Properties

Label 378.3.q.a.71.10
Level $378$
Weight $3$
Character 378.71
Analytic conductor $10.300$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [378,3,Mod(71,378)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(378, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("378.71"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 378.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2997539928\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 71.10
Character \(\chi\) \(=\) 378.71
Dual form 378.3.q.a.197.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 - 0.707107i) q^{2} +(1.00000 - 1.73205i) q^{4} +(-2.30097 - 1.32846i) q^{5} +(1.32288 + 2.29129i) q^{7} -2.82843i q^{8} -3.75747 q^{10} +(2.21082 - 1.27642i) q^{11} +(9.70329 - 16.8066i) q^{13} +(3.24037 + 1.87083i) q^{14} +(-2.00000 - 3.46410i) q^{16} -28.6298i q^{17} +10.6664 q^{19} +(-4.60194 + 2.65693i) q^{20} +(1.80513 - 3.12658i) q^{22} +(-6.68464 - 3.85938i) q^{23} +(-8.97036 - 15.5371i) q^{25} -27.4451i q^{26} +5.29150 q^{28} +(1.89461 - 1.09386i) q^{29} +(-13.7932 + 23.8904i) q^{31} +(-4.89898 - 2.82843i) q^{32} +(-20.2443 - 35.0642i) q^{34} -7.02958i q^{35} -37.5014 q^{37} +(13.0636 - 7.54227i) q^{38} +(-3.75747 + 6.50812i) q^{40} +(62.6292 + 36.1590i) q^{41} +(-18.8065 - 32.5739i) q^{43} -5.10568i q^{44} -10.9160 q^{46} +(37.9709 - 21.9225i) q^{47} +(-3.50000 + 6.06218i) q^{49} +(-21.9728 - 12.6860i) q^{50} +(-19.4066 - 33.6132i) q^{52} +24.2591i q^{53} -6.78272 q^{55} +(6.48074 - 3.74166i) q^{56} +(1.54695 - 2.67939i) q^{58} +(69.5157 + 40.1349i) q^{59} +(6.15634 + 10.6631i) q^{61} +39.0129i q^{62} -8.00000 q^{64} +(-44.6539 + 25.7810i) q^{65} +(-37.0292 + 64.1364i) q^{67} +(-49.5883 - 28.6298i) q^{68} +(-4.97066 - 8.60944i) q^{70} -98.3829i q^{71} +93.6849 q^{73} +(-45.9296 + 26.5175i) q^{74} +(10.6664 - 18.4747i) q^{76} +(5.84929 + 3.37709i) q^{77} +(47.0336 + 81.4645i) q^{79} +10.6277i q^{80} +102.273 q^{82} +(-35.7729 + 20.6535i) q^{83} +(-38.0337 + 65.8763i) q^{85} +(-46.0664 - 26.5965i) q^{86} +(-3.61026 - 6.25315i) q^{88} +75.2547i q^{89} +51.3450 q^{91} +(-13.3693 + 7.71876i) q^{92} +(31.0031 - 53.6990i) q^{94} +(-24.5430 - 14.1699i) q^{95} +(-82.0660 - 142.142i) q^{97} +9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{4} - 36 q^{5} - 48 q^{16} + 24 q^{19} - 72 q^{20} + 24 q^{22} + 72 q^{23} + 72 q^{25} + 108 q^{29} - 60 q^{31} - 48 q^{34} - 168 q^{37} - 144 q^{38} - 108 q^{41} + 60 q^{43} + 324 q^{47} - 84 q^{49}+ \cdots + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 0.707107i 0.612372 0.353553i
\(3\) 0 0
\(4\) 1.00000 1.73205i 0.250000 0.433013i
\(5\) −2.30097 1.32846i −0.460194 0.265693i 0.251932 0.967745i \(-0.418934\pi\)
−0.712126 + 0.702052i \(0.752267\pi\)
\(6\) 0 0
\(7\) 1.32288 + 2.29129i 0.188982 + 0.327327i
\(8\) 2.82843i 0.353553i
\(9\) 0 0
\(10\) −3.75747 −0.375747
\(11\) 2.21082 1.27642i 0.200984 0.116038i −0.396130 0.918194i \(-0.629647\pi\)
0.597114 + 0.802156i \(0.296314\pi\)
\(12\) 0 0
\(13\) 9.70329 16.8066i 0.746407 1.29281i −0.203127 0.979152i \(-0.565111\pi\)
0.949534 0.313663i \(-0.101556\pi\)
\(14\) 3.24037 + 1.87083i 0.231455 + 0.133631i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) 28.6298i 1.68411i −0.539394 0.842053i \(-0.681347\pi\)
0.539394 0.842053i \(-0.318653\pi\)
\(18\) 0 0
\(19\) 10.6664 0.561388 0.280694 0.959797i \(-0.409435\pi\)
0.280694 + 0.959797i \(0.409435\pi\)
\(20\) −4.60194 + 2.65693i −0.230097 + 0.132846i
\(21\) 0 0
\(22\) 1.80513 3.12658i 0.0820514 0.142117i
\(23\) −6.68464 3.85938i −0.290636 0.167799i 0.347592 0.937646i \(-0.386999\pi\)
−0.638229 + 0.769847i \(0.720333\pi\)
\(24\) 0 0
\(25\) −8.97036 15.5371i −0.358814 0.621485i
\(26\) 27.4451i 1.05558i
\(27\) 0 0
\(28\) 5.29150 0.188982
\(29\) 1.89461 1.09386i 0.0653315 0.0377192i −0.466978 0.884269i \(-0.654657\pi\)
0.532310 + 0.846550i \(0.321324\pi\)
\(30\) 0 0
\(31\) −13.7932 + 23.8904i −0.444940 + 0.770659i −0.998048 0.0624504i \(-0.980108\pi\)
0.553108 + 0.833110i \(0.313442\pi\)
\(32\) −4.89898 2.82843i −0.153093 0.0883883i
\(33\) 0 0
\(34\) −20.2443 35.0642i −0.595422 1.03130i
\(35\) 7.02958i 0.200845i
\(36\) 0 0
\(37\) −37.5014 −1.01355 −0.506775 0.862078i \(-0.669163\pi\)
−0.506775 + 0.862078i \(0.669163\pi\)
\(38\) 13.0636 7.54227i 0.343779 0.198481i
\(39\) 0 0
\(40\) −3.75747 + 6.50812i −0.0939366 + 0.162703i
\(41\) 62.6292 + 36.1590i 1.52754 + 0.881926i 0.999464 + 0.0327293i \(0.0104199\pi\)
0.528077 + 0.849197i \(0.322913\pi\)
\(42\) 0 0
\(43\) −18.8065 32.5739i −0.437361 0.757532i 0.560124 0.828409i \(-0.310754\pi\)
−0.997485 + 0.0708769i \(0.977420\pi\)
\(44\) 5.10568i 0.116038i
\(45\) 0 0
\(46\) −10.9160 −0.237304
\(47\) 37.9709 21.9225i 0.807891 0.466436i −0.0383316 0.999265i \(-0.512204\pi\)
0.846223 + 0.532829i \(0.178871\pi\)
\(48\) 0 0
\(49\) −3.50000 + 6.06218i −0.0714286 + 0.123718i
\(50\) −21.9728 12.6860i −0.439456 0.253720i
\(51\) 0 0
\(52\) −19.4066 33.6132i −0.373204 0.646407i
\(53\) 24.2591i 0.457718i 0.973460 + 0.228859i \(0.0734995\pi\)
−0.973460 + 0.228859i \(0.926501\pi\)
\(54\) 0 0
\(55\) −6.78272 −0.123322
\(56\) 6.48074 3.74166i 0.115728 0.0668153i
\(57\) 0 0
\(58\) 1.54695 2.67939i 0.0266715 0.0461964i
\(59\) 69.5157 + 40.1349i 1.17823 + 0.680253i 0.955605 0.294651i \(-0.0952034\pi\)
0.222627 + 0.974904i \(0.428537\pi\)
\(60\) 0 0
\(61\) 6.15634 + 10.6631i 0.100924 + 0.174805i 0.912065 0.410045i \(-0.134487\pi\)
−0.811142 + 0.584849i \(0.801154\pi\)
\(62\) 39.0129i 0.629241i
\(63\) 0 0
\(64\) −8.00000 −0.125000
\(65\) −44.6539 + 25.7810i −0.686984 + 0.396630i
\(66\) 0 0
\(67\) −37.0292 + 64.1364i −0.552675 + 0.957260i 0.445406 + 0.895329i \(0.353059\pi\)
−0.998080 + 0.0619316i \(0.980274\pi\)
\(68\) −49.5883 28.6298i −0.729240 0.421027i
\(69\) 0 0
\(70\) −4.97066 8.60944i −0.0710094 0.122992i
