864.628i −1.27671 + 2.21132i
\(392\) 17.1464 + 9.89949i 0.0437409 + 0.0252538i
\(393\) 0 0
\(394\) −37.5210 64.9882i −0.0952309 0.164945i
\(395\) 270.505i 0.684824i
\(396\) 0 0
\(397\) 491.223 1.23734 0.618669 0.785652i \(-0.287672\pi\)
0.618669 + 0.785652i \(0.287672\pi\)
\(398\) −140.610 + 81.1813i −0.353292 + 0.203973i
\(399\) 0 0
\(400\) −29.5587 + 51.1972i −0.0738968 + 0.127993i
\(401\) 187.085 + 108.014i 0.466546 + 0.269361i 0.714793 0.699336i \(-0.246521\pi\)
−0.248247 + 0.968697i \(0.579854\pi\)
\(402\) 0 0
\(403\) 14.2837 + 24.7401i 0.0354435 + 0.0613899i
\(404\) 289.863i 0.717483i
\(405\) 0 0
\(406\) −81.3168 −0.200288
\(407\) 745.311 430.306i 1.83123 1.05726i
\(408\) 0 0
\(409\) −52.8761 + 91.5842i −0.129282 + 0.223922i −0.923398 0.383843i \(-0.874600\pi\)
0.794117 + 0.607765i \(0.207934\pi\)
\(410\) −58.0523 33.5165i −0.141591 0.0817476i
\(411\) 0 0
\(412\) −44.8103 77.6136i −0.108763 0.188383i
\(413\) 141.789i 0.343314i
\(414\) 0 0
\(415\) −368.800 −0.888675
\(416\) 50.8115 29.3360i 0.122143 0.0705193i
\(417\) 0 0
\(418\) −354.569 + 614.131i −0.848251 + 1.46921i
\(419\) −11.5619 6.67526i −0.0275940 0.0159314i 0.486140 0.873881i \(-0.338405\pi\)
−0.513734 + 0.857950i \(0.671738\pi\)
\(420\) 0 0
\(421\) 237.620 + 411.570i 0.564419 + 0.977602i 0.997104 + 0.0760565i \(0.0242329\pi\)
−0.432685 + 0.901545i \(0.642434\pi\)
\(422\) 510.473i 1.20965i
\(423\) 0 0
\(424\) 51.3080 0.121009
\(425\) −312.625 + 180.494i −0.735587 + 0.424692i
\(426\) 0 0
\(427\) 36.8652 63.8523i 0.0863353 0.149537i
\(428\) −173.586 100.220i −0.405574 0.234159i
\(429\) 0 0
\(430\) −65.3557 113.199i −0.151990 0.263254i
\(431\) 235.192i 0.545690i 0.962058 + 0.272845i \(0.0879646\pi\)
−0.962058 + 0.272845i \(0.912035\pi\)
\(432\) 0 0
\(433\) −21.0400 −0.0485913 −0.0242957 0.999705i \(-0.507734\pi\)
−0.0242957 + 0.999705i \(0.507734\pi\)
\(434\) −8.92504 + 5.15287i −0.0205646 + 0.0118730i
\(435\) 0 0
\(436\) −60.7449 + 105.213i −0.139323 + 0.241315i
\(437\) 941.385 + 543.509i 2.15420 + 1.24373i
\(438\) 0 0
\(439\) 124.576 + 215.771i 0.283772 + 0.491507i 0.972311 0.233693i \(-0.0750809\pi\)
−0.688539 + 0.725199i \(0.741748\pi\)
\(440\) 170.500i 0.387500i
\(441\) 0 0
\(442\) 358.268 0.810561
\(443\) −282.967 + 163.371i −0.638751 + 0.368783i −0.784133 0.620592i \(-0.786892\pi\)
0.145382 + 0.989376i \(0.453559\pi\)
\(444\) 0 0
\(445\) 21.9546 38.0264i 0.0493361 0.0854526i
\(446\) 253.347 + 146.270i 0.568043 + 0.327960i
\(447\) 0 0
\(448\) 10.5830 + 18.3303i 0.0236228 + 0.0409159i
\(449\) 510.632i 1.13727i 0.822592 + 0.568633i \(0.192527\pi\)
−0.822592 + 0.568633i \(0.807473\pi\)
\(450\) 0 0
\(451\) 279.560 0.619868
\(452\) −25.2255 + 14.5640i −0.0558087 + 0.0322212i
\(453\) 0 0
\(454\) −93.0842 + 161.227i −0.205031 + 0.355125i
\(455\) −75.9757 43.8646i −0.166980 0.0964057i
\(456\) 0 0
\(457\) 90.5487 + 156.835i 0.198137 + 0.343184i 0.947924 0.318495i \(-0.103178\pi\)
−0.749787 + 0.661679i \(0.769844\pi\)
\(458\) 334.501i 0.730351i
\(459\) 0 0
\(460\) 261.355 0.568163
\(461\) −256.511 + 148.097i −0.556423 + 0.321251i −0.751709 0.659495i \(-0.770770\pi\)
0.195286 + 0.980746i \(0.437437\pi\)
\(462\) 0 0
\(463\) −268.155 + 464.458i −0.579169 + 1.00315i 0.416406 + 0.909179i \(0.363289\pi\)
−0.995575 + 0.0939712i \(0.970044\pi\)
