Properties

Label 1134.3.b.c.323.19
Level $1134$
Weight $3$
Character 1134.323
Analytic conductor $30.899$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1134,3,Mod(323,1134)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1134, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1134.323"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1134.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.8992619785\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.19
Character \(\chi\) \(=\) 1134.323
Dual form 1134.3.b.c.323.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} -2.00000 q^{4} +2.65693i q^{5} -2.64575 q^{7} -2.82843i q^{8} -3.75747 q^{10} +2.55284i q^{11} -19.4066 q^{13} -3.74166i q^{14} +4.00000 q^{16} -28.6298i q^{17} +10.6664 q^{19} -5.31386i q^{20} -3.61026 q^{22} +7.71876i q^{23} +17.9407 q^{25} -27.4451i q^{26} +5.29150 q^{28} +2.18771i q^{29} +27.5863 q^{31} +5.65685i q^{32} +40.4887 q^{34} -7.02958i q^{35} -37.5014 q^{37} +15.0845i q^{38} +7.51493 q^{40} -72.3179i q^{41} +37.6131 q^{43} -5.10568i q^{44} -10.9160 q^{46} +43.8450i q^{47} +7.00000 q^{49} +25.3720i q^{50} +38.8132 q^{52} +24.2591i q^{53} -6.78272 q^{55} +7.48331i q^{56} -3.09389 q^{58} -80.2698i q^{59} -12.3127 q^{61} +39.0129i q^{62} -8.00000 q^{64} -51.5619i q^{65} +74.0584 q^{67} +57.2596i q^{68} +9.94132 q^{70} -98.3829i q^{71} +93.6849 q^{73} -53.0350i q^{74} -21.3328 q^{76} -6.75418i q^{77} -94.0671 q^{79} +10.6277i q^{80} +102.273 q^{82} -41.3070i q^{83} +76.0674 q^{85} +53.1929i q^{86} +7.22052 q^{88} +75.2547i q^{89} +51.3450 q^{91} -15.4375i q^{92} -62.0062 q^{94} +28.3398i q^{95} +164.132 q^{97} +9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 48 q^{4} + 96 q^{16} + 24 q^{19} - 48 q^{22} - 144 q^{25} + 120 q^{31} + 96 q^{34} - 168 q^{37} - 120 q^{43} + 168 q^{49} + 264 q^{55} - 192 q^{64} - 144 q^{67} + 24 q^{73} - 48 q^{76} - 24 q^{79}+ \cdots - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) 0 0
\(4\) −2.00000 −0.500000
\(5\) 2.65693i 0.531386i 0.964058 + 0.265693i \(0.0856007\pi\)
−0.964058 + 0.265693i \(0.914399\pi\)
\(6\) 0 0
\(7\) −2.64575 −0.377964
\(8\) − 2.82843i − 0.353553i
\(9\) 0 0
\(10\) −3.75747 −0.375747
\(11\) 2.55284i 0.232076i 0.993245 + 0.116038i \(0.0370195\pi\)
−0.993245 + 0.116038i \(0.962981\pi\)
\(12\) 0 0
\(13\) −19.4066 −1.49281 −0.746407 0.665490i \(-0.768223\pi\)
−0.746407 + 0.665490i \(0.768223\pi\)
\(14\) − 3.74166i − 0.267261i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) − 28.6298i − 1.68411i −0.539394 0.842053i \(-0.681347\pi\)
0.539394 0.842053i \(-0.318653\pi\)
\(18\) 0 0
\(19\) 10.6664 0.561388 0.280694 0.959797i \(-0.409435\pi\)
0.280694 + 0.959797i \(0.409435\pi\)
\(20\) − 5.31386i − 0.265693i
\(21\) 0 0
\(22\) −3.61026 −0.164103
\(23\) 7.71876i 0.335598i 0.985821 + 0.167799i \(0.0536660\pi\)
−0.985821 + 0.167799i \(0.946334\pi\)
\(24\) 0 0
\(25\) 17.9407 0.717629
\(26\) − 27.4451i − 1.05558i
\(27\) 0 0
\(28\) 5.29150 0.188982
\(29\) 2.18771i 0.0754383i 0.999288 + 0.0377192i \(0.0120092\pi\)
−0.999288 + 0.0377192i \(0.987991\pi\)
\(30\) 0 0
\(31\) 27.5863 0.889881 0.444940 0.895560i \(-0.353225\pi\)
0.444940 + 0.895560i \(0.353225\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 0 0
\(34\) 40.4887 1.19084
\(35\) − 7.02958i − 0.200845i
\(36\) 0 0
\(37\) −37.5014 −1.01355 −0.506775 0.862078i \(-0.669163\pi\)
−0.506775 + 0.862078i \(0.669163\pi\)
\(38\) 15.0845i 0.396962i
\(39\) 0 0
\(40\) 7.51493 0.187873
\(41\) − 72.3179i − 1.76385i −0.471388 0.881926i \(-0.656247\pi\)
0.471388 0.881926i \(-0.343753\pi\)
\(42\) 0 0
\(43\) 37.6131 0.874723 0.437361 0.899286i \(-0.355913\pi\)
0.437361 + 0.899286i \(0.355913\pi\)
\(44\) − 5.10568i − 0.116038i
\(45\) 0 0
\(46\) −10.9160 −0.237304
\(47\) 43.8450i 0.932873i 0.884555 + 0.466436i \(0.154462\pi\)
−0.884555 + 0.466436i \(0.845538\pi\)
\(48\) 0 0
\(49\) 7.00000 0.142857
\(50\) 25.3720i 0.507440i
\(51\) 0 0
\(52\) 38.8132 0.746407
\(53\) 24.2591i 0.457718i 0.973460 + 0.228859i \(0.0734995\pi\)
−0.973460 + 0.228859i \(0.926501\pi\)
\(54\) 0 0
\(55\) −6.78272 −0.123322
\(56\) 7.48331i 0.133631i
\(57\) 0 0
\(58\) −3.09389 −0.0533430
\(59\) − 80.2698i − 1.36051i −0.732978 0.680253i \(-0.761870\pi\)
0.732978 0.680253i \(-0.238130\pi\)
\(60\) 0 0
\(61\) −12.3127 −0.201847 −0.100924 0.994894i \(-0.532180\pi\)
−0.100924 + 0.994894i \(0.532180\pi\)
\(62\) 39.0129i 0.629241i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) − 51.5619i − 0.793260i
\(66\) 0 0
\(67\) 74.0584 1.10535 0.552675 0.833397i \(-0.313607\pi\)
0.552675 + 0.833397i \(0.313607\pi\)
\(68\) 57.2596i 0.842053i
\(69\) 0 0
\(70\) 9.94132 0.142019