\(71\) 98.3829i 1.38567i −0.721094 0.692837i \(-0.756360\pi\)
0.721094 0.692837i \(-0.243640\pi\)
\(72\) 0 0
\(73\) 93.6849 1.28336 0.641678 0.766974i \(-0.278239\pi\)
0.641678 + 0.766974i \(0.278239\pi\)
\(74\) −45.9296 + 26.5175i −0.620671 + 0.358344i
\(75\) 0 0
\(76\) 10.6664 18.4747i 0.140347 0.243088i
\(77\) 5.84929 + 3.37709i 0.0759648 + 0.0438583i
\(78\) 0 0
\(79\) 47.0336 + 81.4645i 0.595362 + 1.03120i 0.993496 + 0.113869i \(0.0363245\pi\)
−0.398134 + 0.917327i \(0.630342\pi\)
\(80\) 10.6277i 0.132846i
\(81\) 0 0
\(82\) 102.273 1.24723
\(83\) −35.7729 + 20.6535i −0.430999 + 0.248837i −0.699772 0.714366i \(-0.746715\pi\)
0.268773 + 0.963203i \(0.413382\pi\)
\(84\) 0 0
\(85\) −38.0337 + 65.8763i −0.447455 + 0.775015i
\(86\) −46.0664 26.5965i −0.535656 0.309261i
\(87\) 0 0
\(88\) −3.61026 6.25315i −0.0410257 0.0710586i
\(89\) 75.2547i 0.845558i 0.906233 + 0.422779i \(0.138945\pi\)
−0.906233 + 0.422779i \(0.861055\pi\)
\(90\) 0 0
\(91\) 51.3450 0.564231
\(92\) −13.3693 + 7.71876i −0.145318 + 0.0838995i
\(93\) 0 0
\(94\) 31.0031 53.6990i 0.329820 0.571266i
\(95\) −24.5430 14.1699i −0.258347 0.149157i
\(96\) 0 0
\(97\) −82.0660 142.142i −0.846041 1.46539i −0.884714 0.466134i \(-0.845647\pi\)
0.0386733 0.999252i \(-0.487687\pi\)
\(98\) 9.89949i 0.101015i
\(99\) 0 0
\(100\) −35.8814 −0.358814
\(101\) −14.8067 + 8.54863i −0.146601 + 0.0846399i −0.571506 0.820598i \(-0.693641\pi\)
0.424906 + 0.905238i \(0.360307\pi\)
\(102\) 0 0
\(103\) −69.8447 + 120.975i −0.678104 + 1.17451i 0.297448 + 0.954738i \(0.403865\pi\)
−0.975551 + 0.219772i \(0.929469\pi\)
\(104\) −47.5362 27.4451i −0.457079 0.263895i
\(105\) 0 0
\(106\) 17.1537 + 29.7111i 0.161828 + 0.280294i
\(107\) 24.3628i 0.227689i 0.993499 + 0.113845i \(0.0363166\pi\)
−0.993499 + 0.113845i \(0.963683\pi\)
\(108\) 0 0
\(109\) 30.8295 0.282839 0.141420 0.989950i \(-0.454833\pi\)
0.141420 + 0.989950i \(0.454833\pi\)
\(110\) −8.30710 + 4.79610i −0.0755191 + 0.0436009i
\(111\) 0 0
\(112\) 5.29150 9.16515i 0.0472456 0.0818317i
\(113\) 39.6575 + 22.8963i 0.350952 + 0.202622i 0.665104 0.746750i \(-0.268387\pi\)
−0.314153 + 0.949372i \(0.601720\pi\)
\(114\) 0 0
\(115\) 10.2541 + 17.7606i 0.0891660 + 0.154440i
\(116\) 4.37542i 0.0377192i
\(117\) 0 0
\(118\) 113.519 0.962023
\(119\) 65.5991 37.8737i 0.551253 0.318266i
\(120\) 0 0
\(121\) −57.2415 + 99.1452i −0.473070 + 0.819382i
\(122\) 15.0799 + 8.70638i 0.123606 + 0.0713637i
\(123\) 0 0
\(124\) 27.5863 + 47.7809i 0.222470 + 0.385330i
\(125\) 114.090i 0.912724i
\(126\) 0 0
\(127\) 187.439 1.47590 0.737951 0.674855i \(-0.235794\pi\)
0.737951 + 0.674855i \(0.235794\pi\)
\(128\) −9.79796 + 5.65685i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −36.4598 + 63.1502i −0.280460 + 0.485771i
\(131\) 24.0855 + 13.9058i 0.183859 + 0.106151i 0.589104 0.808057i \(-0.299481\pi\)
−0.405246 + 0.914208i \(0.632814\pi\)
\(132\) 0 0
\(133\) 14.1103 + 24.4397i 0.106092 + 0.183757i
\(134\) 104.734i 0.781600i
\(135\) 0 0
\(136\) −80.9773 −0.595422
\(137\) −173.427 + 100.128i −1.26589 + 0.730864i −0.974208 0.225650i \(-0.927549\pi\)
−0.291686 + 0.956514i \(0.594216\pi\)
\(138\) 0 0
\(139\) 14.4841 25.0873i 0.104202 0.180484i −0.809210 0.587520i \(-0.800104\pi\)
0.913412 + 0.407036i \(0.133438\pi\)
\(140\) −12.1756 7.02958i −0.0869684 0.0502113i
\(141\) 0 0
\(142\) −69.5672 120.494i −0.489910 0.848549i
\(143\) 49.5419i 0.346447i
\(144\) 0 0
\(145\) −5.81260 −0.0400869
\(146\) 114.740 66.2453i 0.785891 0.453735i
\(147\) 0 0
\(148\) −37.5014 + 64.9543i −0.253388 + 0.438880i
\(149\) −152.190 87.8672i −1.02141 0.589713i −0.106900 0.994270i \(-0.534092\pi\)
−0.914513 + 0.404557i \(0.867426\pi\)
\(150\) 0 0
\(151\) 130.177 + 225.473i 0.862099 + 1.49320i 0.869899 + 0.493230i \(0.164184\pi\)
−0.00779969 + 0.999970i \(0.502483\pi\)
\(152\) 30.1691i 0.198481i
\(153\) 0 0
\(154\) 9.55185 0.0620250
\(155\) 63.4752 36.6474i 0.409518 0.236435i
\(156\) 0 0
\(157\) 141.276 244.697i 0.899848 1.55858i 0.0721601 0.997393i \(-0.477011\pi\)
0.827688 0.561189i \(-0.189656\pi\)
\(158\) 115.208 + 66.5155i 0.729166 + 0.420984i
\(159\) 0 0
\(160\) 7.51493 + 13.0162i 0.0469683 + 0.0813515i
\(161\) 20.4219i 0.126844i
\(162\) 0 0
\(163\) −12.6900 −0.0778525 −0.0389262 0.999242i \(-0.512394\pi\)
−0.0389262 + 0.999242i \(0.512394\pi\)
\(164\) 125.258 72.3179i 0.763770 0.440963i
\(165\) 0 0
\(166\) −29.2084 + 50.5905i −0.175954 + 0.304762i
\(167\) 183.288 + 105.822i 1.09754 + 0.633662i 0.935573 0.353134i \(-0.114884\pi\)
0.161963 + 0.986797i \(0.448218\pi\)
\(168\) 0 0
\(169\) −103.808 179.800i −0.614247 1.06391i
\(170\) 107.576i 0.632797i
\(171\) 0 0
\(172\) −75.2262 −0.437361
\(173\) −100.882 + 58.2444i −0.583135 + 0.336673i −0.762378 0.647132i \(-0.775968\pi\)
0.179243 + 0.983805i \(0.442635\pi\)
\(174\) 0 0
\(175\) 23.7333 41.1074i 0.135619 0.234899i
\(176\) −8.84330 5.10568i −0.0502460 0.0290095i
\(177\) 0 0
\(178\) 53.2131 + 92.1678i 0.298950 + 0.517796i
\(179\) 272.774i 1.52388i −0.647650 0.761938i \(-0.724248\pi\)
0.647650 0.761938i \(-0.275752\pi\)
\(180\) 0 0
\(181\) −27.1230 −0.149851 −0.0749255 0.997189i \(-0.523872\pi\)
−0.0749255 + 0.997189i \(0.523872\pi\)
\(182\) 62.8845 36.3064i 0.345519 0.199486i
\(183\) 0 0
\(184\) −10.9160 + 18.9070i −0.0593259 + 0.102755i
\(185\) 86.2895 + 49.8193i 0.466430 + 0.269293i
\(186\) 0 0
\(187\) −36.5437 63.2955i −0.195421 0.338479i
\(188\) 87.6900i 0.466436i
\(189\) 0 0
\(190\) −40.0786 −0.210940
\(191\) −196.637 + 113.528i −1.02951 + 0.594389i −0.916845 0.399244i \(-0.869273\pi\)
−0.112667 + 0.993633i \(0.535939\pi\)
\(192\) 0 0
\(193\) −119.841 + 207.570i −0.620937 + 1.07549i 0.368375 + 0.929677i \(0.379914\pi\)
−0.989312 + 0.145817i \(0.953419\pi\)
\(194\) −201.020 116.059i −1.03618 0.598241i
\(195\) 0 0
\(196\) 7.00000 + 12.1244i 0.0357143 + 0.0618590i
