Properties

Label 1125.2.b.f.874.1
Level $1125$
Weight $2$
Character 1125.874
Analytic conductor $8.983$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1125,2,Mod(874,1125)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1125.874"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1125, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1125 = 3^{2} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1125.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,0,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.98317022739\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 125)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 874.1
Root \(-1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 1125.874
Dual form 1125.2.b.f.874.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.61803i q^{2} -0.618034 q^{4} +3.00000i q^{7} -2.23607i q^{8} +3.00000 q^{11} -4.85410i q^{13} +4.85410 q^{14} -4.85410 q^{16} +4.23607i q^{17} +3.61803 q^{19} -4.85410i q^{22} +1.23607i q^{23} -7.85410 q^{26} -1.85410i q^{28} +6.70820 q^{29} +5.09017 q^{31} +3.38197i q^{32} +6.85410 q^{34} -3.70820i q^{37} -5.85410i q^{38} +3.00000 q^{41} -9.00000i q^{43} -1.85410 q^{44} +2.00000 q^{46} -8.32624i q^{47} -2.00000 q^{49} +3.00000i q^{52} -4.61803i q^{53} +6.70820 q^{56} -10.8541i q^{58} +4.14590 q^{59} -6.09017 q^{61} -8.23607i q^{62} -4.23607 q^{64} +13.8541i q^{67} -2.61803i q^{68} +3.00000 q^{71} +1.85410i q^{73} -6.00000 q^{74} -2.23607 q^{76} +9.00000i q^{77} -0.527864 q^{79} -4.85410i q^{82} -0.472136i q^{83} -14.5623 q^{86} -6.70820i q^{88} -13.4164 q^{89} +14.5623 q^{91} -0.763932i q^{92} -13.4721 q^{94} -7.85410i q^{97} +3.23607i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 12 q^{11} + 6 q^{14} - 6 q^{16} + 10 q^{19} - 18 q^{26} - 2 q^{31} + 14 q^{34} + 12 q^{41} + 6 q^{44} + 8 q^{46} - 8 q^{49} + 30 q^{59} - 2 q^{61} - 8 q^{64} + 12 q^{71} - 24 q^{74} - 20 q^{79}+ \cdots - 36 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1125\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(1001\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.61803i − 1.14412i −0.820211 0.572061i \(-0.806144\pi\)
0.820211 0.572061i \(-0.193856\pi\)
\(3\) 0 0
\(4\) −0.618034 −0.309017
\(5\) 0 0
\(6\) 0 0
\(7\) 3.00000i 1.13389i 0.823754 + 0.566947i \(0.191875\pi\)
−0.823754 + 0.566947i \(0.808125\pi\)
\(8\) − 2.23607i − 0.790569i
\(9\) 0 0
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) − 4.85410i − 1.34629i −0.739512 0.673143i \(-0.764944\pi\)
0.739512 0.673143i \(-0.235056\pi\)
\(14\) 4.85410 1.29731
\(15\) 0 0
\(16\) −4.85410 −1.21353
\(17\) 4.23607i 1.02740i 0.857971 + 0.513699i \(0.171725\pi\)
−0.857971 + 0.513699i \(0.828275\pi\)
\(18\) 0 0
\(19\) 3.61803 0.830034 0.415017 0.909814i \(-0.363776\pi\)
0.415017 + 0.909814i \(0.363776\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 4.85410i − 1.03490i
\(23\) 1.23607i 0.257738i 0.991662 + 0.128869i \(0.0411347\pi\)
−0.991662 + 0.128869i \(0.958865\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −7.85410 −1.54032
\(27\) 0 0
\(28\) − 1.85410i − 0.350392i
\(29\) 6.70820 1.24568 0.622841 0.782348i \(-0.285978\pi\)
0.622841 + 0.782348i \(0.285978\pi\)
\(30\) 0 0