\(464\) −75.2847 43.4656i −0.162252 0.0936760i
\(465\) 0 0
\(466\) 110.007 + 190.538i 0.236067 + 0.408880i
\(467\) 87.9169i 0.188259i −0.995560 0.0941294i \(-0.969993\pi\)
0.995560 0.0941294i \(-0.0300068\pi\)
\(468\) 0 0
\(469\) −244.878 −0.522128
\(470\) −116.563 + 67.2975i −0.248006 + 0.143186i
\(471\) 0 0
\(472\) 75.7892 131.271i 0.160570 0.278116i
\(473\) 472.096 + 272.565i 0.998089 + 0.576247i
\(474\) 0 0
\(475\) 196.517 + 340.378i 0.413720 + 0.716585i
\(476\) 129.246i 0.271524i
\(477\) 0 0
\(478\) 84.2818 0.176322
\(479\) 257.970 148.939i 0.538559 0.310937i −0.205936 0.978565i \(-0.566024\pi\)
0.744495 + 0.667628i \(0.232691\pi\)
\(480\) 0 0
\(481\) −236.697 + 409.971i −0.492094 + 0.852331i
\(482\) 146.345 + 84.4926i 0.303621 + 0.175296i
\(483\) 0 0
\(484\) −234.534 406.225i −0.484575 0.839308i
\(485\) 356.737i 0.735539i
\(486\) 0 0
\(487\) −441.814 −0.907215 −0.453608 0.891202i \(-0.649863\pi\)
−0.453608 + 0.891202i \(0.649863\pi\)
\(488\) 68.2610 39.4105i 0.139879 0.0807593i
\(489\) 0 0
\(490\) 15.8242 27.4083i 0.0322943 0.0559354i
\(491\) −288.654 166.655i −0.587891 0.339419i 0.176372 0.984324i \(-0.443564\pi\)
−0.764263 + 0.644905i \(0.776897\pi\)
\(492\) 0 0
\(493\) −265.413 459.710i −0.538364 0.932474i
\(494\) 390.073i 0.789622i
\(495\) 0 0
\(496\) −11.0173 −0.0222123
\(497\) 187.658 108.344i 0.377581 0.217996i
\(498\) 0 0
\(499\) 422.243 731.347i 0.846179 1.46563i −0.0384141 0.999262i \(-0.512231\pi\)
0.884593 0.466363i \(-0.154436\pi\)
\(500\) 220.271 + 127.174i 0.440542 + 0.254347i
\(501\) 0 0
\(502\) −341.658 591.769i −0.680593 1.17882i
\(503\) 60.3243i 0.119929i 0.998201 + 0.0599645i \(0.0190987\pi\)
−0.998201 + 0.0599645i \(0.980901\pi\)
\(504\) 0 0
\(505\) 463.343 0.917510
\(506\) −943.948 + 544.989i −1.86551 + 1.07705i
\(507\) 0 0
\(508\) 221.852 384.259i 0.436717 0.756415i
\(509\) −339.888 196.234i −0.667756 0.385529i 0.127470 0.991842i \(-0.459314\pi\)
−0.795226 + 0.606313i \(0.792648\pi\)
\(510\) 0 0
\(511\) 107.536 + 186.259i 0.210443 + 0.364498i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) −223.447 −0.434721
\(515\) −124.064 + 71.6286i −0.240902 + 0.139085i
\(516\) 0 0
\(517\) 280.663 486.123i 0.542869 0.940276i
\(518\) −147.898 85.3887i −0.285517 0.164843i
\(519\) 0 0
\(520\) −46.8932 81.2215i −0.0901793 0.156195i
\(521\) 45.5654i 0.0874577i −0.999043 0.0437288i \(-0.986076\pi\)
0.999043 0.0437288i \(-0.0139238\pi\)
\(522\) 0 0
\(523\) 445.063 0.850980 0.425490 0.904963i \(-0.360102\pi\)
0.425490 + 0.904963i \(0.360102\pi\)
\(524\) −5.86524 + 3.38630i −0.0111932 + 0.00646240i
\(525\) 0 0
\(526\) 200.025 346.454i 0.380276 0.658658i
\(527\) −58.2616 33.6374i −0.110553 0.0638280i
\(528\) 0 0
\(529\) 570.898 + 988.825i 1.07920 + 1.86923i
\(530\) 82.0151i 0.154745i
\(531\) 0 0
\(532\) 140.719 0.264510
\(533\) −133.175 + 76.8884i −0.249859 + 0.144256i
\(534\) 0 0
\(535\) −160.200 + 277.475i −0.299439 + 0.518644i
\(536\) −226.713 130.893i −0.422972 0.244203i
\(537\) 0 0
\(538\) 88.6964 + 153.627i 0.164863 + 0.285551i
\(539\) 131.989i 0.244878i
\(540\) 0 0
\(541\) 302.399 0.558964 0.279482 0.960151i \(-0.409837\pi\)
0.279482 + 0.960151i \(0.409837\pi\)
\(542\) 512.023 295.617i 0.944692 0.545418i
\(543\) 0 0
\(544\) −69.0847 + 119.658i −0.126994 + 0.219960i