\(71\) − 98.3829i − 1.38567i −0.721094 0.692837i \(-0.756360\pi\)
0.721094 0.692837i \(-0.243640\pi\)
\(72\) 0 0
\(73\) 93.6849 1.28336 0.641678 0.766974i \(-0.278239\pi\)
0.641678 + 0.766974i \(0.278239\pi\)
\(74\) − 53.0350i − 0.716689i
\(75\) 0 0
\(76\) −21.3328 −0.280694
\(77\) − 6.75418i − 0.0877166i
\(78\) 0 0
\(79\) −94.0671 −1.19072 −0.595362 0.803458i \(-0.702991\pi\)
−0.595362 + 0.803458i \(0.702991\pi\)
\(80\) 10.6277i 0.132846i
\(81\) 0 0
\(82\) 102.273 1.24723
\(83\) − 41.3070i − 0.497674i −0.968545 0.248837i \(-0.919952\pi\)
0.968545 0.248837i \(-0.0800484\pi\)
\(84\) 0 0
\(85\) 76.0674 0.894911
\(86\) 53.1929i 0.618522i
\(87\) 0 0
\(88\) 7.22052 0.0820514
\(89\) 75.2547i 0.845558i 0.906233 + 0.422779i \(0.138945\pi\)
−0.906233 + 0.422779i \(0.861055\pi\)
\(90\) 0 0
\(91\) 51.3450 0.564231
\(92\) − 15.4375i − 0.167799i
\(93\) 0 0
\(94\) −62.0062 −0.659641
\(95\) 28.3398i 0.298314i
\(96\) 0 0
\(97\) 164.132 1.69208 0.846041 0.533118i \(-0.178980\pi\)
0.846041 + 0.533118i \(0.178980\pi\)
\(98\) 9.89949i 0.101015i
\(99\) 0 0
\(100\) −35.8814 −0.358814
\(101\) − 17.0973i − 0.169280i −0.996412 0.0846399i \(-0.973026\pi\)
0.996412 0.0846399i \(-0.0269740\pi\)
\(102\) 0 0
\(103\) 139.689 1.35621 0.678104 0.734966i \(-0.262802\pi\)
0.678104 + 0.734966i \(0.262802\pi\)
\(104\) 54.8901i 0.527789i
\(105\) 0 0
\(106\) −34.3075 −0.323655
\(107\) 24.3628i 0.227689i 0.993499 + 0.113845i \(0.0363166\pi\)
−0.993499 + 0.113845i \(0.963683\pi\)
\(108\) 0 0
\(109\) 30.8295 0.282839 0.141420 0.989950i \(-0.454833\pi\)
0.141420 + 0.989950i \(0.454833\pi\)
\(110\) − 9.59221i − 0.0872019i
\(111\) 0 0
\(112\) −10.5830 −0.0944911
\(113\) − 45.7926i − 0.405244i −0.979257 0.202622i \(-0.935054\pi\)
0.979257 0.202622i \(-0.0649463\pi\)
\(114\) 0 0
\(115\) −20.5082 −0.178332
\(116\) − 4.37542i − 0.0377192i
\(117\) 0 0
\(118\) 113.519 0.962023
\(119\) 75.7474i 0.636533i
\(120\) 0 0
\(121\) 114.483 0.946141
\(122\) − 17.4128i − 0.142727i
\(123\) 0 0
\(124\) −55.1726 −0.444940
\(125\) 114.090i 0.912724i
\(126\) 0 0
\(127\) 187.439 1.47590 0.737951 0.674855i \(-0.235794\pi\)
0.737951 + 0.674855i \(0.235794\pi\)
\(128\) − 11.3137i − 0.0883883i
\(129\) 0 0
\(130\) 72.9196 0.560920
\(131\) − 27.8116i − 0.212302i −0.994350 0.106151i \(-0.966147\pi\)
0.994350 0.106151i \(-0.0338527\pi\)
\(132\) 0 0
\(133\) −28.2206 −0.212185
\(134\) 104.734i 0.781600i
\(135\) 0 0
\(136\) −80.9773 −0.595422
\(137\) − 200.257i − 1.46173i −0.682523 0.730864i \(-0.739117\pi\)
0.682523 0.730864i \(-0.260883\pi\)
\(138\) 0 0
\(139\) −28.9683 −0.208405 −0.104202 0.994556i \(-0.533229\pi\)
−0.104202 + 0.994556i \(0.533229\pi\)
\(140\) 14.0592i 0.100423i
\(141\) 0 0
\(142\) 139.134 0.979820
\(143\) − 49.5419i − 0.346447i
\(144\) 0 0
\(145\) −5.81260 −0.0400869
\(146\) 132.491i 0.907469i
\(147\) 0 0
\(148\) 75.0028 0.506775
\(149\) 175.734i 1.17943i 0.807613 + 0.589713i \(0.200759\pi\)
−0.807613 + 0.589713i \(0.799241\pi\)
\(150\) 0 0
\(151\) −260.354 −1.72420 −0.862099 0.506740i \(-0.830851\pi\)
−0.862099 + 0.506740i \(0.830851\pi\)
\(152\) − 30.1691i − 0.198481i
\(153\) 0 0
\(154\) 9.55185 0.0620250
\(155\) 73.2949i 0.472870i
\(156\) 0 0
\(157\) −282.552 −1.79970 −0.899848 0.436204i \(-0.856323\pi\)
−0.899848 + 0.436204i \(0.856323\pi\)
\(158\) − 133.031i − 0.841968i
\(159\) 0 0
\(160\) −15.0299 −0.0939366
\(161\) − 20.4219i − 0.126844i
\(162\) 0 0
\(163\) −12.6900 −0.0778525 −0.0389262 0.999242i \(-0.512394\pi\)
−0.0389262 + 0.999242i \(0.512394\pi\)
\(164\) 144.636i 0.881926i
\(165\) 0 0
\(166\) 58.4169 0.351909
\(167\) − 211.643i − 1.26732i −0.773610 0.633662i \(-0.781551\pi\)
0.773610 0.633662i \(-0.218449\pi\)
\(168\) 0 0
\(169\) 207.615 1.22849
\(170\) 107.576i 0.632797i
\(171\) 0 0
\(172\) −75.2262 −0.437361
\(173\) − 116.489i − 0.673346i −0.941622 0.336673i \(-0.890698\pi\)
0.941622 0.336673i \(-0.109302\pi\)
\(174\) 0 0
\(175\) −47.4667 −0.271238
\(176\) 10.2114i 0.0580191i
\(177\) 0 0
\(178\) −106.426 −0.597900
\(179\) − 272.774i − 1.52388i −0.647650 0.761938i \(-0.724248\pi\)
0.647650 0.761938i \(-0.275752\pi\)
\(180\) 0 0
\(181\) −27.1230 −0.149851 −0.0749255 0.997189i \(-0.523872\pi\)
−0.0749255 + 0.997189i \(0.523872\pi\)
\(182\) 72.6128i 0.398971i
\(183\) 0 0
\(184\) 21.8319 0.118652
\(185\) − 99.6385i − 0.538587i
\(186\) 0 0
\(187\) 73.0873 0.390841
\(188\) − 87.6900i − 0.466436i
\(189\) 0 0
\(190\) −40.0786 −0.210940
\(191\) − 227.057i − 1.18878i −0.804178 0.594389i \(-0.797394\pi\)
0.804178 0.594389i \(-0.202606\pi\)
\(192\) 0 0
\(193\) 239.682 1.24187 0.620937 0.783861i \(-0.286752\pi\)
0.620937 + 0.783861i \(0.286752\pi\)
\(194\) 232.118i 1.19648i
\(195\) 0 0