\(197\) 139.283i 0.707022i 0.935430 + 0.353511i \(0.115012\pi\)
−0.935430 + 0.353511i \(0.884988\pi\)
\(198\) 0 0
\(199\) 71.5320 0.359457 0.179729 0.983716i \(-0.442478\pi\)
0.179729 + 0.983716i \(0.442478\pi\)
\(200\) −43.9456 + 25.3720i −0.219728 + 0.126860i
\(201\) 0 0
\(202\) −12.0896 + 20.9398i −0.0598494 + 0.103662i
\(203\) 5.01268 + 2.89407i 0.0246930 + 0.0142565i
\(204\) 0 0
\(205\) −96.0718 166.401i −0.468643 0.811714i
\(206\) 197.551i 0.958983i
\(207\) 0 0
\(208\) −77.6263 −0.373204
\(209\) 23.5815 13.6148i 0.112830 0.0651425i
\(210\) 0 0
\(211\) 156.271 270.669i 0.740619 1.28279i −0.211594 0.977358i \(-0.567866\pi\)
0.952214 0.305433i \(-0.0988011\pi\)
\(212\) 42.0179 + 24.2591i 0.198198 + 0.114429i
\(213\) 0 0
\(214\) 17.2271 + 29.8382i 0.0805003 + 0.139431i
\(215\) 99.9353i 0.464815i
\(216\) 0 0
\(217\) −72.9865 −0.336343
\(218\) 37.7583 21.7998i 0.173203 0.0999989i
\(219\) 0 0
\(220\) −6.78272 + 11.7480i −0.0308305 + 0.0534000i
\(221\) −481.170 277.803i −2.17724 1.25703i
\(222\) 0 0
\(223\) −56.6245 98.0765i −0.253921 0.439805i 0.710681 0.703515i \(-0.248387\pi\)
−0.964602 + 0.263710i \(0.915054\pi\)
\(224\) 14.9666i 0.0668153i
\(225\) 0 0
\(226\) 64.7605 0.286551
\(227\) 224.565 129.652i 0.989271 0.571156i 0.0842147 0.996448i \(-0.473162\pi\)
0.905056 + 0.425292i \(0.139829\pi\)
\(228\) 0 0
\(229\) −141.801 + 245.607i −0.619219 + 1.07252i 0.370409 + 0.928869i \(0.379217\pi\)
−0.989628 + 0.143651i \(0.954116\pi\)
\(230\) 25.1173 + 14.5015i 0.109206 + 0.0630499i
\(231\) 0 0
\(232\) −3.09389 5.35878i −0.0133357 0.0230982i
\(233\) 122.039i 0.523773i 0.965099 + 0.261887i \(0.0843447\pi\)
−0.965099 + 0.261887i \(0.915655\pi\)
\(234\) 0 0
\(235\) −116.493 −0.495715
\(236\) 139.031 80.2698i 0.589116 0.340126i
\(237\) 0 0
\(238\) 53.5615 92.7712i 0.225048 0.389795i
\(239\) 96.3977 + 55.6552i 0.403338 + 0.232867i 0.687923 0.725784i \(-0.258523\pi\)
−0.284585 + 0.958651i \(0.591856\pi\)
\(240\) 0 0
\(241\) 51.5505 + 89.2881i 0.213902 + 0.370490i 0.952932 0.303183i \(-0.0980492\pi\)
−0.739030 + 0.673672i \(0.764716\pi\)
\(242\) 161.903i 0.669022i
\(243\) 0 0
\(244\) 24.6254 0.100924
\(245\) 16.1068 9.29925i 0.0657420 0.0379561i
\(246\) 0 0
\(247\) 103.499 179.266i 0.419024 0.725771i
\(248\) 67.5724 + 39.0129i 0.272469 + 0.157310i
\(249\) 0 0
\(250\) 80.6742 + 139.732i 0.322697 + 0.558927i
\(251\) 426.514i 1.69926i −0.527380 0.849629i \(-0.676826\pi\)
0.527380 0.849629i \(-0.323174\pi\)
\(252\) 0 0
\(253\) −19.7047 −0.0778844
\(254\) 229.566 132.540i 0.903801 0.521810i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −36.9475 21.3317i −0.143765 0.0830026i 0.426392 0.904538i \(-0.359784\pi\)
−0.570157 + 0.821536i \(0.693118\pi\)
\(258\) 0 0
\(259\) −49.6097 85.9265i −0.191543 0.331762i
\(260\) 103.124i 0.396630i
\(261\) 0 0
\(262\) 39.3315 0.150120
\(263\) −178.555 + 103.089i −0.678916 + 0.391972i −0.799447 0.600737i \(-0.794874\pi\)
0.120530 + 0.992710i \(0.461540\pi\)
\(264\) 0 0
\(265\) 32.2273 55.8193i 0.121612 0.210639i
\(266\) 34.5630 + 19.9550i 0.129936 + 0.0750187i
\(267\) 0 0
\(268\) 74.0584 + 128.273i 0.276337 + 0.478630i
\(269\) 452.410i 1.68182i −0.541174 0.840910i \(-0.682020\pi\)
0.541174 0.840910i \(-0.317980\pi\)
\(270\) 0 0
\(271\) −213.136 −0.786478 −0.393239 0.919436i \(-0.628646\pi\)
−0.393239 + 0.919436i \(0.628646\pi\)
\(272\) −99.1766 + 57.2596i −0.364620 + 0.210513i
\(273\) 0 0
\(274\) −141.603 + 245.263i −0.516799 + 0.895122i
\(275\) −39.6638 22.8999i −0.144232 0.0832724i
\(276\) 0 0
\(277\) 50.5788 + 87.6050i 0.182595 + 0.316264i 0.942763 0.333462i \(-0.108217\pi\)
−0.760169 + 0.649726i \(0.774884\pi\)
\(278\) 40.9673i 0.147365i
\(279\) 0 0
\(280\) −19.8826 −0.0710094
\(281\) 245.890 141.965i 0.875054 0.505213i 0.00602973 0.999982i \(-0.498081\pi\)
0.869025 + 0.494769i \(0.164747\pi\)
\(282\) 0 0
\(283\) 180.901 313.329i 0.639225 1.10717i −0.346378 0.938095i \(-0.612589\pi\)
0.985603 0.169075i \(-0.0540781\pi\)
\(284\) −170.404 98.3829i −0.600015 0.346419i
\(285\) 0 0
\(286\) −35.0314 60.6762i −0.122487 0.212154i
\(287\) 191.335i 0.666673i
\(288\) 0 0
\(289\) −530.666 −1.83622
\(290\) −7.11895 + 4.11013i −0.0245481 + 0.0141729i
\(291\) 0 0
\(292\) 93.6849 162.267i 0.320839 0.555709i
\(293\) 16.2725 + 9.39495i 0.0555376 + 0.0320647i 0.527512 0.849548i \(-0.323125\pi\)
−0.471974 + 0.881612i \(0.656458\pi\)
\(294\) 0 0
\(295\) −106.636 184.698i −0.361477 0.626096i
\(296\) 106.070i 0.358344i
\(297\) 0 0
\(298\) −248.526 −0.833980
\(299\) −129.726 + 74.8973i −0.433866 + 0.250493i
\(300\) 0 0
\(301\) 49.7574 86.1824i 0.165307 0.286320i
\(302\) 318.867 + 184.098i 1.05585 + 0.609596i
\(303\) 0 0
\(304\) −21.3328 36.9494i −0.0701735 0.121544i
\(305\) 32.7139i 0.107259i
\(306\) 0 0
\(307\) 158.613 0.516656 0.258328 0.966057i \(-0.416828\pi\)
0.258328 + 0.966057i \(0.416828\pi\)
\(308\) 11.6986 6.75418i 0.0379824 0.0219292i
\(309\) 0 0
\(310\) 51.8273 89.7675i 0.167185 0.289573i
\(311\) 139.638 + 80.6198i 0.448996 + 0.259228i 0.707406 0.706807i \(-0.249865\pi\)
−0.258410 + 0.966035i \(0.583199\pi\)
\(312\) 0 0
\(313\) −297.789 515.785i −0.951402 1.64788i −0.742395 0.669963i \(-0.766310\pi\)
−0.209008 0.977914i \(-0.567023\pi\)
\(314\) 399.589i 1.27258i
\(315\) 0 0
\(316\) 188.134 0.595362
\(317\) 377.931 218.199i 1.19221 0.688324i 0.233404 0.972380i \(-0.425013\pi\)
0.958808 + 0.284056i \(0.0916802\pi\)
\(318\) 0 0
\(319\) 2.79244 4.83665i 0.00875373 0.0151619i
\(320\) 18.4077 + 10.6277i 0.0575242 + 0.0332116i
\(321\) 0 0
\(322\) −14.4405 25.0116i −0.0448462 0.0776759i
\(323\) 305.376i 0.945438i
\(324\) 0 0
\(325\) −348.168 −1.07129
\(326\) −15.5420 + 8.97315i −0.0476747 + 0.0275250i
\(327\) 0 0
\(328\) 102.273 177.142i 0.311808 0.540067i
\(329\) 100.462 + 58.0015i 0.305354 + 0.176296i
\(330\) 0 0