\(545\) 168.182 + 97.0999i 0.308591 + 0.178165i
\(546\) 0 0
\(547\) −169.176 293.021i −0.309279 0.535688i 0.668926 0.743329i \(-0.266754\pi\)
−0.978205 + 0.207642i \(0.933421\pi\)
\(548\) 43.1756i 0.0787877i
\(549\) 0 0
\(550\) −394.104 −0.716554
\(551\) −500.520 + 288.975i −0.908385 + 0.524456i
\(552\) 0 0
\(553\) 111.932 193.873i 0.202409 0.350583i
\(554\) −559.355 322.944i −1.00967 0.582931i
\(555\) 0 0
\(556\) −60.3228 104.482i −0.108494 0.187917i
\(557\) 250.404i 0.449559i 0.974410 + 0.224780i \(0.0721662\pi\)
−0.974410 + 0.224780i \(0.927834\pi\)
\(558\) 0 0
\(559\) −299.858 −0.536418
\(560\) 29.3007 16.9168i 0.0523228 0.0302086i
\(561\) 0 0
\(562\) −180.546 + 312.714i −0.321256 + 0.556431i
\(563\) 721.716 + 416.683i 1.28191 + 0.740112i 0.977197 0.212332i \(-0.0681060\pi\)
0.304713 + 0.952444i \(0.401439\pi\)
\(564\) 0 0
\(565\) 23.2803 + 40.3227i 0.0412041 + 0.0713676i
\(566\) 11.6443i 0.0205730i
\(567\) 0 0
\(568\) 231.650 0.407834
\(569\) 205.714 118.769i 0.361536 0.208733i −0.308218 0.951316i \(-0.599733\pi\)
0.669754 + 0.742583i \(0.266399\pi\)
\(570\) 0 0
\(571\) −396.747 + 687.186i −0.694829 + 1.20348i 0.275410 + 0.961327i \(0.411186\pi\)
−0.970238 + 0.242152i \(0.922147\pi\)
\(572\) 338.733 + 195.568i 0.592191 + 0.341901i
\(573\) 0 0
\(574\) −27.7376 48.0429i −0.0483233 0.0836985i
\(575\) 604.112i 1.05063i
\(576\) 0 0
\(577\) −164.298 −0.284745 −0.142372 0.989813i \(-0.545473\pi\)
−0.142372 + 0.989813i \(0.545473\pi\)
\(578\) −376.715 + 217.497i −0.651757 + 0.376292i
\(579\) 0 0
\(580\) −69.4792 + 120.342i −0.119792 + 0.207485i
\(581\) −264.321 152.606i −0.454942 0.262661i
\(582\) 0 0
\(583\) 171.021 + 296.218i 0.293347 + 0.508092i
\(584\) 229.923i 0.393703i
\(585\) 0 0
\(586\) −151.321 −0.258227
\(587\) 796.533 459.879i 1.35696 0.783439i 0.367744 0.929927i \(-0.380130\pi\)
0.989212 + 0.146488i \(0.0467969\pi\)
\(588\) 0 0
\(589\) −36.6235 + 63.4338i −0.0621792 + 0.107697i
\(590\) −209.835 121.148i −0.355652 0.205336i
\(591\) 0 0
\(592\) −91.2844 158.109i −0.154197 0.267076i
\(593\) 1156.90i 1.95092i −0.220178 0.975460i \(-0.570664\pi\)
0.220178 0.975460i \(-0.429336\pi\)
\(594\) 0 0
\(595\) 206.597 0.347222
\(596\) −26.9126 + 15.5380i −0.0451553 + 0.0260704i
\(597\) 0 0
\(598\) 299.780 519.235i 0.501305 0.868285i
\(599\) 784.703 + 453.049i 1.31002 + 0.756342i 0.982100 0.188363i \(-0.0603181\pi\)
0.327923 + 0.944705i \(0.393651\pi\)
\(600\) 0 0
\(601\) −529.218 916.632i −0.880562 1.52518i −0.850718 0.525623i \(-0.823832\pi\)
−0.0298440 0.999555i \(-0.509501\pi\)
\(602\) 108.174i 0.179691i
\(603\) 0 0
\(604\) −53.6468 −0.0888192
\(605\) −649.345 + 374.900i −1.07330 + 0.619669i
\(606\) 0 0
\(607\) 461.576 799.472i 0.760421 1.31709i −0.182213 0.983259i \(-0.558326\pi\)
0.942634 0.333829i \(-0.108341\pi\)
\(608\) 130.281 + 75.2177i 0.214278 + 0.123713i
\(609\) 0 0
\(610\) −62.9972 109.114i −0.103274 0.178876i
\(611\) 308.767i 0.505347i
\(612\) 0 0
\(613\) −613.947 −1.00154 −0.500772 0.865579i \(-0.666951\pi\)
−0.500772 + 0.865579i \(0.666951\pi\)
\(614\) 662.341 382.403i 1.07873 0.622805i
\(615\) 0 0
\(616\) −70.5512 + 122.198i −0.114531 + 0.198374i
\(617\) −460.026 265.596i −0.745585 0.430464i 0.0785114 0.996913i \(-0.474983\pi\)
−0.824096 + 0.566450i \(0.808317\pi\)
\(618\) 0 0