\(31\) 5.09017 0.914222 0.457111 0.889410i \(-0.348884\pi\)
0.457111 + 0.889410i \(0.348884\pi\)
\(32\) 3.38197i 0.597853i
\(33\) 0 0
\(34\) 6.85410 1.17547
\(35\) 0 0
\(36\) 0 0
\(37\) − 3.70820i − 0.609625i −0.952412 0.304812i \(-0.901406\pi\)
0.952412 0.304812i \(-0.0985938\pi\)
\(38\) − 5.85410i − 0.949661i
\(39\) 0 0
\(40\) 0 0
\(41\) 3.00000 0.468521 0.234261 0.972174i \(-0.424733\pi\)
0.234261 + 0.972174i \(0.424733\pi\)
\(42\) 0 0
\(43\) − 9.00000i − 1.37249i −0.727372 0.686244i \(-0.759258\pi\)
0.727372 0.686244i \(-0.240742\pi\)
\(44\) −1.85410 −0.279516
\(45\) 0 0
\(46\) 2.00000 0.294884
\(47\) − 8.32624i − 1.21451i −0.794508 0.607253i \(-0.792271\pi\)
0.794508 0.607253i \(-0.207729\pi\)
\(48\) 0 0
\(49\) −2.00000 −0.285714
\(50\) 0 0
\(51\) 0 0
\(52\) 3.00000i 0.416025i
\(53\) − 4.61803i − 0.634336i −0.948369 0.317168i \(-0.897268\pi\)
0.948369 0.317168i \(-0.102732\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 6.70820 0.896421
\(57\) 0 0
\(58\) − 10.8541i − 1.42521i
\(59\) 4.14590 0.539750 0.269875 0.962895i \(-0.413018\pi\)
0.269875 + 0.962895i \(0.413018\pi\)
\(60\) 0 0
\(61\) −6.09017 −0.779766 −0.389883 0.920864i \(-0.627485\pi\)
−0.389883 + 0.920864i \(0.627485\pi\)
\(62\) − 8.23607i − 1.04598i
\(63\) 0 0
\(64\) −4.23607 −0.529508
\(65\) 0 0
\(66\) 0 0
\(67\) 13.8541i 1.69255i 0.532748 + 0.846274i \(0.321159\pi\)
−0.532748 + 0.846274i \(0.678841\pi\)
\(68\) − 2.61803i − 0.317483i
\(69\) 0 0
\(70\) 0 0
\(71\) 3.00000 0.356034 0.178017 0.984027i \(-0.443032\pi\)
0.178017 + 0.984027i \(0.443032\pi\)
\(72\) 0 0
\(73\) 1.85410i 0.217006i 0.994096 + 0.108503i \(0.0346057\pi\)
−0.994096 + 0.108503i \(0.965394\pi\)
\(74\) −6.00000 −0.697486
\(75\) 0 0
\(76\) −2.23607 −0.256495
\(77\) 9.00000i 1.02565i
\(78\) 0 0
\(79\) −0.527864 −0.0593893 −0.0296947 0.999559i \(-0.509453\pi\)
−0.0296947 + 0.999559i \(0.509453\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 4.85410i − 0.536046i
\(83\) − 0.472136i − 0.0518237i −0.999664 0.0259118i \(-0.991751\pi\)
0.999664 0.0259118i \(-0.00824891\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −14.5623 −1.57029
\(87\) 0 0
\(88\) − 6.70820i − 0.715097i
\(89\) −13.4164 −1.42214 −0.711068 0.703123i \(-0.751788\pi\)
−0.711068 + 0.703123i \(0.751788\pi\)
\(90\) 0 0
\(91\) 14.5623 1.52654
\(92\) − 0.763932i − 0.0796454i
\(93\) 0 0
\(94\) −13.4721 −1.38954
\(95\) 0 0
\(96\) 0 0
\(97\) − 7.85410i − 0.797463i −0.917068 0.398732i \(-0.869451\pi\)
0.917068 0.398732i \(-0.130549\pi\)
\(98\) 3.23607i 0.326892i
\(99\) 0 0
\(100\) 0 0
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) 0 0
\(103\) 12.7082i 1.25218i 0.779752 + 0.626088i \(0.215345\pi\)
−0.779752 + 0.626088i \(0.784655\pi\)
\(104\) −10.8541 −1.06433
\(105\) 0 0
\(106\) −7.47214 −0.725758
\(107\) 0.0901699i 0.00871706i 0.999991 + 0.00435853i \(0.00138737\pi\)
−0.999991 + 0.00435853i \(0.998613\pi\)
\(108\) 0 0
\(109\) −5.32624 −0.510161 −0.255081 0.966920i \(-0.582102\pi\)
−0.255081 + 0.966920i \(0.582102\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 14.5623i − 1.37601i
\(113\) − 2.05573i − 0.193387i −0.995314 0.0966933i \(-0.969173\pi\)
0.995314 0.0966933i \(-0.0308266\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −4.14590 −0.384937