\(196\) −14.0000 −0.0714286
\(197\) 139.283i 0.707022i 0.935430 + 0.353511i \(0.115012\pi\)
−0.935430 + 0.353511i \(0.884988\pi\)
\(198\) 0 0
\(199\) 71.5320 0.359457 0.179729 0.983716i \(-0.442478\pi\)
0.179729 + 0.983716i \(0.442478\pi\)
\(200\) − 50.7440i − 0.253720i
\(201\) 0 0
\(202\) 24.1792 0.119699
\(203\) − 5.78814i − 0.0285130i
\(204\) 0 0
\(205\) 192.144 0.937286
\(206\) 197.551i 0.958983i
\(207\) 0 0
\(208\) −77.6263 −0.373204
\(209\) 27.2296i 0.130285i
\(210\) 0 0
\(211\) −312.541 −1.48124 −0.740619 0.671925i \(-0.765468\pi\)
−0.740619 + 0.671925i \(0.765468\pi\)
\(212\) − 48.5181i − 0.228859i
\(213\) 0 0
\(214\) −34.4541 −0.161001
\(215\) 99.9353i 0.464815i
\(216\) 0 0
\(217\) −72.9865 −0.336343
\(218\) 43.5995i 0.199998i
\(219\) 0 0
\(220\) 13.5654 0.0616611
\(221\) 555.607i 2.51406i
\(222\) 0 0
\(223\) 113.249 0.507843 0.253921 0.967225i \(-0.418280\pi\)
0.253921 + 0.967225i \(0.418280\pi\)
\(224\) − 14.9666i − 0.0668153i
\(225\) 0 0
\(226\) 64.7605 0.286551
\(227\) 259.305i 1.14231i 0.820842 + 0.571156i \(0.193505\pi\)
−0.820842 + 0.571156i \(0.806495\pi\)
\(228\) 0 0
\(229\) 283.602 1.23844 0.619219 0.785218i \(-0.287449\pi\)
0.619219 + 0.785218i \(0.287449\pi\)
\(230\) − 29.0030i − 0.126100i
\(231\) 0 0
\(232\) 6.18778 0.0266715
\(233\) 122.039i 0.523773i 0.965099 + 0.261887i \(0.0843447\pi\)
−0.965099 + 0.261887i \(0.915655\pi\)
\(234\) 0 0
\(235\) −116.493 −0.495715
\(236\) 160.540i 0.680253i
\(237\) 0 0
\(238\) −107.123 −0.450096
\(239\) − 111.310i − 0.465734i −0.972509 0.232867i \(-0.925189\pi\)
0.972509 0.232867i \(-0.0748107\pi\)
\(240\) 0 0
\(241\) −103.101 −0.427805 −0.213902 0.976855i \(-0.568617\pi\)
−0.213902 + 0.976855i \(0.568617\pi\)
\(242\) 161.903i 0.669022i
\(243\) 0 0
\(244\) 24.6254 0.100924
\(245\) 18.5985i 0.0759123i
\(246\) 0 0
\(247\) −206.998 −0.838048
\(248\) − 78.0259i − 0.314620i
\(249\) 0 0
\(250\) −161.348 −0.645393
\(251\) − 426.514i − 1.69926i −0.527380 0.849629i \(-0.676826\pi\)
0.527380 0.849629i \(-0.323174\pi\)
\(252\) 0 0
\(253\) −19.7047 −0.0778844
\(254\) 265.079i 1.04362i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 42.6633i 0.166005i 0.996549 + 0.0830026i \(0.0264510\pi\)
−0.996549 + 0.0830026i \(0.973549\pi\)
\(258\) 0 0
\(259\) 99.2193 0.383086
\(260\) 103.124i 0.396630i
\(261\) 0 0
\(262\) 39.3315 0.150120
\(263\) − 206.177i − 0.783945i −0.919977 0.391972i \(-0.871793\pi\)
0.919977 0.391972i \(-0.128207\pi\)
\(264\) 0 0
\(265\) −64.4546 −0.243225
\(266\) − 39.9099i − 0.150037i
\(267\) 0 0
\(268\) −148.117 −0.552675
\(269\) − 452.410i − 1.68182i −0.541174 0.840910i \(-0.682020\pi\)
0.541174 0.840910i \(-0.317980\pi\)
\(270\) 0 0
\(271\) −213.136 −0.786478 −0.393239 0.919436i \(-0.628646\pi\)
−0.393239 + 0.919436i \(0.628646\pi\)
\(272\) − 114.519i − 0.421027i
\(273\) 0 0
\(274\) 283.206 1.03360
\(275\) 45.7998i 0.166545i
\(276\) 0 0
\(277\) −101.158 −0.365190 −0.182595 0.983188i \(-0.558450\pi\)
−0.182595 + 0.983188i \(0.558450\pi\)
\(278\) − 40.9673i − 0.147365i
\(279\) 0 0
\(280\) −19.8826 −0.0710094
\(281\) 283.930i 1.01043i 0.862995 + 0.505213i \(0.168586\pi\)
−0.862995 + 0.505213i \(0.831414\pi\)
\(282\) 0 0
\(283\) −361.801 −1.27845 −0.639225 0.769020i \(-0.720745\pi\)
−0.639225 + 0.769020i \(0.720745\pi\)
\(284\) 196.766i 0.692837i
\(285\) 0 0
\(286\) 70.0628 0.244975
\(287\) 191.335i 0.666673i
\(288\) 0 0
\(289\) −530.666 −1.83622
\(290\) − 8.22025i − 0.0283457i
\(291\) 0 0
\(292\) −187.370 −0.641678
\(293\) − 18.7899i − 0.0641293i −0.999486 0.0320647i \(-0.989792\pi\)
0.999486 0.0320647i \(-0.0102082\pi\)
\(294\) 0 0
\(295\) 213.271 0.722953
\(296\) 106.070i 0.358344i
\(297\) 0 0
\(298\) −248.526 −0.833980
\(299\) − 149.795i − 0.500986i
\(300\) 0 0
\(301\) −99.5148 −0.330614
\(302\) − 368.196i − 1.21919i
\(303\) 0 0
\(304\) 42.6655 0.140347
\(305\) − 32.7139i − 0.107259i
\(306\) 0 0
\(307\) 158.613 0.516656 0.258328 0.966057i \(-0.416828\pi\)
0.258328 + 0.966057i \(0.416828\pi\)
\(308\) 13.5084i 0.0438583i
\(309\) 0 0
\(310\) −103.655 −0.334370
\(311\) − 161.240i − 0.518456i −0.965816 0.259228i \(-0.916532\pi\)
0.965816 0.259228i \(-0.0834680\pi\)
\(312\) 0 0
\(313\) 595.578 1.90280 0.951402 0.307951i \(-0.0996433\pi\)
0.951402 + 0.307951i \(0.0996433\pi\)
\(314\) − 399.589i − 1.27258i
\(315\) 0 0
\(316\) 188.134 0.595362
\(317\) 436.397i 1.37665i 0.725404 + 0.688324i \(0.241653\pi\)
−0.725404 + 0.688324i \(0.758347\pi\)
\(318\) 0 0
\(319\) −5.58488 −0.0175075
\(320\) − 21.2554i − 0.0664232i
\(321\) 0 0
\(322\) 28.8809 0.0896924
\(323\) − 305.376i − 0.945438i
\(324\) 0 0
\(325\) −348.168 −1.07129
\(326\) − 17.9463i − 0.0550500i
\(327\) 0 0