\(619\) −210.891 365.273i −0.340695 0.590102i 0.643867 0.765138i \(-0.277329\pi\)
−0.984562 + 0.175036i \(0.943996\pi\)
\(620\) 17.6110i 0.0284049i
\(621\) 0 0
\(622\) −370.559 −0.595754
\(623\) 31.4699 18.1692i 0.0505135 0.0291640i
\(624\) 0 0
\(625\) 18.5432 32.1177i 0.0296691 0.0513883i
\(626\) −740.824 427.715i −1.18342 0.683250i
\(627\) 0 0
\(628\) 106.134 + 183.829i 0.169003 + 0.292722i
\(629\) 1114.82i 1.77236i
\(630\) 0 0
\(631\) −552.102 −0.874964 −0.437482 0.899227i \(-0.644130\pi\)
−0.437482 + 0.899227i \(0.644130\pi\)
\(632\) 207.259 119.661i 0.327941 0.189337i
\(633\) 0 0
\(634\) −61.8595 + 107.144i −0.0975703 + 0.168997i
\(635\) −614.233 354.628i −0.967296 0.558469i
\(636\) 0 0
\(637\) −36.3015 62.8760i −0.0569882 0.0987064i
\(638\) 579.524i 0.908346i
\(639\) 0 0
\(640\) 36.1696 0.0565150
\(641\) −391.148 + 225.829i −0.610215 + 0.352308i −0.773050 0.634345i \(-0.781270\pi\)
0.162834 + 0.986653i \(0.447936\pi\)
\(642\) 0 0
\(643\) 409.507 709.287i 0.636869 1.10309i −0.349247 0.937031i \(-0.613563\pi\)
0.986116 0.166059i \(-0.0531041\pi\)
\(644\) 187.314 + 108.146i 0.290861 + 0.167929i
\(645\) 0 0
\(646\) 459.300 + 795.531i 0.710991 + 1.23147i
\(647\) 908.400i 1.40402i −0.712168 0.702009i \(-0.752286\pi\)
0.712168 0.702009i \(-0.247714\pi\)
\(648\) 0 0
\(649\) 1010.49 1.55700
\(650\) 187.740 108.392i 0.288831 0.166757i
\(651\) 0 0
\(652\) 11.8953 20.6033i 0.0182444 0.0316002i
\(653\) 199.877 + 115.399i 0.306090 + 0.176721i 0.645176 0.764034i \(-0.276784\pi\)
−0.339085 + 0.940756i \(0.610118\pi\)
\(654\) 0 0
\(655\) 5.41295 + 9.37551i 0.00826405 + 0.0143137i
\(656\) 59.3055i 0.0904047i
\(657\) 0 0
\(658\) −111.388 −0.169283
\(659\) 39.7641 22.9578i 0.0603400 0.0348373i −0.469526 0.882918i \(-0.655575\pi\)
0.529867 + 0.848081i \(0.322242\pi\)
\(660\) 0 0
\(661\) −169.751 + 294.018i −0.256810 + 0.444808i −0.965386 0.260827i \(-0.916005\pi\)
0.708576 + 0.705635i \(0.249338\pi\)
\(662\) −166.903 96.3615i −0.252119 0.145561i
\(663\) 0 0
\(664\) −163.143 282.571i −0.245697 0.425559i
\(665\) 224.938i 0.338253i
\(666\) 0 0
\(667\) −888.337 −1.33184
\(668\) −241.438 + 139.394i −0.361434 + 0.208674i
\(669\) 0 0
\(670\) −209.230 + 362.398i −0.312284 + 0.540892i
\(671\) 455.060 + 262.729i 0.678181 + 0.391548i
\(672\) 0 0
\(673\) 263.886 + 457.063i 0.392104 + 0.679143i 0.992727 0.120389i \(-0.0384142\pi\)
−0.600623 + 0.799532i \(0.705081\pi\)
\(674\) 342.923i 0.508787i
\(675\) 0 0
\(676\) 122.849 0.181730
\(677\) −162.175 + 93.6317i −0.239549 + 0.138304i −0.614970 0.788551i \(-0.710832\pi\)
0.375420 + 0.926855i \(0.377498\pi\)
\(678\) 0 0
\(679\) 147.614 255.675i 0.217399 0.376546i
\(680\) 191.272 + 110.431i 0.281282 + 0.162398i
\(681\) 0 0
\(682\) −36.7232 63.6065i −0.0538464 0.0932647i
\(683\) 575.317i 0.842338i −0.906982 0.421169i \(-0.861620\pi\)
0.906982 0.421169i \(-0.138380\pi\)
\(684\) 0 0
\(685\) −69.0157 −0.100753
\(686\) 22.6826 13.0958i 0.0330650 0.0190901i
\(687\) 0 0
\(688\) 57.8215 100.150i 0.0840428 0.145566i
\(689\) −162.940 94.0733i −0.236487 0.136536i
\(690\) 0 0
\(691\) −269.115 466.122i −0.389458 0.674561i 0.602919 0.797803i \(-0.294004\pi\)
−0.992377 + 0.123242i \(0.960671\pi\)
\(692\) 458.792i 0.662994i
\(693\) 0 0
\(694\) −911.706 −1.31370
\(695\) −167.013 + 96.4251i −0.240307 + 0.138741i
\(696\) 0 0