\(331\) 273.895 + 474.401i 0.827478 + 1.43323i 0.900010 + 0.435868i \(0.143559\pi\)
−0.0725321 + 0.997366i \(0.523108\pi\)
\(332\) 82.6139i 0.248837i
\(333\) 0 0
\(334\) 299.309 0.896134
\(335\) 170.406 98.3840i 0.508675 0.293683i
\(336\) 0 0
\(337\) 311.892 540.213i 0.925495 1.60300i 0.134732 0.990882i \(-0.456983\pi\)
0.790763 0.612123i \(-0.209684\pi\)
\(338\) −254.276 146.806i −0.752296 0.434338i
\(339\) 0 0
\(340\) 76.0674 + 131.753i 0.223728 + 0.387508i
\(341\) 70.4234i 0.206520i
\(342\) 0 0
\(343\) −18.5203 −0.0539949
\(344\) −92.1328 + 53.1929i −0.267828 + 0.154631i
\(345\) 0 0
\(346\) −82.3700 + 142.669i −0.238064 + 0.412338i
\(347\) 317.390 + 183.245i 0.914670 + 0.528085i 0.881931 0.471379i \(-0.156244\pi\)
0.0327391 + 0.999464i \(0.489577\pi\)
\(348\) 0 0
\(349\) 244.644 + 423.735i 0.700985 + 1.21414i 0.968121 + 0.250482i \(0.0805892\pi\)
−0.267136 + 0.963659i \(0.586077\pi\)
\(350\) 67.1280i 0.191794i
\(351\) 0 0
\(352\) −14.4410 −0.0410257
\(353\) −304.776 + 175.963i −0.863389 + 0.498478i −0.865146 0.501521i \(-0.832774\pi\)
0.00175684 + 0.999998i \(0.499441\pi\)
\(354\) 0 0
\(355\) −130.698 + 226.376i −0.368164 + 0.637679i
\(356\) 130.345 + 75.2547i 0.366137 + 0.211390i
\(357\) 0 0
\(358\) −192.880 334.078i −0.538772 0.933180i
\(359\) 7.11763i 0.0198263i −0.999951 0.00991313i \(-0.996845\pi\)
0.999951 0.00991313i \(-0.00315550\pi\)
\(360\) 0 0
\(361\) −247.228 −0.684843
\(362\) −33.2188 + 19.1789i −0.0917647 + 0.0529804i
\(363\) 0 0
\(364\) 51.3450 88.9321i 0.141058 0.244319i
\(365\) −215.566 124.457i −0.590592 0.340978i
\(366\) 0 0
\(367\) −63.6226 110.198i −0.173359 0.300266i 0.766233 0.642562i \(-0.222129\pi\)
−0.939592 + 0.342296i \(0.888795\pi\)
\(368\) 30.8750i 0.0838995i
\(369\) 0 0
\(370\) 140.910 0.380838
\(371\) −55.5845 + 32.0917i −0.149823 + 0.0865006i
\(372\) 0 0
\(373\) 29.7402 51.5115i 0.0797324 0.138101i −0.823402 0.567458i \(-0.807927\pi\)
0.903134 + 0.429358i \(0.141260\pi\)
\(374\) −89.5133 51.6805i −0.239340 0.138183i
\(375\) 0 0
\(376\) −62.0062 107.398i −0.164910 0.285633i
\(377\) 42.4560i 0.112615i
\(378\) 0 0
\(379\) 512.562 1.35241 0.676204 0.736715i \(-0.263624\pi\)
0.676204 + 0.736715i \(0.263624\pi\)
\(380\) −49.0860 + 28.3398i −0.129174 + 0.0745785i
\(381\) 0 0
\(382\) −160.553 + 278.086i −0.420296 + 0.727975i
\(383\) −129.942 75.0220i −0.339274 0.195880i 0.320677 0.947189i \(-0.396090\pi\)
−0.659951 + 0.751309i \(0.729423\pi\)
\(384\) 0 0
\(385\) −8.97269 15.5412i −0.0233057 0.0403666i
\(386\) 338.961i 0.878137i
\(387\) 0 0
\(388\) −328.264 −0.846041
\(389\) −505.762 + 292.002i −1.30016 + 0.750648i −0.980431 0.196862i \(-0.936925\pi\)
−0.319728 + 0.947509i \(0.603592\pi\)
\(390\) 0 0
\(391\) −110.493 + 191.380i −0.282591 + 0.489463i
\(392\) 17.1464 + 9.89949i 0.0437409 + 0.0252538i
\(393\) 0 0
\(394\) 98.4882 + 170.586i 0.249970 + 0.432961i
\(395\) 249.930i 0.632733i
\(396\) 0 0
\(397\) 321.479 0.809770 0.404885 0.914368i \(-0.367312\pi\)
0.404885 + 0.914368i \(0.367312\pi\)
\(398\) 87.6085 50.5808i 0.220122 0.127087i
\(399\) 0 0
\(400\) −35.8814 + 62.1485i −0.0897036 + 0.155371i
\(401\) 289.593 + 167.196i 0.722176 + 0.416949i 0.815553 0.578682i \(-0.196433\pi\)
−0.0933768 + 0.995631i \(0.529766\pi\)
\(402\) 0 0
\(403\) 267.678 + 463.632i 0.664213 + 1.15045i
\(404\) 34.1945i 0.0846399i
\(405\) 0 0
\(406\) 8.18567 0.0201617
\(407\) −82.9090 + 47.8675i −0.203708 + 0.117611i
\(408\) 0 0
\(409\) 23.0372 39.9017i 0.0563258 0.0975591i −0.836488 0.547986i \(-0.815395\pi\)
0.892813 + 0.450427i \(0.148728\pi\)
\(410\) −235.327 135.866i −0.573968 0.331381i
\(411\) 0 0
\(412\) 139.689 + 241.949i 0.339052 + 0.587255i
\(413\) 212.374i 0.514223i
\(414\) 0 0
\(415\) 109.750 0.264457
\(416\) −95.0725 + 54.8901i −0.228540 + 0.131947i
\(417\) 0 0
\(418\) 19.2542 33.3493i 0.0460627 0.0797829i
\(419\) 547.560 + 316.134i 1.30683 + 0.754496i 0.981565 0.191128i \(-0.0612145\pi\)
0.325261 + 0.945624i \(0.394548\pi\)
\(420\) 0 0
\(421\) 278.114 + 481.708i 0.660604 + 1.14420i 0.980457 + 0.196732i \(0.0630329\pi\)
−0.319854 + 0.947467i \(0.603634\pi\)
\(422\) 442.000i 1.04739i
\(423\) 0 0
\(424\) 68.6150 0.161828
\(425\) −444.825 + 256.820i −1.04665 + 0.604282i
\(426\) 0 0
\(427\) −16.2881 + 28.2119i −0.0381455 + 0.0660700i
\(428\) 42.1975 + 24.3628i 0.0985923 + 0.0569223i
\(429\) 0 0
\(430\) 70.6649 + 122.395i 0.164337 + 0.284640i
\(431\) 374.687i 0.869344i 0.900589 + 0.434672i \(0.143136\pi\)
−0.900589 + 0.434672i \(0.856864\pi\)
\(432\) 0 0
\(433\) 176.315 0.407195 0.203598 0.979055i \(-0.434737\pi\)
0.203598 + 0.979055i \(0.434737\pi\)
\(434\) −89.3899 + 51.6093i −0.205967 + 0.118915i
\(435\) 0 0
\(436\) 30.8295 53.3983i 0.0707099 0.122473i
\(437\) −71.3009 41.1656i −0.163160 0.0942004i
\(438\) 0 0
\(439\) 179.794 + 311.412i 0.409554 + 0.709368i 0.994840 0.101459i \(-0.0323511\pi\)
−0.585286 + 0.810827i \(0.699018\pi\)
\(440\) 19.1844i 0.0436009i
\(441\) 0 0
\(442\) −785.747 −1.77771
\(443\) −243.965 + 140.853i −0.550712 + 0.317954i −0.749409 0.662107i \(-0.769662\pi\)
0.198697 + 0.980061i \(0.436329\pi\)
\(444\) 0 0
\(445\) 99.9732 173.159i 0.224659 0.389120i
\(446\) −138.701 80.0791i −0.310989 0.179550i
\(447\) 0 0
\(448\) −10.5830 18.3303i −0.0236228 0.0409159i
\(449\) 110.602i 0.246329i −0.992386 0.123164i \(-0.960696\pi\)
0.992386 0.123164i \(-0.0393042\pi\)
\(450\) 0 0
\(451\) 184.616 0.409348
\(452\) 79.3151 45.7926i 0.175476 0.101311i
\(453\) 0 0
\(454\) 183.356 317.582i 0.403868 0.699520i
\(455\) −118.143 68.2100i −0.259655 0.149912i
\(456\) 0 0
\(457\) 331.492 + 574.162i 0.725366 + 1.25637i 0.958823 + 0.284004i \(0.0916630\pi\)
−0.233457 + 0.972367i \(0.575004\pi\)
\(458\) 401.074i 0.875708i
\(459\) 0 0
\(460\) 41.0164 0.0891660
\(461\) −612.243 + 353.479i −1.32808 + 0.766765i −0.985002 0.172543i \(-0.944802\pi\)
−0.343074 + 0.939308i \(0.611468\pi\)