\(328\) −204.546 −0.623616
\(329\) − 116.003i − 0.352593i
\(330\) 0 0
\(331\) −547.791 −1.65496 −0.827478 0.561498i \(-0.810225\pi\)
−0.827478 + 0.561498i \(0.810225\pi\)
\(332\) 82.6139i 0.248837i
\(333\) 0 0
\(334\) 299.309 0.896134
\(335\) 196.768i 0.587367i
\(336\) 0 0
\(337\) −623.784 −1.85099 −0.925495 0.378759i \(-0.876351\pi\)
−0.925495 + 0.378759i \(0.876351\pi\)
\(338\) 293.613i 0.868676i
\(339\) 0 0
\(340\) −152.135 −0.447455
\(341\) 70.4234i 0.206520i
\(342\) 0 0
\(343\) −18.5203 −0.0539949
\(344\) − 106.386i − 0.309261i
\(345\) 0 0
\(346\) 164.740 0.476127
\(347\) − 366.491i − 1.05617i −0.849192 0.528085i \(-0.822910\pi\)
0.849192 0.528085i \(-0.177090\pi\)
\(348\) 0 0
\(349\) −489.287 −1.40197 −0.700985 0.713176i \(-0.747256\pi\)
−0.700985 + 0.713176i \(0.747256\pi\)
\(350\) − 67.1280i − 0.191794i
\(351\) 0 0
\(352\) −14.4410 −0.0410257
\(353\) − 351.925i − 0.996956i −0.866902 0.498478i \(-0.833893\pi\)
0.866902 0.498478i \(-0.166107\pi\)
\(354\) 0 0
\(355\) 261.396 0.736328
\(356\) − 150.509i − 0.422779i
\(357\) 0 0
\(358\) 385.761 1.07754
\(359\) − 7.11763i − 0.0198263i −0.999951 0.00991313i \(-0.996845\pi\)
0.999951 0.00991313i \(-0.00315550\pi\)
\(360\) 0 0
\(361\) −247.228 −0.684843
\(362\) − 38.3578i − 0.105961i
\(363\) 0 0
\(364\) −102.690 −0.282115
\(365\) 248.914i 0.681957i
\(366\) 0 0
\(367\) 127.245 0.346717 0.173359 0.984859i \(-0.444538\pi\)
0.173359 + 0.984859i \(0.444538\pi\)
\(368\) 30.8750i 0.0838995i
\(369\) 0 0
\(370\) 140.910 0.380838
\(371\) − 64.1834i − 0.173001i
\(372\) 0 0
\(373\) −59.4804 −0.159465 −0.0797324 0.996816i \(-0.525407\pi\)
−0.0797324 + 0.996816i \(0.525407\pi\)
\(374\) 103.361i 0.276367i
\(375\) 0 0
\(376\) 124.012 0.329820
\(377\) − 42.4560i − 0.112615i
\(378\) 0 0
\(379\) 512.562 1.35241 0.676204 0.736715i \(-0.263624\pi\)
0.676204 + 0.736715i \(0.263624\pi\)
\(380\) − 56.6796i − 0.149157i
\(381\) 0 0
\(382\) 321.106 0.840593
\(383\) 150.044i 0.391760i 0.980628 + 0.195880i \(0.0627563\pi\)
−0.980628 + 0.195880i \(0.937244\pi\)
\(384\) 0 0
\(385\) 17.9454 0.0466114
\(386\) 338.961i 0.878137i
\(387\) 0 0
\(388\) −328.264 −0.846041
\(389\) − 584.004i − 1.50130i −0.660703 0.750648i \(-0.729742\pi\)
0.660703 0.750648i \(-0.270258\pi\)
\(390\) 0 0
\(391\) 220.987 0.565183
\(392\) − 19.7990i − 0.0505076i
\(393\) 0 0
\(394\) −196.976 −0.499940
\(395\) − 249.930i − 0.632733i
\(396\) 0 0
\(397\) 321.479 0.809770 0.404885 0.914368i \(-0.367312\pi\)
0.404885 + 0.914368i \(0.367312\pi\)
\(398\) 101.162i 0.254175i
\(399\) 0 0
\(400\) 71.7629 0.179407
\(401\) − 334.393i − 0.833897i −0.908930 0.416949i \(-0.863099\pi\)
0.908930 0.416949i \(-0.136901\pi\)
\(402\) 0 0
\(403\) −535.356 −1.32843
\(404\) 34.1945i 0.0846399i
\(405\) 0 0
\(406\) 8.18567 0.0201617
\(407\) − 95.7350i − 0.235221i
\(408\) 0 0
\(409\) −46.0745 −0.112652 −0.0563258 0.998412i \(-0.517939\pi\)
−0.0563258 + 0.998412i \(0.517939\pi\)
\(410\) 271.732i 0.662761i
\(411\) 0 0
\(412\) −279.379 −0.678104
\(413\) 212.374i 0.514223i
\(414\) 0 0
\(415\) 109.750 0.264457
\(416\) − 109.780i − 0.263895i
\(417\) 0 0
\(418\) −38.5084 −0.0921254
\(419\) − 632.268i − 1.50899i −0.656304 0.754496i \(-0.727881\pi\)
0.656304 0.754496i \(-0.272119\pi\)
\(420\) 0 0
\(421\) −556.228 −1.32121 −0.660604 0.750735i \(-0.729700\pi\)
−0.660604 + 0.750735i \(0.729700\pi\)
\(422\) − 442.000i − 1.04739i
\(423\) 0 0
\(424\) 68.6150 0.161828
\(425\) − 513.640i − 1.20856i
\(426\) 0 0
\(427\) 32.5763 0.0762911
\(428\) − 48.7255i − 0.113845i
\(429\) 0 0
\(430\) −141.330 −0.328674
\(431\) 374.687i 0.869344i 0.900589 + 0.434672i \(0.143136\pi\)
−0.900589 + 0.434672i \(0.856864\pi\)
\(432\) 0 0
\(433\) 176.315 0.407195 0.203598 0.979055i \(-0.434737\pi\)
0.203598 + 0.979055i \(0.434737\pi\)
\(434\) − 103.219i − 0.237831i
\(435\) 0 0
\(436\) −61.6590 −0.141420
\(437\) 82.3312i 0.188401i
\(438\) 0 0
\(439\) −359.588 −0.819107 −0.409554 0.912286i \(-0.634316\pi\)
−0.409554 + 0.912286i \(0.634316\pi\)
\(440\) 19.1844i 0.0436009i
\(441\) 0 0
\(442\) −785.747 −1.77771
\(443\) − 281.707i − 0.635907i −0.948106 0.317954i \(-0.897004\pi\)
0.948106 0.317954i \(-0.102996\pi\)
\(444\) 0 0
\(445\) −199.946 −0.449318
\(446\) 160.158i 0.359099i
\(447\) 0 0
\(448\) 21.1660 0.0472456
\(449\) − 110.602i − 0.246329i −0.992386 0.123164i \(-0.960696\pi\)
0.992386 0.123164i \(-0.0393042\pi\)
\(450\) 0 0
\(451\) 184.616 0.409348
\(452\) 91.5852i 0.202622i
\(453\) 0 0
\(454\) −366.712 −0.807736
\(455\) 136.420i 0.299824i
\(456\) 0 0
\(457\) −662.985 −1.45073 −0.725366 0.688363i \(-0.758330\pi\)
−0.725366 + 0.688363i \(0.758330\pi\)
\(458\) 401.074i 0.875708i
\(459\) 0 0
\(460\) 41.0164 0.0891660