\(697\) 181.068 313.619i 0.259782 0.449955i
\(698\) −741.988 428.387i −1.06302 0.613735i
\(699\) 0 0
\(700\) 39.1025 + 67.7276i 0.0558607 + 0.0967536i
\(701\) 356.636i 0.508753i −0.967105 0.254376i \(-0.918130\pi\)
0.967105 0.254376i \(-0.0818702\pi\)
\(702\) 0 0
\(703\) −1213.78 −1.72658
\(704\) −130.636 + 75.4224i −0.185562 + 0.107134i
\(705\) 0 0
\(706\) −115.288 + 199.685i −0.163298 + 0.282840i
\(707\) 332.080 + 191.727i 0.469703 + 0.271183i
\(708\) 0 0
\(709\) 200.807 + 347.809i 0.283226 + 0.490562i 0.972177 0.234245i \(-0.0752619\pi\)
−0.688951 + 0.724808i \(0.741929\pi\)
\(710\) 370.289i 0.521533i
\(711\) 0 0
\(712\) 38.8473 0.0545608
\(713\) −97.5007 + 56.2920i −0.136747 + 0.0789510i
\(714\) 0 0
\(715\) 312.612 541.460i 0.437220 0.757287i
\(716\) −350.812 202.541i −0.489961 0.282879i
\(717\) 0 0
\(718\) 160.743 + 278.415i 0.223876 + 0.387764i
\(719\) 916.413i 1.27457i 0.770630 + 0.637283i \(0.219942\pi\)
−0.770630 + 0.637283i \(0.780058\pi\)
\(720\) 0 0
\(721\) −118.557 −0.164434
\(722\) 424.021 244.809i 0.587287 0.339070i
\(723\) 0 0
\(724\) 4.20404 7.28161i 0.00580668 0.0100575i
\(725\) −278.165 160.599i −0.383676 0.221515i
\(726\) 0 0
\(727\) −354.343 613.739i −0.487404 0.844208i 0.512491 0.858692i \(-0.328723\pi\)
−0.999895 + 0.0144843i \(0.995389\pi\)
\(728\) 77.6158i 0.106615i
\(729\) 0 0
\(730\) 367.528 0.503463
\(731\) 611.542 353.074i 0.836583 0.483002i
\(732\) 0 0
\(733\) −640.861 + 1110.00i −0.874298 + 1.51433i −0.0167898 + 0.999859i \(0.505345\pi\)
−0.857508 + 0.514470i \(0.827989\pi\)
\(734\) 827.323 + 477.655i 1.12714 + 0.650756i
\(735\) 0 0
\(736\) 115.613 + 200.248i 0.157083 + 0.272076i
\(737\) 1745.19i 2.36796i
\(738\) 0 0
\(739\) −1077.96 −1.45867 −0.729336 0.684155i \(-0.760171\pi\)
−0.729336 + 0.684155i \(0.760171\pi\)
\(740\) −252.735 + 145.917i −0.341534 + 0.197185i
\(741\) 0 0
\(742\) 33.9370 58.7807i 0.0457372 0.0792192i
\(743\) 229.237 + 132.350i 0.308529 + 0.178130i 0.646268 0.763110i \(-0.276329\pi\)
−0.337739 + 0.941240i \(0.609662\pi\)
\(744\) 0 0
\(745\) 24.8373 + 43.0194i 0.0333386 + 0.0577442i
\(746\) 629.019i 0.843189i
\(747\) 0 0
\(748\) −921.101 −1.23142
\(749\) −229.633 + 132.578i −0.306585 + 0.177007i
\(750\) 0 0
\(751\) 18.2733 31.6504i 0.0243320 0.0421443i −0.853603 0.520924i \(-0.825587\pi\)
0.877935 + 0.478780i \(0.158921\pi\)
\(752\) −103.125 59.5395i −0.137135 0.0791748i
\(753\) 0 0
\(754\) 159.389 + 276.069i 0.211391 + 0.366140i
\(755\) 85.7536i 0.113581i
\(756\) 0 0
\(757\) 299.469 0.395600 0.197800 0.980242i \(-0.436620\pi\)
0.197800 + 0.980242i \(0.436620\pi\)
\(758\) 717.996 414.535i 0.947224 0.546880i
\(759\) 0 0
\(760\) 120.234 208.252i 0.158203 0.274016i
\(761\) 437.315 + 252.484i 0.574658 + 0.331779i 0.759008 0.651082i \(-0.225685\pi\)
−0.184350 + 0.982861i \(0.559018\pi\)
\(762\) 0 0
\(763\) 80.3579 + 139.184i 0.105318 + 0.182417i
\(764\) 543.820i 0.711806i
\(765\) 0 0
\(766\) 212.494 0.277407
\(767\) −481.371 + 277.919i −0.627602 + 0.362346i
\(768\) 0 0
\(769\) 376.324 651.812i 0.489368 0.847610i −0.510558 0.859844i \(-0.670561\pi\)
0.999925 + 0.0122340i \(0.00389431\pi\)
\(770\) 195.332 + 112.775i 0.253678 + 0.146461i
\(771\) 0 0
\(772\) −144.553 250.374i −0.187245 0.324318i
\(773\) 4.76817i 0.00616840i 0.999995 + 0.00308420i \(0.000981732\pi\)