\(462\) 0 0
\(463\) −255.172 + 441.971i −0.551127 + 0.954581i 0.447066 + 0.894501i \(0.352469\pi\)
−0.998194 + 0.0600798i \(0.980864\pi\)
\(464\) −7.57846 4.37542i −0.0163329 0.00942979i
\(465\) 0 0
\(466\) 86.2947 + 149.467i 0.185182 + 0.320744i
\(467\) 204.177i 0.437211i 0.975813 + 0.218605i \(0.0701507\pi\)
−0.975813 + 0.218605i \(0.929849\pi\)
\(468\) 0 0
\(469\) −195.940 −0.417783
\(470\) −142.674 + 82.3731i −0.303562 + 0.175262i
\(471\) 0 0
\(472\) 113.519 196.620i 0.240506 0.416568i
\(473\) −83.1559 48.0101i −0.175805 0.101501i
\(474\) 0 0
\(475\) −95.6813 165.725i −0.201434 0.348894i
\(476\) 151.495i 0.318266i
\(477\) 0 0
\(478\) 157.417 0.329324
\(479\) −2.01637 + 1.16415i −0.00420955 + 0.00243038i −0.502103 0.864808i \(-0.667440\pi\)
0.497894 + 0.867238i \(0.334107\pi\)
\(480\) 0 0
\(481\) −363.887 + 630.270i −0.756521 + 1.31033i
\(482\) 126.272 + 72.9034i 0.261976 + 0.151252i
\(483\) 0 0
\(484\) 114.483 + 198.290i 0.236535 + 0.409691i
\(485\) 436.087i 0.899148i
\(486\) 0 0
\(487\) −700.930 −1.43928 −0.719641 0.694347i \(-0.755693\pi\)
−0.719641 + 0.694347i \(0.755693\pi\)
\(488\) 30.1598 17.4128i 0.0618028 0.0356819i
\(489\) 0 0
\(490\) 13.1511 22.7784i 0.0268390 0.0464866i
\(491\) −779.874 450.261i −1.58834 0.917028i −0.993581 0.113122i \(-0.963915\pi\)
−0.594757 0.803905i \(-0.702752\pi\)
\(492\) 0 0
\(493\) −31.3169 54.2425i −0.0635231 0.110025i
\(494\) 292.739i 0.592590i
\(495\) 0 0
\(496\) 110.345 0.222470
\(497\) 225.424 130.148i 0.453568 0.261868i
\(498\) 0 0
\(499\) 218.689 378.780i 0.438254 0.759079i −0.559301 0.828965i \(-0.688930\pi\)
0.997555 + 0.0698863i \(0.0222636\pi\)
\(500\) 197.611 + 114.090i 0.395221 + 0.228181i
\(501\) 0 0
\(502\) −301.591 522.371i −0.600779 1.04058i
\(503\) 359.340i 0.714394i 0.934029 + 0.357197i \(0.116268\pi\)
−0.934029 + 0.357197i \(0.883732\pi\)
\(504\) 0 0
\(505\) 45.4262 0.0899529
\(506\) −24.1333 + 13.9334i −0.0476942 + 0.0275363i
\(507\) 0 0
\(508\) 187.439 324.655i 0.368975 0.639084i
\(509\) 563.137 + 325.127i 1.10636 + 0.638757i 0.937884 0.346949i \(-0.112782\pi\)
0.168475 + 0.985706i \(0.446116\pi\)
\(510\) 0 0
\(511\) 123.934 + 214.659i 0.242531 + 0.420077i
\(512\) 22.6274i 0.0441942i
\(513\) 0 0
\(514\) −60.3351 −0.117383
\(515\) 321.421 185.572i 0.624118 0.360335i
\(516\) 0 0
\(517\) 55.9647 96.9336i 0.108249 0.187493i
\(518\) −121.518 70.1587i −0.234591 0.135441i
\(519\) 0 0
\(520\) 72.9196 + 126.300i 0.140230 + 0.242885i
\(521\) 952.688i 1.82858i 0.405065 + 0.914288i \(0.367249\pi\)
−0.405065 + 0.914288i \(0.632751\pi\)
\(522\) 0 0
\(523\) 515.678 0.985999 0.493000 0.870030i \(-0.335900\pi\)
0.493000 + 0.870030i \(0.335900\pi\)
\(524\) 48.1710 27.8116i 0.0919294 0.0530755i
\(525\) 0 0
\(526\) −145.790 + 252.515i −0.277166 + 0.480066i
\(527\) 683.979 + 394.895i 1.29787 + 0.749327i
\(528\) 0 0
\(529\) −234.710 406.530i −0.443687 0.768488i
\(530\) 91.1526i 0.171986i
\(531\) 0 0
\(532\) 56.4412 0.106092
\(533\) 1215.42 701.722i 2.28033 1.31655i
\(534\) 0 0
\(535\) 32.3651 56.0579i 0.0604954 0.104781i
\(536\) 181.405 + 104.734i 0.338443 + 0.195400i
\(537\) 0 0
\(538\) −319.902 554.087i −0.594614 1.02990i
\(539\) 17.8699i 0.0331538i
\(540\) 0 0
\(541\) −299.942 −0.554422 −0.277211 0.960809i \(-0.589410\pi\)
−0.277211 + 0.960809i \(0.589410\pi\)
\(542\) −261.037 + 150.710i −0.481618 + 0.278062i
\(543\) 0 0
\(544\) −80.9773 + 140.257i −0.148855 + 0.257825i
\(545\) −70.9377 40.9559i −0.130161 0.0751485i
\(546\) 0 0
\(547\) 36.0805 + 62.4933i 0.0659608 + 0.114247i 0.897120 0.441787i \(-0.145655\pi\)
−0.831159 + 0.556035i \(0.812322\pi\)
\(548\) 400.514i 0.730864i
\(549\) 0 0
\(550\) −64.7707 −0.117765
\(551\) 20.2087 11.6675i 0.0366764 0.0211751i
\(552\) 0 0
\(553\) −124.439 + 215.535i −0.225025 + 0.389756i
\(554\) 123.892 + 71.5292i 0.223632 + 0.129114i
\(555\) 0 0
\(556\) −28.9683 50.1745i −0.0521012 0.0902420i
\(557\) 472.989i 0.849172i −0.905388 0.424586i \(-0.860420\pi\)
0.905388 0.424586i \(-0.139580\pi\)
\(558\) 0 0
\(559\) −729.941 −1.30580
\(560\) −24.3512 + 14.0592i −0.0434842 + 0.0251056i
\(561\) 0 0
\(562\) 200.769 347.741i 0.357239 0.618757i
\(563\) −188.621 108.901i −0.335029 0.193429i 0.323042 0.946384i \(-0.395294\pi\)
−0.658072 + 0.752955i \(0.728628\pi\)
\(564\) 0 0
\(565\) −60.8338 105.367i −0.107671 0.186491i
\(566\) 511.664i 0.904001i
\(567\) 0 0
\(568\) −278.269 −0.489910
\(569\) 421.719 243.479i 0.741157 0.427907i −0.0813326 0.996687i \(-0.525918\pi\)
0.822490 + 0.568780i \(0.192584\pi\)
\(570\) 0 0
\(571\) 259.672 449.765i 0.454767 0.787679i −0.543908 0.839145i \(-0.683056\pi\)
0.998675 + 0.0514656i \(0.0163892\pi\)
\(572\) −85.8091 49.5419i −0.150016 0.0866117i
\(573\) 0 0
\(574\) 135.294 + 234.337i 0.235705 + 0.408252i
\(575\) 138.480i 0.240835i
\(576\) 0 0
\(577\) 139.881 0.242428 0.121214 0.992626i \(-0.461321\pi\)
0.121214 + 0.992626i \(0.461321\pi\)
\(578\) −649.931 + 375.238i −1.12445 + 0.649200i
\(579\) 0 0
\(580\) −5.81260 + 10.0677i −0.0100217 + 0.0173581i
\(581\) −94.6462 54.6440i −0.162902 0.0940516i
\(582\) 0 0
\(583\) 30.9647 + 53.6325i 0.0531128 + 0.0919940i
\(584\) 264.981i 0.453735i
\(585\) 0 0
\(586\) 26.5729 0.0453463
\(587\) 293.484 169.443i 0.499973 0.288660i −0.228729 0.973490i \(-0.573457\pi\)
0.728702 + 0.684830i \(0.240124\pi\)
\(588\) 0 0
\(589\) −147.123 + 254.825i −0.249784 + 0.432639i
\(590\) −261.203 150.806i −0.442717 0.255603i
\(591\) 0 0
\(592\) 75.0028 + 129.909i 0.126694 + 0.219440i
\(593\) 111.970i 0.188820i −0.995533 0.0944101i \(-0.969904\pi\)
0.995533 0.0944101i \(-0.0300965\pi\)
\(594\) 0 0
\(595\) −201.255 −0.338244
\(596\) −304.381 + 175.734i −0.510706 + 0.294856i
\(597\) 0 0
\(598\) −105.921 + 183.460i −0.177125 + 0.306790i
\(599\) 439.649 + 253.831i 0.733971 + 0.423758i 0.819873 0.572545i \(-0.194044\pi\)
−0.0859021 + 0.996304i \(0.527377\pi\)