\(461\) − 706.958i − 1.53353i −0.641928 0.766765i \(-0.721865\pi\)
0.641928 0.766765i \(-0.278135\pi\)
\(462\) 0 0
\(463\) 510.344 1.10225 0.551127 0.834421i \(-0.314198\pi\)
0.551127 + 0.834421i \(0.314198\pi\)
\(464\) 8.75085i 0.0188596i
\(465\) 0 0
\(466\) −172.589 −0.370364
\(467\) 204.177i 0.437211i 0.975813 + 0.218605i \(0.0701507\pi\)
−0.975813 + 0.218605i \(0.929849\pi\)
\(468\) 0 0
\(469\) −195.940 −0.417783
\(470\) − 164.746i − 0.350524i
\(471\) 0 0
\(472\) −227.037 −0.481011
\(473\) 96.0202i 0.203002i
\(474\) 0 0
\(475\) 191.363 0.402869
\(476\) − 151.495i − 0.318266i
\(477\) 0 0
\(478\) 157.417 0.329324
\(479\) − 2.32831i − 0.00486076i −0.999997 0.00243038i \(-0.999226\pi\)
0.999997 0.00243038i \(-0.000773615\pi\)
\(480\) 0 0
\(481\) 727.774 1.51304
\(482\) − 145.807i − 0.302504i
\(483\) 0 0
\(484\) −228.966 −0.473070
\(485\) 436.087i 0.899148i
\(486\) 0 0
\(487\) −700.930 −1.43928 −0.719641 0.694347i \(-0.755693\pi\)
−0.719641 + 0.694347i \(0.755693\pi\)
\(488\) 34.8255i 0.0713637i
\(489\) 0 0
\(490\) −26.3023 −0.0536781
\(491\) 900.521i 1.83406i 0.398824 + 0.917028i \(0.369419\pi\)
−0.398824 + 0.917028i \(0.630581\pi\)
\(492\) 0 0
\(493\) 62.6338 0.127046
\(494\) − 292.739i − 0.592590i
\(495\) 0 0
\(496\) 110.345 0.222470
\(497\) 260.297i 0.523736i
\(498\) 0 0
\(499\) −437.378 −0.876508 −0.438254 0.898851i \(-0.644403\pi\)
−0.438254 + 0.898851i \(0.644403\pi\)
\(500\) − 228.181i − 0.456362i
\(501\) 0 0
\(502\) 603.182 1.20156
\(503\) 359.340i 0.714394i 0.934029 + 0.357197i \(0.116268\pi\)
−0.934029 + 0.357197i \(0.883732\pi\)
\(504\) 0 0
\(505\) 45.4262 0.0899529
\(506\) − 27.8667i − 0.0550726i
\(507\) 0 0
\(508\) −374.879 −0.737951
\(509\) − 650.254i − 1.27751i −0.769409 0.638757i \(-0.779449\pi\)
0.769409 0.638757i \(-0.220551\pi\)
\(510\) 0 0
\(511\) −247.867 −0.485063
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) −60.3351 −0.117383
\(515\) 371.145i 0.720669i
\(516\) 0 0
\(517\) −111.929 −0.216498
\(518\) 140.317i 0.270883i
\(519\) 0 0
\(520\) −145.839 −0.280460
\(521\) 952.688i 1.82858i 0.405065 + 0.914288i \(0.367249\pi\)
−0.405065 + 0.914288i \(0.632751\pi\)
\(522\) 0 0
\(523\) 515.678 0.985999 0.493000 0.870030i \(-0.335900\pi\)
0.493000 + 0.870030i \(0.335900\pi\)
\(524\) 55.6231i 0.106151i
\(525\) 0 0
\(526\) 291.579 0.554333
\(527\) − 789.791i − 1.49865i
\(528\) 0 0
\(529\) 469.421 0.887374
\(530\) − 91.1526i − 0.171986i
\(531\) 0 0
\(532\) 56.4412 0.106092
\(533\) 1403.44i 2.63310i
\(534\) 0 0
\(535\) −64.7301 −0.120991
\(536\) − 209.469i − 0.390800i
\(537\) 0 0
\(538\) 639.804 1.18923
\(539\) 17.8699i 0.0331538i
\(540\) 0 0
\(541\) −299.942 −0.554422 −0.277211 0.960809i \(-0.589410\pi\)
−0.277211 + 0.960809i \(0.589410\pi\)
\(542\) − 301.419i − 0.556124i
\(543\) 0 0
\(544\) 161.955 0.297711
\(545\) 81.9118i 0.150297i
\(546\) 0 0
\(547\) −72.1611 −0.131922 −0.0659608 0.997822i \(-0.521011\pi\)
−0.0659608 + 0.997822i \(0.521011\pi\)
\(548\) 400.514i 0.730864i
\(549\) 0 0
\(550\) −64.7707 −0.117765
\(551\) 23.3350i 0.0423502i
\(552\) 0 0
\(553\) 248.878 0.450051
\(554\) − 143.058i − 0.258228i
\(555\) 0 0
\(556\) 57.9366 0.104202
\(557\) − 472.989i − 0.849172i −0.905388 0.424586i \(-0.860420\pi\)
0.905388 0.424586i \(-0.139580\pi\)
\(558\) 0 0
\(559\) −729.941 −1.30580
\(560\) − 28.1183i − 0.0502113i
\(561\) 0 0
\(562\) −401.537 −0.714479
\(563\) 217.801i 0.386858i 0.981114 + 0.193429i \(0.0619610\pi\)
−0.981114 + 0.193429i \(0.938039\pi\)
\(564\) 0 0
\(565\) 121.668 0.215341
\(566\) − 511.664i − 0.904001i
\(567\) 0 0
\(568\) −278.269 −0.489910
\(569\) 486.959i 0.855815i 0.903823 + 0.427907i \(0.140749\pi\)
−0.903823 + 0.427907i \(0.859251\pi\)
\(570\) 0 0
\(571\) −519.344 −0.909534 −0.454767 0.890611i \(-0.650277\pi\)
−0.454767 + 0.890611i \(0.650277\pi\)
\(572\) 99.0838i 0.173223i
\(573\) 0 0
\(574\) −270.589 −0.471409
\(575\) 138.480i 0.240835i
\(576\) 0 0
\(577\) 139.881 0.242428 0.121214 0.992626i \(-0.461321\pi\)
0.121214 + 0.992626i \(0.461321\pi\)
\(578\) − 750.476i − 1.29840i
\(579\) 0 0
\(580\) 11.6252 0.0200434
\(581\) 109.288i 0.188103i
\(582\) 0 0
\(583\) −61.9295 −0.106226
\(584\) − 264.981i − 0.453735i
\(585\) 0 0
\(586\) 26.5729 0.0453463
\(587\) 338.886i 0.577319i 0.957432 + 0.288660i \(0.0932096\pi\)
−0.957432 + 0.288660i \(0.906790\pi\)
\(588\) 0 0
\(589\) 294.246 0.499569
\(590\) 301.611i 0.511205i
\(591\) 0 0
\(592\) −150.006 −0.253388
\(593\) − 111.970i − 0.188820i −0.995533 0.0944101i \(-0.969904\pi\)
0.995533 0.0944101i \(-0.0300965\pi\)
\(594\) 0 0
\(595\) −201.255 −0.338244
\(596\) − 351.469i − 0.589713i
\(597\) 0 0
\(598\) 211.842 0.354250