−0.999995 + 0.00308420i \(0.999018\pi\)
\(774\) 0 0
\(775\) −40.7072 −0.0525254
\(776\) 273.328 157.806i 0.352227 0.203358i
\(777\) 0 0
\(778\) 381.816 661.325i 0.490766 0.850032i
\(779\) −341.460 197.142i −0.438332 0.253071i
\(780\) 0 0
\(781\) 772.142 + 1337.39i 0.988658 + 1.71241i
\(782\) 1411.93i 1.80554i
\(783\) 0 0
\(784\) 28.0000 0.0357143
\(785\) 293.849 169.654i 0.374329 0.216119i
\(786\) 0 0
\(787\) 424.871 735.899i 0.539862 0.935068i −0.459049 0.888411i \(-0.651810\pi\)
0.998911 0.0466572i \(-0.0148569\pi\)
\(788\) −91.9072 53.0627i −0.116634 0.0673384i
\(789\) 0 0
\(790\) −191.276 331.300i −0.242122 0.419367i
\(791\) 38.5327i 0.0487139i
\(792\) 0 0
\(793\) −289.037 −0.364485
\(794\) 601.623 347.347i 0.757711 0.437465i
\(795\) 0 0
\(796\) −114.808 + 198.853i −0.144231 + 0.249815i
\(797\) 166.295 + 96.0104i 0.208651 + 0.120465i 0.600684 0.799486i \(-0.294895\pi\)
−0.392033 + 0.919951i \(0.628228\pi\)
\(798\) 0 0
\(799\) −363.565 629.712i −0.455025 0.788126i
\(800\) 83.6047i 0.104506i
\(801\) 0 0
\(802\) 305.508 0.380933
\(803\) −1327.42 + 766.386i −1.65307 + 0.954403i
\(804\) 0 0
\(805\) 172.870 299.420i 0.214745 0.371950i
\(806\) 34.9878 + 20.2002i 0.0434092 + 0.0250623i
\(807\) 0 0
\(808\) 204.964 + 355.009i 0.253669 + 0.439367i
\(809\) 1015.55i 1.25532i 0.778488 + 0.627660i \(0.215987\pi\)
−0.778488 + 0.627660i \(0.784013\pi\)
\(810\) 0 0
\(811\) 481.576 0.593805 0.296902 0.954908i \(-0.404046\pi\)
0.296902 + 0.954908i \(0.404046\pi\)
\(812\) −99.5923 + 57.4996i −0.122651 + 0.0708124i
\(813\) 0 0
\(814\) 608.544 1054.03i 0.747597 1.29488i
\(815\) −32.9341 19.0145i −0.0404099 0.0233307i
\(816\) 0 0
\(817\) −384.418 665.832i −0.470524 0.814972i
\(818\) 149.556i 0.182832i
\(819\) 0 0
\(820\) −94.7990 −0.115609
\(821\) −415.980 + 240.166i −0.506675 + 0.292529i −0.731466 0.681878i \(-0.761164\pi\)
0.224791 + 0.974407i \(0.427830\pi\)
\(822\) 0 0
\(823\) −294.402 + 509.919i −0.357718 + 0.619586i −0.987579 0.157122i \(-0.949779\pi\)
0.629861 + 0.776708i \(0.283112\pi\)
\(824\) −109.762 63.3713i −0.133207 0.0769069i
\(825\) 0 0
\(826\) −100.260 173.655i −0.121380 0.210236i
\(827\) 280.409i 0.339068i −0.985524 0.169534i \(-0.945774\pi\)
0.985524 0.169534i \(-0.0542262\pi\)
\(828\) 0 0
\(829\) 190.758 0.230106 0.115053 0.993359i \(-0.463296\pi\)
0.115053 + 0.993359i \(0.463296\pi\)
\(830\) −451.686 + 260.781i −0.544200 + 0.314194i
\(831\) 0 0
\(832\) 41.4874 71.8583i 0.0498647 0.0863681i
\(833\) 148.069 + 85.4879i 0.177754 + 0.102627i
\(834\) 0 0
\(835\) 222.820 + 385.935i 0.266850 + 0.462198i
\(836\) 1002.87i 1.19961i
\(837\) 0 0
\(838\) −18.8805 −0.0225304
\(839\) 929.306 536.535i 1.10763 0.639493i 0.169419 0.985544i \(-0.445811\pi\)
0.938216 + 0.346051i \(0.112478\pi\)
\(840\) 0 0
\(841\) −184.342 + 319.290i −0.219194 + 0.379655i
\(842\) 582.048 + 336.046i 0.691269 + 0.399104i
\(843\) 0 0
\(844\) 360.959 + 625.200i 0.427677 + 0.740758i
\(845\) 196.373i 0.232394i
\(846\) 0 0
\(847\) −620.519 −0.732608
\(848\) 62.8392 36.2802i 0.0741028 0.0427833i
\(849\) 0 0
\(850\) −255.257 + 442.118i −0.300302 + 0.520139i
\(851\) −1615.69 932.821i −1.89858 1.09615i
\(852\) 0 0
\(853\) 504.339 + 873.540i 0.591253 + 1.02408i 0.994064 + 0.108797i \(0.0346998\pi\)
−0.402811 + 0.915283i \(0.631967\pi\)