\(600\) 0 0
\(601\) −49.7002 86.0833i −0.0826959 0.143233i 0.821711 0.569904i \(-0.193020\pi\)
−0.904407 + 0.426671i \(0.859686\pi\)
\(602\) 140.735i 0.233779i
\(603\) 0 0
\(604\) 520.708 0.862099
\(605\) 263.422 152.087i 0.435408 0.251383i
\(606\) 0 0
\(607\) −244.421 + 423.349i −0.402670 + 0.697445i −0.994047 0.108950i \(-0.965251\pi\)
0.591377 + 0.806395i \(0.298584\pi\)
\(608\) −52.2544 30.1691i −0.0859447 0.0496202i
\(609\) 0 0
\(610\) −23.1322 40.0662i −0.0379217 0.0656823i
\(611\) 850.882i 1.39261i
\(612\) 0 0
\(613\) 91.0276 0.148495 0.0742476 0.997240i \(-0.476344\pi\)
0.0742476 + 0.997240i \(0.476344\pi\)
\(614\) 194.261 112.157i 0.316386 0.182665i
\(615\) 0 0
\(616\) 9.55185 16.5443i 0.0155063 0.0268576i
\(617\) −591.658 341.594i −0.958927 0.553637i −0.0630842 0.998008i \(-0.520094\pi\)
−0.895843 + 0.444372i \(0.853427\pi\)
\(618\) 0 0
\(619\) −227.979 394.871i −0.368302 0.637918i 0.620998 0.783812i \(-0.286727\pi\)
−0.989300 + 0.145894i \(0.953394\pi\)
\(620\) 146.590i 0.236435i
\(621\) 0 0
\(622\) 228.027 0.366603
\(623\) −172.430 + 99.5526i −0.276774 + 0.159795i
\(624\) 0 0
\(625\) −72.6939 + 125.909i −0.116310 + 0.201455i
\(626\) −729.431 421.137i −1.16522 0.672743i
\(627\) 0 0
\(628\) −282.552 489.395i −0.449924 0.779291i
\(629\) 1073.66i 1.70693i
\(630\) 0 0
\(631\) 857.311 1.35865 0.679327 0.733836i \(-0.262272\pi\)
0.679327 + 0.733836i \(0.262272\pi\)
\(632\) 230.416 133.031i 0.364583 0.210492i
\(633\) 0 0
\(634\) 308.579 534.475i 0.486718 0.843021i
\(635\) −431.292 249.007i −0.679200 0.392137i
\(636\) 0 0
\(637\) 67.9230 + 117.646i 0.106630 + 0.184688i
\(638\) 7.89821i 0.0123796i
\(639\) 0 0
\(640\) 30.0597 0.0469683
\(641\) 869.558 502.040i 1.35657 0.783213i 0.367406 0.930061i \(-0.380246\pi\)
0.989159 + 0.146847i \(0.0469125\pi\)
\(642\) 0 0
\(643\) −354.436 + 613.902i −0.551223 + 0.954746i 0.446964 + 0.894552i \(0.352505\pi\)
−0.998187 + 0.0601940i \(0.980828\pi\)
\(644\) −35.3718 20.4219i −0.0549251 0.0317110i
\(645\) 0 0
\(646\) −215.934 374.008i −0.334263 0.578960i
\(647\) 906.254i 1.40070i −0.713799 0.700351i \(-0.753027\pi\)
0.713799 0.700351i \(-0.246973\pi\)
\(648\) 0 0
\(649\) 204.916 0.315741
\(650\) −426.417 + 246.192i −0.656026 + 0.378757i
\(651\) 0 0
\(652\) −12.6900 + 21.9796i −0.0194631 + 0.0337111i
\(653\) −1028.26 593.667i −1.57467 0.909138i −0.995584 0.0938731i \(-0.970075\pi\)
−0.579089 0.815265i \(-0.696591\pi\)
\(654\) 0 0
\(655\) −36.9467 63.9935i −0.0564071 0.0977000i
\(656\) 289.272i 0.440963i
\(657\) 0 0
\(658\) 164.053 0.249321
\(659\) 105.126 60.6946i 0.159524 0.0921010i −0.418113 0.908395i \(-0.637308\pi\)
0.577637 + 0.816294i \(0.303975\pi\)
\(660\) 0 0
\(661\) −235.670 + 408.193i −0.356536 + 0.617539i −0.987380 0.158372i \(-0.949376\pi\)
0.630844 + 0.775910i \(0.282709\pi\)
\(662\) 670.904 + 387.346i 1.01345 + 0.585116i
\(663\) 0 0
\(664\) 58.4169 + 101.181i 0.0879772 + 0.152381i
\(665\) 74.9801i 0.112752i
\(666\) 0 0
\(667\) −16.8864 −0.0253170
\(668\) 366.577 211.643i 0.548768 0.316831i
\(669\) 0 0
\(670\) 139.136 240.991i 0.207666 0.359687i
\(671\) 27.2212 + 15.7161i 0.0405681 + 0.0234220i
\(672\) 0 0
\(673\) −263.188 455.855i −0.391067 0.677347i 0.601524 0.798855i \(-0.294560\pi\)
−0.992591 + 0.121508i \(0.961227\pi\)
\(674\) 882.163i 1.30885i
\(675\) 0 0
\(676\) −415.231 −0.614247
\(677\) 571.501 329.956i 0.844167 0.487380i −0.0145115 0.999895i \(-0.504619\pi\)
0.858678 + 0.512515i \(0.171286\pi\)
\(678\) 0 0
\(679\) 217.126 376.073i 0.319773 0.553864i
\(680\) 186.326 + 107.576i 0.274009 + 0.158199i
\(681\) 0 0
\(682\) 49.7969 + 86.2507i 0.0730160 + 0.126467i
\(683\) 412.168i 0.603467i 0.953392 + 0.301734i \(0.0975654\pi\)
−0.953392 + 0.301734i \(0.902435\pi\)
\(684\) 0 0
\(685\) 532.068 0.776742
\(686\) −22.6826 + 13.0958i −0.0330650 + 0.0190901i
\(687\) 0 0
\(688\) −75.2262 + 130.296i −0.109340 + 0.189383i
\(689\) 407.712 + 235.393i 0.591745 + 0.341644i
\(690\) 0 0
\(691\) −364.801 631.853i −0.527931 0.914404i −0.999470 0.0325584i \(-0.989634\pi\)
0.471538 0.881845i \(-0.343699\pi\)
\(692\) 232.978i 0.336673i
\(693\) 0 0
\(694\) 518.296 0.746825
\(695\) −66.6551 + 38.4833i −0.0959066 + 0.0553717i
\(696\) 0 0
\(697\) 1035.22 1793.06i 1.48526 2.57254i
\(698\) 599.252 + 345.978i 0.858527 + 0.495671i
\(699\) 0 0
\(700\) −47.4667 82.2147i −0.0678096 0.117450i
\(701\) 56.3677i 0.0804104i 0.999191 + 0.0402052i \(0.0128012\pi\)
−0.999191 + 0.0402052i \(0.987199\pi\)
\(702\) 0 0
\(703\) −400.004 −0.568996
\(704\) −17.6866 + 10.2114i −0.0251230 + 0.0145048i
\(705\) 0 0
\(706\) −248.849 + 431.019i −0.352477 + 0.610508i
\(707\) −39.1747 22.6175i −0.0554098 0.0319909i
\(708\) 0 0
\(709\) −391.057 677.331i −0.551561 0.955332i −0.998162 0.0605991i \(-0.980699\pi\)
0.446601 0.894733i \(-0.352634\pi\)
\(710\) 369.670i 0.520662i
\(711\) 0 0
\(712\) 212.852 0.298950
\(713\) 184.404 106.466i 0.258632 0.149321i
\(714\) 0 0
\(715\) −65.8147 + 113.994i −0.0920485 + 0.159433i
\(716\) −472.458 272.774i −0.659858 0.380969i
\(717\) 0 0
\(718\) −5.03292 8.71728i −0.00700964 0.0121411i
\(719\) 131.717i 0.183194i −0.995796 0.0915971i \(-0.970803\pi\)
0.995796 0.0915971i \(-0.0291972\pi\)
\(720\) 0 0
\(721\) −369.583 −0.512598
\(722\) −302.792 + 174.817i −0.419379 + 0.242129i
\(723\) 0 0
\(724\) −27.1230 + 46.9785i −0.0374628 + 0.0648874i
\(725\) −33.9908 19.6246i −0.0468838 0.0270684i
\(726\) 0 0
\(727\) −352.691 610.878i −0.485132 0.840273i 0.514722 0.857357i \(-0.327895\pi\)
−0.999854 + 0.0170841i \(0.994562\pi\)
\(728\) 145.226i 0.199486i
\(729\) 0 0
\(730\) −352.018 −0.482216
\(731\) −932.584 + 538.428i −1.27576 + 0.736563i
\(732\) 0 0
\(733\) −123.262 + 213.496i −0.168161 + 0.291264i −0.937773 0.347248i \(-0.887116\pi\)
0.769612 + 0.638512i \(0.220450\pi\)
\(734\) −155.843 89.9760i −0.212320 0.122583i