\(599\) − 507.663i − 0.847517i −0.905775 0.423758i \(-0.860711\pi\)
0.905775 0.423758i \(-0.139289\pi\)
\(600\) 0 0
\(601\) 99.4004 0.165392 0.0826959 0.996575i \(-0.473647\pi\)
0.0826959 + 0.996575i \(0.473647\pi\)
\(602\) − 140.735i − 0.233779i
\(603\) 0 0
\(604\) 520.708 0.862099
\(605\) 304.173i 0.502766i
\(606\) 0 0
\(607\) 488.841 0.805340 0.402670 0.915345i \(-0.368082\pi\)
0.402670 + 0.915345i \(0.368082\pi\)
\(608\) 60.3382i 0.0992404i
\(609\) 0 0
\(610\) 46.2645 0.0758434
\(611\) − 850.882i − 1.39261i
\(612\) 0 0
\(613\) 91.0276 0.148495 0.0742476 0.997240i \(-0.476344\pi\)
0.0742476 + 0.997240i \(0.476344\pi\)
\(614\) 224.313i 0.365331i
\(615\) 0 0
\(616\) −19.1037 −0.0310125
\(617\) 683.188i 1.10727i 0.832758 + 0.553637i \(0.186760\pi\)
−0.832758 + 0.553637i \(0.813240\pi\)
\(618\) 0 0
\(619\) 455.958 0.736604 0.368302 0.929706i \(-0.379939\pi\)
0.368302 + 0.929706i \(0.379939\pi\)
\(620\) − 146.590i − 0.236435i
\(621\) 0 0
\(622\) 228.027 0.366603
\(623\) − 199.105i − 0.319591i
\(624\) 0 0
\(625\) 145.388 0.232620
\(626\) 842.274i 1.34549i
\(627\) 0 0
\(628\) 565.104 0.899848
\(629\) 1073.66i 1.70693i
\(630\) 0 0
\(631\) 857.311 1.35865 0.679327 0.733836i \(-0.262272\pi\)
0.679327 + 0.733836i \(0.262272\pi\)
\(632\) 266.062i 0.420984i
\(633\) 0 0
\(634\) −617.159 −0.973437
\(635\) 498.013i 0.784273i
\(636\) 0 0
\(637\) −135.846 −0.213259
\(638\) − 7.89821i − 0.0123796i
\(639\) 0 0
\(640\) 30.0597 0.0469683
\(641\) 1004.08i 1.56643i 0.621753 + 0.783213i \(0.286421\pi\)
−0.621753 + 0.783213i \(0.713579\pi\)
\(642\) 0 0
\(643\) 708.873 1.10245 0.551223 0.834358i \(-0.314161\pi\)
0.551223 + 0.834358i \(0.314161\pi\)
\(644\) 40.8438i 0.0634221i
\(645\) 0 0
\(646\) 431.868 0.668526
\(647\) − 906.254i − 1.40070i −0.713799 0.700351i \(-0.753027\pi\)
0.713799 0.700351i \(-0.246973\pi\)
\(648\) 0 0
\(649\) 204.916 0.315741
\(650\) − 492.384i − 0.757514i
\(651\) 0 0
\(652\) 25.3799 0.0389262
\(653\) 1187.33i 1.81828i 0.416496 + 0.909138i \(0.363258\pi\)
−0.416496 + 0.909138i \(0.636742\pi\)
\(654\) 0 0
\(655\) 73.8934 0.112814
\(656\) − 289.272i − 0.440963i
\(657\) 0 0
\(658\) 164.053 0.249321
\(659\) 121.389i 0.184202i 0.995750 + 0.0921010i \(0.0293583\pi\)
−0.995750 + 0.0921010i \(0.970642\pi\)
\(660\) 0 0
\(661\) 471.341 0.713072 0.356536 0.934282i \(-0.383958\pi\)
0.356536 + 0.934282i \(0.383958\pi\)
\(662\) − 774.693i − 1.17023i
\(663\) 0 0
\(664\) −116.834 −0.175954
\(665\) − 74.9801i − 0.112752i
\(666\) 0 0
\(667\) −16.8864 −0.0253170
\(668\) 423.286i 0.633662i
\(669\) 0 0
\(670\) −278.272 −0.415331
\(671\) − 31.4323i − 0.0468440i
\(672\) 0 0
\(673\) 526.376 0.782133 0.391067 0.920362i \(-0.372106\pi\)
0.391067 + 0.920362i \(0.372106\pi\)
\(674\) − 882.163i − 1.30885i
\(675\) 0 0
\(676\) −415.231 −0.614247
\(677\) 659.913i 0.974760i 0.873190 + 0.487380i \(0.162047\pi\)
−0.873190 + 0.487380i \(0.837953\pi\)
\(678\) 0 0
\(679\) −434.252 −0.639547
\(680\) − 215.151i − 0.316399i
\(681\) 0 0
\(682\) −99.5938 −0.146032
\(683\) 412.168i 0.603467i 0.953392 + 0.301734i \(0.0975654\pi\)
−0.953392 + 0.301734i \(0.902435\pi\)
\(684\) 0 0
\(685\) 532.068 0.776742
\(686\) − 26.1916i − 0.0381802i
\(687\) 0 0
\(688\) 150.452 0.218681
\(689\) − 470.785i − 0.683288i
\(690\) 0 0
\(691\) 729.601 1.05586 0.527931 0.849287i \(-0.322968\pi\)
0.527931 + 0.849287i \(0.322968\pi\)
\(692\) 232.978i 0.336673i
\(693\) 0 0
\(694\) 518.296 0.746825
\(695\) − 76.9667i − 0.110743i
\(696\) 0 0
\(697\) −2070.45 −2.97052
\(698\) − 691.957i − 0.991342i
\(699\) 0 0
\(700\) 94.9334 0.135619
\(701\) 56.3677i 0.0804104i 0.999191 + 0.0402052i \(0.0128012\pi\)
−0.999191 + 0.0402052i \(0.987199\pi\)
\(702\) 0 0
\(703\) −400.004 −0.568996
\(704\) − 20.4227i − 0.0290095i
\(705\) 0 0
\(706\) 497.698 0.704954
\(707\) 45.2351i 0.0639817i
\(708\) 0 0
\(709\) 782.114 1.10312 0.551561 0.834134i \(-0.314032\pi\)
0.551561 + 0.834134i \(0.314032\pi\)
\(710\) 369.670i 0.520662i
\(711\) 0 0
\(712\) 212.852 0.298950
\(713\) 212.932i 0.298642i
\(714\) 0 0
\(715\) 131.629 0.184097
\(716\) 545.548i 0.761938i
\(717\) 0 0
\(718\) 10.0658 0.0140193
\(719\) − 131.717i − 0.183194i −0.995796 0.0915971i \(-0.970803\pi\)
0.995796 0.0915971i \(-0.0291972\pi\)
\(720\) 0 0
\(721\) −369.583 −0.512598
\(722\) − 349.634i − 0.484257i
\(723\) 0 0
\(724\) 54.2461 0.0749255
\(725\) 39.2491i 0.0541367i
\(726\) 0 0
\(727\) 705.382 0.970263 0.485132 0.874441i \(-0.338772\pi\)
0.485132 + 0.874441i \(0.338772\pi\)
\(728\) − 145.226i − 0.199486i
\(729\) 0 0
\(730\) −352.018 −0.482216
\(731\) − 1076.86i − 1.47313i
\(732\) 0 0
\(733\) 246.524 0.336322 0.168161 0.985760i \(-0.446217\pi\)
0.168161 + 0.985760i \(0.446217\pi\)