\(854\) 104.270i 0.122097i
\(855\) 0 0
\(856\) −283.465 −0.331150
\(857\) 261.331 150.880i 0.304937 0.176055i −0.339722 0.940526i \(-0.610333\pi\)
0.644659 + 0.764471i \(0.277000\pi\)
\(858\) 0 0
\(859\) −544.251 + 942.670i −0.633587 + 1.09740i 0.353226 + 0.935538i \(0.385085\pi\)
−0.986813 + 0.161866i \(0.948249\pi\)
\(860\) −160.088 92.4269i −0.186149 0.107473i
\(861\) 0 0
\(862\) 166.306 + 288.051i 0.192930 + 0.334165i
\(863\) 1120.50i 1.29838i 0.760627 + 0.649189i \(0.224892\pi\)
−0.760627 + 0.649189i \(0.775108\pi\)
\(864\) 0 0
\(865\) −733.373 −0.847830
\(866\) −25.7687 + 14.8776i −0.0297560 + 0.0171796i
\(867\) 0 0
\(868\) −7.28726 + 12.6219i −0.00839546 + 0.0145414i
\(869\) 1381.68 + 797.715i 1.58997 + 0.917969i
\(870\) 0 0
\(871\) 479.985 + 831.358i 0.551073 + 0.954486i
\(872\) 171.812i 0.197033i
\(873\) 0 0
\(874\) 1537.27 1.75890
\(875\) 291.391 168.235i 0.333019 0.192268i
\(876\) 0 0
\(877\) −22.9814 + 39.8049i −0.0262046 + 0.0453876i −0.878830 0.477134i \(-0.841675\pi\)
0.852626 + 0.522522i \(0.175009\pi\)
\(878\) 305.147 + 176.177i 0.347548 + 0.200657i
\(879\) 0 0
\(880\) 120.562 + 208.819i 0.137002 + 0.237294i
\(881\) 881.775i 1.00088i 0.865771 + 0.500440i \(0.166828\pi\)
−0.865771 + 0.500440i \(0.833172\pi\)
\(882\) 0 0
\(883\) 216.488 0.245174 0.122587 0.992458i \(-0.460881\pi\)
0.122587 + 0.992458i \(0.460881\pi\)
\(884\) 438.787 253.334i 0.496365 0.286577i
\(885\) 0 0
\(886\) −231.041 + 400.175i −0.260769 + 0.451665i
\(887\) −123.029 71.0306i −0.138702 0.0800796i 0.429043 0.903284i \(-0.358851\pi\)
−0.567745 + 0.823204i \(0.692184\pi\)
\(888\) 0 0
\(889\) −293.483 508.327i −0.330127 0.571796i
\(890\) 62.0969i 0.0697718i
\(891\) 0 0
\(892\) 413.714 0.463805
\(893\) −685.615 + 395.840i −0.767766 + 0.443270i
\(894\) 0 0
\(895\) −323.760 + 560.768i −0.361743 + 0.626557i
\(896\) 25.9230 + 14.9666i 0.0289319 + 0.0167038i
\(897\) 0 0
\(898\) 361.071 + 625.394i 0.402084 + 0.696430i
\(899\) 59.8593i 0.0665843i
\(900\) 0 0
\(901\) 443.074 0.491758
\(902\) 342.390 197.679i 0.379590 0.219156i
\(903\) 0 0
\(904\) −20.5966 + 35.6743i −0.0227838 + 0.0394627i
\(905\) −11.6396 6.72010i −0.0128614 0.00742552i
\(906\) 0 0
\(907\) 225.530 + 390.629i 0.248655 + 0.430683i 0.963153 0.268955i \(-0.0866782\pi\)
−0.714498 + 0.699637i \(0.753345\pi\)
\(908\) 263.282i 0.289958i
\(909\) 0 0
\(910\) −124.068 −0.136338
\(911\) −856.971 + 494.772i −0.940692 + 0.543109i −0.890177 0.455614i \(-0.849420\pi\)
−0.0505152 + 0.998723i \(0.516086\pi\)
\(912\) 0 0
\(913\) 1087.58 1883.75i 1.19122 2.06325i
\(914\) 221.798 + 128.055i 0.242667 + 0.140104i
\(915\) 0 0
\(916\) 236.528 + 409.678i 0.258218 + 0.447247i
\(917\) 8.95930i 0.00977023i
\(918\) 0 0
\(919\) 942.500 1.02557 0.512786 0.858517i \(-0.328614\pi\)
0.512786 + 0.858517i \(0.328614\pi\)
\(920\) 320.093 184.806i 0.347927 0.200876i
\(921\) 0 0
\(922\) −209.440 + 362.761i −0.227159 + 0.393451i
\(923\) −735.654 424.730i −0.797025 0.460162i
\(924\) 0 0
\(925\) −337.281 584.188i −0.364628 0.631555i
\(926\) 758.457i 0.819068i
\(927\) 0 0
\(928\) −122.939 −0.132478
\(929\) 545.923 315.189i 0.587646 0.339278i −0.176520 0.984297i \(-0.556484\pi\)
0.764166 + 0.645019i \(0.223151\pi\)
\(930\) 0 0
\(931\) 93.0771 161.214i 0.0999754 0.173162i
\(932\) 269.462 + 155.574i 0.289122 + 0.166925i