\(735\) 0 0
\(736\) 21.8319 + 37.8140i 0.0296630 + 0.0513777i
\(737\) 189.059i 0.256525i
\(738\) 0 0
\(739\) 573.403 0.775918 0.387959 0.921677i \(-0.373180\pi\)
0.387959 + 0.921677i \(0.373180\pi\)
\(740\) 172.579 99.6385i 0.233215 0.134647i
\(741\) 0 0
\(742\) −45.3845 + 78.6083i −0.0611651 + 0.105941i
\(743\) −245.489 141.733i −0.330402 0.190758i 0.325618 0.945502i \(-0.394428\pi\)
−0.656020 + 0.754744i \(0.727761\pi\)
\(744\) 0 0
\(745\) 233.457 + 404.359i 0.313365 + 0.542764i
\(746\) 84.1180i 0.112759i
\(747\) 0 0
\(748\) −146.175 −0.195421
\(749\) −55.8221 + 32.2289i −0.0745288 + 0.0430292i
\(750\) 0 0
\(751\) −522.497 + 904.991i −0.695735 + 1.20505i 0.274198 + 0.961673i \(0.411588\pi\)
−0.969932 + 0.243375i \(0.921746\pi\)
\(752\) −151.884 87.6900i −0.201973 0.116609i
\(753\) 0 0
\(754\) −30.0209 51.9978i −0.0398156 0.0689626i
\(755\) 691.742i 0.916215i
\(756\) 0 0
\(757\) 595.724 0.786954 0.393477 0.919334i \(-0.371272\pi\)
0.393477 + 0.919334i \(0.371272\pi\)
\(758\) 627.758 362.436i 0.828177 0.478148i
\(759\) 0 0
\(760\) −40.0786 + 69.4181i −0.0527349 + 0.0913396i
\(761\) −721.701 416.674i −0.948359 0.547535i −0.0557881 0.998443i \(-0.517767\pi\)
−0.892571 + 0.450907i \(0.851100\pi\)
\(762\) 0 0
\(763\) 40.7836 + 70.6393i 0.0534516 + 0.0925809i
\(764\) 454.113i 0.594389i
\(765\) 0 0
\(766\) −212.194 −0.277016
\(767\) 1349.06 778.882i 1.75888 1.01549i
\(768\) 0 0
\(769\) −158.346 + 274.264i −0.205912 + 0.356650i −0.950423 0.310960i \(-0.899349\pi\)
0.744511 + 0.667610i \(0.232683\pi\)
\(770\) −21.9785 12.6893i −0.0285435 0.0164796i
\(771\) 0 0
\(772\) 239.682 + 415.141i 0.310468 + 0.537747i
\(773\) 367.509i 0.475432i −0.971335 0.237716i \(-0.923601\pi\)
0.971335 0.237716i \(-0.0763987\pi\)
\(774\) 0 0
\(775\) 494.918 0.638604
\(776\) −402.039 + 232.118i −0.518092 + 0.299121i
\(777\) 0 0
\(778\) −412.953 + 715.256i −0.530788 + 0.919352i
\(779\) 668.026 + 385.685i 0.857544 + 0.495103i
\(780\) 0 0
\(781\) −125.578 217.507i −0.160791 0.278498i
\(782\) 312.522i 0.399645i
\(783\) 0 0
\(784\) 28.0000 0.0357143
\(785\) −650.144 + 375.361i −0.828209 + 0.478166i
\(786\) 0 0
\(787\) 144.573 250.408i 0.183702 0.318181i −0.759437 0.650581i \(-0.774525\pi\)
0.943138 + 0.332401i \(0.107859\pi\)
\(788\) 241.246 + 139.283i 0.306149 + 0.176755i
\(789\) 0 0
\(790\) −176.727 306.100i −0.223705 0.387469i
\(791\) 121.156i 0.153168i
\(792\) 0 0
\(793\) 238.947 0.301320
\(794\) 393.729 227.320i 0.495881 0.286297i
\(795\) 0 0
\(796\) 71.5320 123.897i 0.0898643 0.155650i
\(797\) −762.615 440.296i −0.956857 0.552442i −0.0616529 0.998098i \(-0.519637\pi\)
−0.895204 + 0.445656i \(0.852971\pi\)
\(798\) 0 0
\(799\) −627.637 1087.10i −0.785529 1.36058i
\(800\) 101.488i 0.126860i
\(801\) 0 0
\(802\) 472.903 0.589655
\(803\) 207.121 119.581i 0.257934 0.148918i
\(804\) 0 0
\(805\) −27.1298 + 46.9902i −0.0337016 + 0.0583729i
\(806\) 655.674 + 378.554i 0.813492 + 0.469670i
\(807\) 0 0
\(808\) 24.1792 + 41.8796i 0.0299247 + 0.0518311i
\(809\) 776.794i 0.960190i 0.877217 + 0.480095i \(0.159398\pi\)
−0.877217 + 0.480095i \(0.840602\pi\)
\(810\) 0 0
\(811\) −985.397 −1.21504 −0.607520 0.794305i \(-0.707835\pi\)
−0.607520 + 0.794305i \(0.707835\pi\)
\(812\) 10.0254 5.78814i 0.0123465 0.00712825i
\(813\) 0 0
\(814\) −67.6949 + 117.251i −0.0831632 + 0.144043i
\(815\) 29.1992 + 16.8582i 0.0358272 + 0.0206849i
\(816\) 0 0
\(817\) −200.598 347.445i −0.245530 0.425270i
\(818\) 65.1592i 0.0796567i
\(819\) 0 0
\(820\) −384.287 −0.468643
\(821\) −249.665 + 144.144i −0.304098 + 0.175571i −0.644282 0.764788i \(-0.722844\pi\)
0.340184 + 0.940359i \(0.389511\pi\)
\(822\) 0 0
\(823\) −279.574 + 484.236i −0.339701 + 0.588380i −0.984376 0.176077i \(-0.943659\pi\)
0.644675 + 0.764457i \(0.276993\pi\)
\(824\) 342.168 + 197.551i 0.415252 + 0.239746i
\(825\) 0 0
\(826\) 150.171 + 260.104i 0.181805 + 0.314896i
\(827\) 402.564i 0.486776i −0.969929 0.243388i \(-0.921741\pi\)
0.969929 0.243388i \(-0.0782589\pi\)
\(828\) 0 0
\(829\) 123.079 0.148466 0.0742332 0.997241i \(-0.476349\pi\)
0.0742332 + 0.997241i \(0.476349\pi\)
\(830\) 134.415 77.6048i 0.161946 0.0934997i
\(831\) 0 0
\(832\) −77.6263 + 134.453i −0.0933009 + 0.161602i
\(833\) 173.559 + 100.204i 0.208354 + 0.120293i
\(834\) 0 0
\(835\) −281.161 486.984i −0.336719 0.583215i
\(836\) 54.4591i 0.0651425i
\(837\) 0 0
\(838\) 894.162 1.06702
\(839\) −1364.89 + 788.021i −1.62681 + 0.939238i −0.641770 + 0.766897i \(0.721800\pi\)
−0.985037 + 0.172341i \(0.944867\pi\)
\(840\) 0 0
\(841\) −418.107 + 724.182i −0.497155 + 0.861097i
\(842\) 681.238 + 393.313i 0.809071 + 0.467117i
\(843\) 0 0
\(844\) −312.541 541.338i −0.370310 0.641395i
\(845\) 551.620i 0.652804i
\(846\) 0 0
\(847\) −302.894 −0.357608
\(848\) 84.0358 48.5181i 0.0990988 0.0572147i
\(849\) 0 0
\(850\) −363.198 + 629.078i −0.427292 + 0.740091i
\(851\) 250.683 + 144.732i 0.294575 + 0.170073i
\(852\) 0 0
\(853\) 26.1971 + 45.3747i 0.0307117 + 0.0531943i 0.880973 0.473167i \(-0.156889\pi\)
−0.850261 + 0.526361i \(0.823556\pi\)
\(854\) 46.0698i 0.0539459i
\(855\) 0 0
\(856\) 68.9083 0.0805003
\(857\) 71.6612 41.3736i 0.0836187 0.0482773i −0.457608 0.889154i \(-0.651294\pi\)
0.541226 + 0.840877i \(0.317960\pi\)
\(858\) 0 0
\(859\) −56.9850 + 98.7008i −0.0663387 + 0.114902i −0.897287 0.441448i \(-0.854465\pi\)
0.830948 + 0.556350i \(0.187798\pi\)
\(860\) 173.093 + 99.9353i 0.201271 + 0.116204i
\(861\) 0 0
\(862\) 264.944 + 458.896i 0.307359 + 0.532362i
\(863\) 864.215i 1.00141i 0.865619 + 0.500704i \(0.166925\pi\)
−0.865619 + 0.500704i \(0.833075\pi\)
\(864\) 0 0
\(865\) 309.503 0.357807
\(866\) 215.941 124.674i 0.249355 0.143965i
\(867\) 0 0
\(868\) −72.9865 + 126.416i −0.0840858 + 0.145641i
\(869\) 207.966 + 120.069i 0.239316 + 0.138169i
\(870\) 0 0
\(871\) 718.610 + 1244.67i 0.825040 + 1.42901i