\(734\) 179.952i 0.245166i
\(735\) 0 0
\(736\) −43.6639 −0.0593259
\(737\) 189.059i 0.256525i
\(738\) 0 0
\(739\) 573.403 0.775918 0.387959 0.921677i \(-0.373180\pi\)
0.387959 + 0.921677i \(0.373180\pi\)
\(740\) 199.277i 0.269293i
\(741\) 0 0
\(742\) 90.7691 0.122330
\(743\) 283.466i 0.381515i 0.981637 + 0.190758i \(0.0610945\pi\)
−0.981637 + 0.190758i \(0.938906\pi\)
\(744\) 0 0
\(745\) −466.914 −0.626730
\(746\) − 84.1180i − 0.112759i
\(747\) 0 0
\(748\) −146.175 −0.195421
\(749\) − 64.4578i − 0.0860585i
\(750\) 0 0
\(751\) 1044.99 1.39147 0.695735 0.718299i \(-0.255079\pi\)
0.695735 + 0.718299i \(0.255079\pi\)
\(752\) 175.380i 0.233218i
\(753\) 0 0
\(754\) 60.0419 0.0796311
\(755\) − 691.742i − 0.916215i
\(756\) 0 0
\(757\) 595.724 0.786954 0.393477 0.919334i \(-0.371272\pi\)
0.393477 + 0.919334i \(0.371272\pi\)
\(758\) 724.873i 0.956296i
\(759\) 0 0
\(760\) 80.1571 0.105470
\(761\) 833.349i 1.09507i 0.836783 + 0.547535i \(0.184434\pi\)
−0.836783 + 0.547535i \(0.815566\pi\)
\(762\) 0 0
\(763\) −81.5672 −0.106903
\(764\) 454.113i 0.594389i
\(765\) 0 0
\(766\) −212.194 −0.277016
\(767\) 1557.76i 2.03098i
\(768\) 0 0
\(769\) 316.693 0.411824 0.205912 0.978570i \(-0.433984\pi\)
0.205912 + 0.978570i \(0.433984\pi\)
\(770\) 25.3786i 0.0329592i
\(771\) 0 0
\(772\) −479.363 −0.620937
\(773\) − 367.509i − 0.475432i −0.971335 0.237716i \(-0.923601\pi\)
0.971335 0.237716i \(-0.0763987\pi\)
\(774\) 0 0
\(775\) 494.918 0.638604
\(776\) − 464.235i − 0.598241i
\(777\) 0 0
\(778\) 825.906 1.06158
\(779\) − 771.371i − 0.990206i
\(780\) 0 0
\(781\) 251.156 0.321582
\(782\) 312.522i 0.399645i
\(783\) 0 0
\(784\) 28.0000 0.0357143
\(785\) − 750.721i − 0.956333i
\(786\) 0 0
\(787\) −289.146 −0.367403 −0.183702 0.982982i \(-0.558808\pi\)
−0.183702 + 0.982982i \(0.558808\pi\)
\(788\) − 278.567i − 0.353511i
\(789\) 0 0
\(790\) 353.454 0.447410
\(791\) 121.156i 0.153168i
\(792\) 0 0
\(793\) 238.947 0.301320
\(794\) 454.639i 0.572594i
\(795\) 0 0
\(796\) −143.064 −0.179729
\(797\) 880.592i 1.10488i 0.833551 + 0.552442i \(0.186304\pi\)
−0.833551 + 0.552442i \(0.813696\pi\)
\(798\) 0 0
\(799\) 1255.27 1.57106
\(800\) 101.488i 0.126860i
\(801\) 0 0
\(802\) 472.903 0.589655
\(803\) 239.163i 0.297836i
\(804\) 0 0
\(805\) 54.2596 0.0674032
\(806\) − 757.108i − 0.939340i
\(807\) 0 0
\(808\) −48.3583 −0.0598494
\(809\) 776.794i 0.960190i 0.877217 + 0.480095i \(0.159398\pi\)
−0.877217 + 0.480095i \(0.840602\pi\)
\(810\) 0 0
\(811\) −985.397 −1.21504 −0.607520 0.794305i \(-0.707835\pi\)
−0.607520 + 0.794305i \(0.707835\pi\)
\(812\) 11.5763i 0.0142565i
\(813\) 0 0
\(814\) 135.390 0.166326
\(815\) − 33.7163i − 0.0413697i
\(816\) 0 0
\(817\) 401.195 0.491059
\(818\) − 65.1592i − 0.0796567i
\(819\) 0 0
\(820\) −384.287 −0.468643
\(821\) − 288.288i − 0.351142i −0.984467 0.175571i \(-0.943823\pi\)
0.984467 0.175571i \(-0.0561772\pi\)
\(822\) 0 0
\(823\) 559.148 0.679402 0.339701 0.940533i \(-0.389674\pi\)
0.339701 + 0.940533i \(0.389674\pi\)
\(824\) − 395.101i − 0.479492i
\(825\) 0 0
\(826\) −300.342 −0.363610
\(827\) − 402.564i − 0.486776i −0.969929 0.243388i \(-0.921741\pi\)
0.969929 0.243388i \(-0.0782589\pi\)
\(828\) 0 0
\(829\) 123.079 0.148466 0.0742332 0.997241i \(-0.476349\pi\)
0.0742332 + 0.997241i \(0.476349\pi\)
\(830\) 155.210i 0.186999i
\(831\) 0 0
\(832\) 155.253 0.186602
\(833\) − 200.409i − 0.240587i
\(834\) 0 0
\(835\) 562.321 0.673439
\(836\) − 54.4591i − 0.0651425i
\(837\) 0 0
\(838\) 894.162 1.06702
\(839\) − 1576.04i − 1.87848i −0.343267 0.939238i \(-0.611534\pi\)
0.343267 0.939238i \(-0.388466\pi\)
\(840\) 0 0
\(841\) 836.214 0.994309
\(842\) − 786.625i − 0.934235i
\(843\) 0 0
\(844\) 625.083 0.740619
\(845\) 551.620i 0.652804i
\(846\) 0 0
\(847\) −302.894 −0.357608
\(848\) 97.0362i 0.114429i
\(849\) 0 0
\(850\) 726.396 0.854584
\(851\) − 289.464i − 0.340146i
\(852\) 0 0
\(853\) −52.3942 −0.0614235 −0.0307117 0.999528i \(-0.509777\pi\)
−0.0307117 + 0.999528i \(0.509777\pi\)
\(854\) 46.0698i 0.0539459i
\(855\) 0 0
\(856\) 68.9083 0.0805003
\(857\) 82.7472i 0.0965545i 0.998834 + 0.0482773i \(0.0153731\pi\)
−0.998834 + 0.0482773i \(0.984627\pi\)
\(858\) 0 0
\(859\) 113.970 0.132677 0.0663387 0.997797i \(-0.478868\pi\)
0.0663387 + 0.997797i \(0.478868\pi\)
\(860\) − 199.871i − 0.232408i
\(861\) 0 0
\(862\) −529.888 −0.614719
\(863\) 864.215i 1.00141i 0.865619 + 0.500704i \(0.166925\pi\)
−0.865619 + 0.500704i \(0.833075\pi\)
\(864\) 0 0
\(865\) 309.503 0.357807
\(866\) 249.348i 0.287930i
\(867\) 0 0
\(868\) 145.973 0.168172
\(869\) − 240.138i − 0.276339i
\(870\) 0 0
\(871\) −1437.22 −1.65008
\(872\) − 87.1990i − 0.0999989i
\(873\) 0 0