\(933\) 0 0
\(934\) −62.1666 107.676i −0.0665596 0.115285i
\(935\) 1472.37i 1.57473i
\(936\) 0 0
\(937\) 236.083 0.251956 0.125978 0.992033i \(-0.459793\pi\)
0.125978 + 0.992033i \(0.459793\pi\)
\(938\) −299.913 + 173.155i −0.319737 + 0.184600i
\(939\) 0 0
\(940\) −95.1730 + 164.844i −0.101248 + 0.175366i
\(941\) −721.947 416.816i −0.767213 0.442950i 0.0646667 0.997907i \(-0.479402\pi\)
−0.831879 + 0.554956i \(0.812735\pi\)
\(942\) 0 0
\(943\) −303.017 524.840i −0.321333 0.556564i
\(944\) 214.364i 0.227081i
\(945\) 0 0
\(946\) 770.930 0.814936
\(947\) −680.541 + 392.911i −0.718628 + 0.414900i −0.814248 0.580518i \(-0.802850\pi\)
0.0956192 + 0.995418i \(0.469517\pi\)
\(948\) 0 0
\(949\) 421.564 730.170i 0.444219 0.769409i
\(950\) 481.367 + 277.917i 0.506702 + 0.292544i
\(951\) 0 0
\(952\) 91.3904 + 158.293i 0.0959984 + 0.166274i
\(953\) 1096.70i 1.15079i −0.817875 0.575396i \(-0.804848\pi\)
0.817875 0.575396i \(-0.195152\pi\)
\(954\) 0 0
\(955\) −869.289 −0.910250
\(956\) 103.224 59.5962i 0.107975 0.0623392i
\(957\) 0 0
\(958\) 210.631 364.824i 0.219866 0.380818i
\(959\) −49.4639 28.5580i −0.0515786 0.0297789i
\(960\) 0 0
\(961\) 476.707 + 825.680i 0.496053 + 0.859189i
\(962\) 669.480i 0.695925i
\(963\) 0 0
\(964\) 238.981 0.247906
\(965\) −400.219 + 231.066i −0.414735 + 0.239447i
\(966\) 0 0
\(967\) −647.975 + 1122.33i −0.670088 + 1.16063i 0.307791 + 0.951454i \(0.400410\pi\)
−0.977879 + 0.209172i \(0.932923\pi\)
\(968\) −574.489 331.681i −0.593480 0.342646i
\(969\) 0 0
\(970\) −252.251 436.911i −0.260052 0.450424i
\(971\) 830.704i 0.855514i 0.903894 + 0.427757i \(0.140696\pi\)
−0.903894 + 0.427757i \(0.859304\pi\)
\(972\) 0 0
\(973\) −159.599 −0.164028
\(974\) −541.109 + 312.410i −0.555554 + 0.320749i
\(975\) 0 0
\(976\) 55.7349 96.5357i 0.0571054 0.0989095i
\(977\) 444.638 + 256.712i 0.455105 + 0.262755i 0.709984 0.704218i \(-0.248702\pi\)
−0.254879 + 0.966973i \(0.582036\pi\)
\(978\) 0 0
\(979\) 129.487 + 224.278i 0.132265 + 0.229089i
\(980\) 44.7576i 0.0456710i
\(981\) 0 0
\(982\) −471.371 −0.480011
\(983\) −765.485 + 441.953i −0.778723 + 0.449596i −0.835978 0.548764i \(-0.815099\pi\)
0.0572543 + 0.998360i \(0.481765\pi\)
\(984\) 0 0
\(985\) −84.8199 + 146.912i −0.0861116 + 0.149150i
\(986\) −650.128 375.351i −0.659359 0.380681i
\(987\) 0 0
\(988\) −275.823 477.740i −0.279173 0.483543i
\(989\) 1181.74i 1.19488i
\(990\) 0 0
\(991\) 1014.86 1.02407 0.512036 0.858964i \(-0.328891\pi\)
0.512036 + 0.858964i \(0.328891\pi\)
\(992\) −13.4934 + 7.79041i −0.0136022 + 0.00785324i
\(993\) 0 0
\(994\) 153.222 265.388i 0.154147 0.266990i
\(995\) 317.863 + 183.519i 0.319461 + 0.184441i
\(996\) 0 0
\(997\) −617.454 1069.46i −0.619312 1.07268i −0.989611 0.143768i \(-0.954078\pi\)
0.370299 0.928913i \(-0.379255\pi\)
\(998\) 1194.28i 1.19668i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.q.a.71.9 24
3.2 odd 2 126.3.q.a.113.1 yes 24
9.2 odd 6 inner 378.3.q.a.197.9 24
9.4 even 3 1134.3.b.c.323.20 24
9.5 odd 6 1134.3.b.c.323.5 24
9.7 even 3 126.3.q.a.29.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.q.a.29.1 24 9.7 even 3
126.3.q.a.113.1 yes 24 3.2 odd 2
378.3.q.a.71.9 24 1.1 even 1 trivial
378.3.q.a.197.9 24 9.2 odd 6 inner
1134.3.b.c.323.5 24 9.5 odd 6
1134.3.b.c.323.20 24 9.4 even 3