\(872\) 87.1990i 0.0999989i
\(873\) 0 0
\(874\) −116.434 −0.133220
\(875\) −261.414 + 150.928i −0.298759 + 0.172489i
\(876\) 0 0
\(877\) 315.869 547.100i 0.360169 0.623832i −0.627819 0.778359i \(-0.716052\pi\)
0.987988 + 0.154528i \(0.0493856\pi\)
\(878\) 440.404 + 254.267i 0.501599 + 0.289598i
\(879\) 0 0
\(880\) 13.5654 + 23.4960i 0.0154153 + 0.0267000i
\(881\) 293.562i 0.333215i 0.986023 + 0.166607i \(0.0532812\pi\)
−0.986023 + 0.166607i \(0.946719\pi\)
\(882\) 0 0
\(883\) −483.341 −0.547385 −0.273693 0.961817i \(-0.588245\pi\)
−0.273693 + 0.961817i \(0.588245\pi\)
\(884\) −962.339 + 555.607i −1.08862 + 0.628515i
\(885\) 0 0
\(886\) −199.197 + 345.019i −0.224827 + 0.389412i
\(887\) 820.204 + 473.545i 0.924694 + 0.533872i 0.885130 0.465345i \(-0.154070\pi\)
0.0395645 + 0.999217i \(0.487403\pi\)
\(888\) 0 0
\(889\) 247.959 + 429.478i 0.278919 + 0.483102i
\(890\) 282.767i 0.317716i
\(891\) 0 0
\(892\) −226.498 −0.253921
\(893\) 405.012 233.834i 0.453541 0.261852i
\(894\) 0 0
\(895\) −362.371 + 627.644i −0.404883 + 0.701278i
\(896\) −25.9230 14.9666i −0.0289319 0.0167038i
\(897\) 0 0
\(898\) −78.2071 135.459i −0.0870903 0.150845i
\(899\) 60.3509i 0.0671311i
\(900\) 0 0
\(901\) 694.532 0.770846
\(902\) 226.108 130.543i 0.250674 0.144727i
\(903\) 0 0
\(904\) 64.7605 112.168i 0.0716377 0.124080i
\(905\) 62.4093 + 36.0320i 0.0689605 + 0.0398144i
\(906\) 0 0
\(907\) 49.8208 + 86.2921i 0.0549292 + 0.0951401i 0.892183 0.451675i \(-0.149173\pi\)
−0.837253 + 0.546815i \(0.815840\pi\)
\(908\) 518.610i 0.571156i
\(909\) 0 0
\(910\) −192.927 −0.212008
\(911\) −1266.12 + 730.994i −1.38981 + 0.802409i −0.993294 0.115618i \(-0.963115\pi\)
−0.396519 + 0.918026i \(0.629782\pi\)
\(912\) 0 0
\(913\) −52.7250 + 91.3224i −0.0577492 + 0.100025i
\(914\) 811.987 + 468.801i 0.888389 + 0.512911i
\(915\) 0 0
\(916\) 283.602 + 491.214i 0.309610 + 0.536260i
\(917\) 73.5825i 0.0802426i
\(918\) 0 0
\(919\) −1025.26 −1.11562 −0.557811 0.829968i \(-0.688359\pi\)
−0.557811 + 0.829968i \(0.688359\pi\)
\(920\) 50.2346 29.0030i 0.0546028 0.0315250i
\(921\) 0 0
\(922\) −499.894 + 865.843i −0.542185 + 0.939092i
\(923\) −1653.48 954.638i −1.79142 1.03428i
\(924\) 0 0
\(925\) 336.401 + 582.664i 0.363677 + 0.629907i
\(926\) 721.735i 0.779412i
\(927\) 0 0
\(928\) −12.3756 −0.0133357
\(929\) 1015.41 586.248i 1.09302 0.631053i 0.158638 0.987337i \(-0.449290\pi\)
0.934378 + 0.356284i \(0.115956\pi\)
\(930\) 0 0
\(931\) −37.3323 + 64.6615i −0.0400992 + 0.0694538i
\(932\) 211.378 + 122.039i 0.226800 + 0.130943i
\(933\) 0 0
\(934\) 144.375 + 250.065i 0.154577 + 0.267736i
\(935\) 194.188i 0.207688i
\(936\) 0 0
\(937\) 989.490 1.05602 0.528009 0.849239i \(-0.322939\pi\)
0.528009 + 0.849239i \(0.322939\pi\)
\(938\) −239.977 + 138.551i −0.255839 + 0.147708i
\(939\) 0 0
\(940\) −116.493 + 201.772i −0.123929 + 0.214651i
\(941\) −208.192 120.200i −0.221246 0.127736i 0.385281 0.922799i \(-0.374104\pi\)
−0.606527 + 0.795063i \(0.707438\pi\)
\(942\) 0 0
\(943\) −279.102 483.419i −0.295973 0.512640i
\(944\) 321.079i 0.340126i
\(945\) 0 0
\(946\) −135.793 −0.143544
\(947\) −1035.30 + 597.728i −1.09324 + 0.631181i −0.934436 0.356130i \(-0.884096\pi\)
−0.158801 + 0.987311i \(0.550763\pi\)
\(948\) 0 0
\(949\) 909.052 1574.52i 0.957905 1.65914i
\(950\) −234.370 135.314i −0.246706 0.142436i
\(951\) 0 0
\(952\) −107.123 185.542i −0.112524 0.194897i
\(953\) 261.104i 0.273981i 0.990572 + 0.136991i \(0.0437430\pi\)
−0.990572 + 0.136991i \(0.956257\pi\)
\(954\) 0 0
\(955\) 603.273 0.631700
\(956\) 192.795 111.310i 0.201669 0.116434i
\(957\) 0 0
\(958\) −1.64636 + 2.85158i −0.00171854 + 0.00297660i
\(959\) −458.846 264.915i −0.478463 0.276241i
\(960\) 0 0
\(961\) 99.9978 + 173.201i 0.104056 + 0.180230i
\(962\) 1029.23i 1.06988i
\(963\) 0 0
\(964\) 206.202 0.213902
\(965\) 551.500 318.409i 0.571502 0.329957i
\(966\) 0 0
\(967\) 552.812 957.498i 0.571677 0.990174i −0.424717 0.905326i \(-0.639626\pi\)
0.996394 0.0848474i \(-0.0270403\pi\)
\(968\) 280.425 + 161.903i 0.289695 + 0.167256i
\(969\) 0 0
\(970\) 308.360 + 534.095i 0.317897 + 0.550614i
\(971\) 139.155i 0.143311i −0.997429 0.0716554i \(-0.977172\pi\)
0.997429 0.0716554i \(-0.0228282\pi\)
\(972\) 0 0
\(973\) 76.6429 0.0787696
\(974\) −858.460 + 495.632i −0.881376 + 0.508863i
\(975\) 0 0
\(976\) 24.6254 42.6524i 0.0252309 0.0437012i
\(977\) −967.481 558.575i −0.990257 0.571725i −0.0849057 0.996389i \(-0.527059\pi\)
−0.905351 + 0.424664i \(0.860392\pi\)
\(978\) 0 0
\(979\) 96.0566 + 166.375i 0.0981170 + 0.169944i
\(980\) 37.1970i 0.0379561i
\(981\) 0 0
\(982\) −1273.53 −1.29687
\(983\) −1611.94 + 930.655i −1.63982 + 0.946750i −0.658925 + 0.752209i \(0.728989\pi\)
−0.980894 + 0.194541i \(0.937678\pi\)
\(984\) 0 0
\(985\) 185.033 320.486i 0.187851 0.325367i
\(986\) −76.7104 44.2888i −0.0777996 0.0449176i
\(987\) 0 0
\(988\) −206.998 358.531i −0.209512 0.362886i
\(989\) 290.326i 0.293555i
\(990\) 0 0
\(991\) −73.7864 −0.0744565 −0.0372283 0.999307i \(-0.511853\pi\)
−0.0372283 + 0.999307i \(0.511853\pi\)
\(992\) 135.145 78.0259i 0.136235 0.0786551i
\(993\) 0 0
\(994\) 184.058 318.797i 0.185169 0.320721i
\(995\) −164.593 95.0277i −0.165420 0.0955053i
\(996\) 0 0
\(997\) 596.044 + 1032.38i 0.597838 + 1.03549i 0.993140 + 0.116934i \(0.0373066\pi\)
−0.395302 + 0.918551i \(0.629360\pi\)
\(998\) 618.545i 0.619785i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 378.3.q.a.71.10 24
3.2 odd 2 126.3.q.a.113.6 yes 24
9.2 odd 6 inner 378.3.q.a.197.10 24
9.4 even 3 1134.3.b.c.323.19 24
9.5 odd 6 1134.3.b.c.323.6 24
9.7 even 3 126.3.q.a.29.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.3.q.a.29.6 24 9.7 even 3
126.3.q.a.113.6 yes 24 3.2 odd 2
378.3.q.a.71.10 24 1.1 even 1 trivial
378.3.q.a.197.10 24 9.2 odd 6 inner
1134.3.b.c.323.6 24 9.5 odd 6
1134.3.b.c.323.19 24 9.4 even 3