\(874\) −116.434 −0.133220
\(875\) − 301.855i − 0.344977i
\(876\) 0 0
\(877\) −631.737 −0.720339 −0.360169 0.932887i \(-0.617281\pi\)
−0.360169 + 0.932887i \(0.617281\pi\)
\(878\) − 508.534i − 0.579196i
\(879\) 0 0
\(880\) −27.1309 −0.0308305
\(881\) 293.562i 0.333215i 0.986023 + 0.166607i \(0.0532812\pi\)
−0.986023 + 0.166607i \(0.946719\pi\)
\(882\) 0 0
\(883\) −483.341 −0.547385 −0.273693 0.961817i \(-0.588245\pi\)
−0.273693 + 0.961817i \(0.588245\pi\)
\(884\) − 1111.21i − 1.25703i
\(885\) 0 0
\(886\) 398.394 0.449654
\(887\) − 947.090i − 1.06774i −0.845565 0.533872i \(-0.820736\pi\)
0.845565 0.533872i \(-0.179264\pi\)
\(888\) 0 0
\(889\) −495.918 −0.557838
\(890\) − 282.767i − 0.317716i
\(891\) 0 0
\(892\) −226.498 −0.253921
\(893\) 467.668i 0.523704i
\(894\) 0 0
\(895\) 724.741 0.809767
\(896\) 29.9333i 0.0334077i
\(897\) 0 0
\(898\) 156.414 0.174181
\(899\) 60.3509i 0.0671311i
\(900\) 0 0
\(901\) 694.532 0.770846
\(902\) 261.087i 0.289453i
\(903\) 0 0
\(904\) −129.521 −0.143275
\(905\) − 72.0640i − 0.0796288i
\(906\) 0 0
\(907\) −99.6415 −0.109858 −0.0549292 0.998490i \(-0.517493\pi\)
−0.0549292 + 0.998490i \(0.517493\pi\)
\(908\) − 518.610i − 0.571156i
\(909\) 0 0
\(910\) −192.927 −0.212008
\(911\) − 1461.99i − 1.60482i −0.596775 0.802409i \(-0.703551\pi\)
0.596775 0.802409i \(-0.296449\pi\)
\(912\) 0 0
\(913\) 105.450 0.115498
\(914\) − 937.602i − 1.02582i
\(915\) 0 0
\(916\) −567.205 −0.619219
\(917\) 73.5825i 0.0802426i
\(918\) 0 0
\(919\) −1025.26 −1.11562 −0.557811 0.829968i \(-0.688359\pi\)
−0.557811 + 0.829968i \(0.688359\pi\)
\(920\) 58.0059i 0.0630499i
\(921\) 0 0
\(922\) 999.789 1.08437
\(923\) 1909.28i 2.06855i
\(924\) 0 0
\(925\) −672.802 −0.727353
\(926\) 721.735i 0.779412i
\(927\) 0 0
\(928\) −12.3756 −0.0133357
\(929\) 1172.50i 1.26211i 0.775740 + 0.631053i \(0.217377\pi\)
−0.775740 + 0.631053i \(0.782623\pi\)
\(930\) 0 0
\(931\) 74.6647 0.0801983
\(932\) − 244.078i − 0.261887i
\(933\) 0 0
\(934\) −288.750 −0.309155
\(935\) 194.188i 0.207688i
\(936\) 0 0
\(937\) 989.490 1.05602 0.528009 0.849239i \(-0.322939\pi\)
0.528009 + 0.849239i \(0.322939\pi\)
\(938\) − 277.101i − 0.295417i
\(939\) 0 0
\(940\) 232.986 0.247858
\(941\) 240.400i 0.255472i 0.991808 + 0.127736i \(0.0407711\pi\)
−0.991808 + 0.127736i \(0.959229\pi\)
\(942\) 0 0
\(943\) 558.204 0.591945
\(944\) − 321.079i − 0.340126i
\(945\) 0 0
\(946\) −135.793 −0.143544
\(947\) − 1195.46i − 1.26236i −0.775636 0.631181i \(-0.782571\pi\)
0.775636 0.631181i \(-0.217429\pi\)
\(948\) 0 0
\(949\) −1818.10 −1.91581
\(950\) 270.628i 0.284871i
\(951\) 0 0
\(952\) 214.246 0.225048
\(953\) 261.104i 0.273981i 0.990572 + 0.136991i \(0.0437430\pi\)
−0.990572 + 0.136991i \(0.956257\pi\)
\(954\) 0 0
\(955\) 603.273 0.631700
\(956\) 222.621i 0.232867i
\(957\) 0 0
\(958\) 3.29272 0.00343708
\(959\) 529.830i 0.552481i
\(960\) 0 0
\(961\) −199.996 −0.208112
\(962\) 1029.23i 1.06988i
\(963\) 0 0
\(964\) 206.202 0.213902
\(965\) 636.817i 0.659914i
\(966\) 0 0
\(967\) −1105.62 −1.14335 −0.571677 0.820479i \(-0.693707\pi\)
−0.571677 + 0.820479i \(0.693707\pi\)
\(968\) − 323.807i − 0.334511i
\(969\) 0 0
\(970\) −616.720 −0.635794
\(971\) − 139.155i − 0.143311i −0.997429 0.0716554i \(-0.977172\pi\)
0.997429 0.0716554i \(-0.0228282\pi\)
\(972\) 0 0
\(973\) 76.6429 0.0787696
\(974\) − 991.265i − 1.01773i
\(975\) 0 0
\(976\) −49.2507 −0.0504618
\(977\) 1117.15i 1.14345i 0.820445 + 0.571725i \(0.193726\pi\)
−0.820445 + 0.571725i \(0.806274\pi\)
\(978\) 0 0
\(979\) −192.113 −0.196234
\(980\) − 37.1970i − 0.0379561i
\(981\) 0 0
\(982\) −1273.53 −1.29687
\(983\) − 1861.31i − 1.89350i −0.321969 0.946750i \(-0.604345\pi\)
0.321969 0.946750i \(-0.395655\pi\)
\(984\) 0 0
\(985\) −370.066 −0.375701
\(986\) 88.5776i 0.0898353i
\(987\) 0 0
\(988\) 413.996 0.419024
\(989\) 290.326i 0.293555i
\(990\) 0 0
\(991\) −73.7864 −0.0744565 −0.0372283 0.999307i \(-0.511853\pi\)
−0.0372283 + 0.999307i \(0.511853\pi\)
\(992\) 156.052i 0.157310i
\(993\) 0 0
\(994\) −368.115 −0.370337
\(995\) 190.055i 0.191011i
\(996\) 0 0
\(997\) −1192.09 −1.19568 −0.597838 0.801617i \(-0.703973\pi\)
−0.597838 + 0.801617i \(0.703973\pi\)
\(998\) − 618.545i − 0.619785i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.3.b.c.323.19 24
3.2 odd 2 inner 1134.3.b.c.323.6 24
9.2 odd 6 126.3.q.a.113.6 yes 24
9.4 even 3 126.3.q.a.29.6 24
9.5 odd 6 378.3.q.a.197.10 24
9.7 even 3 378.3.q.a.71.10 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.q.a.29.6 24 9.4 even 3
126.3.q.a.113.6 yes 24 9.2 odd 6
378.3.q.a.71.10 24 9.7 even 3
378.3.q.a.197.10 24 9.5 odd 6
1134.3.b.c.323.6 24 3.2 odd 2 inner
1134.3.b.c.323.19 24 1.1 even 1 trivial