\(117\) 0 0
\(118\) − 6.70820i − 0.617540i
\(119\) −12.7082 −1.16496
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 9.85410i 0.892148i
\(123\) 0 0
\(124\) −3.14590 −0.282510
\(125\) 0 0
\(126\) 0 0
\(127\) 9.70820i 0.861464i 0.902480 + 0.430732i \(0.141745\pi\)
−0.902480 + 0.430732i \(0.858255\pi\)
\(128\) 13.6180i 1.20368i
\(129\) 0 0
\(130\) 0 0
\(131\) 12.2705 1.07208 0.536040 0.844193i \(-0.319920\pi\)
0.536040 + 0.844193i \(0.319920\pi\)
\(132\) 0 0
\(133\) 10.8541i 0.941170i
\(134\) 22.4164 1.93648
\(135\) 0 0
\(136\) 9.47214 0.812229
\(137\) 5.61803i 0.479981i 0.970775 + 0.239991i \(0.0771443\pi\)
−0.970775 + 0.239991i \(0.922856\pi\)
\(138\) 0 0
\(139\) 12.2361 1.03785 0.518925 0.854820i \(-0.326332\pi\)
0.518925 + 0.854820i \(0.326332\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 4.85410i − 0.407347i
\(143\) − 14.5623i − 1.21776i
\(144\) 0 0
\(145\) 0 0
\(146\) 3.00000 0.248282
\(147\) 0 0
\(148\) 2.29180i 0.188384i
\(149\) −15.0000 −1.22885 −0.614424 0.788976i \(-0.710612\pi\)
−0.614424 + 0.788976i \(0.710612\pi\)
\(150\) 0 0
\(151\) −21.0902 −1.71629 −0.858147 0.513404i \(-0.828384\pi\)
−0.858147 + 0.513404i \(0.828384\pi\)
\(152\) − 8.09017i − 0.656199i
\(153\) 0 0
\(154\) 14.5623 1.17346
\(155\) 0 0
\(156\) 0 0
\(157\) 12.2705i 0.979293i 0.871921 + 0.489647i \(0.162874\pi\)
−0.871921 + 0.489647i \(0.837126\pi\)
\(158\) 0.854102i 0.0679487i
\(159\) 0 0
\(160\) 0 0
\(161\) −3.70820 −0.292247
\(162\) 0 0
\(163\) − 19.8541i − 1.55509i −0.628825 0.777547i \(-0.716464\pi\)
0.628825 0.777547i \(-0.283536\pi\)
\(164\) −1.85410 −0.144781
\(165\) 0 0
\(166\) −0.763932 −0.0592926
\(167\) 9.23607i 0.714708i 0.933969 + 0.357354i \(0.116321\pi\)
−0.933969 + 0.357354i \(0.883679\pi\)
\(168\) 0 0
\(169\) −10.5623 −0.812485
\(170\) 0 0
\(171\) 0 0
\(172\) 5.56231i 0.424122i
\(173\) 0.0557281i 0.00423693i 0.999998 + 0.00211846i \(0.000674329\pi\)
−0.999998 + 0.00211846i \(0.999326\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −14.5623 −1.09768
\(177\) 0 0
\(178\) 21.7082i 1.62710i
\(179\) 6.70820 0.501395 0.250697 0.968066i \(-0.419340\pi\)
0.250697 + 0.968066i \(0.419340\pi\)
\(180\) 0 0
\(181\) 18.1803 1.35133 0.675667 0.737207i \(-0.263856\pi\)
0.675667 + 0.737207i \(0.263856\pi\)
\(182\) − 23.5623i − 1.74655i
\(183\) 0 0
\(184\) 2.76393 0.203760
\(185\) 0 0
\(186\) 0 0
\(187\) 12.7082i 0.929316i
\(188\) 5.14590i 0.375303i
\(189\) 0 0
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) 15.2705i 1.09920i 0.835429 + 0.549598i \(0.185219\pi\)
−0.835429 + 0.549598i \(0.814781\pi\)
\(194\) −12.7082 −0.912396
\(195\) 0 0
\(196\) 1.23607 0.0882906
\(197\) − 4.05573i − 0.288959i −0.989508 0.144479i \(-0.953849\pi\)
0.989508 0.144479i \(-0.0461507\pi\)
\(198\) 0 0
\(199\) −16.1803 −1.14699 −0.573497 0.819208i \(-0.694414\pi\)
−0.573497 + 0.819208i \(0.694414\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 4.85410i − 0.341533i
\(203\) 20.1246i 1.41247i
\(204\) 0 0
\(205\) 0 0
\(206\) 20.5623 1.43264
\(207\) 0 0
\(208\) 23.5623i 1.63375i
\(209\) 10.8541 0.750794
\(210\) 0 0
\(211\) −4.18034 −0.287786 −0.143893 0.989593i \(-0.545962\pi\)
−0.143893 + 0.989593i \(0.545962\pi\)
\(212\) 2.85410i 0.196021i
\(213\) 0 0
\(214\) 0.145898 0.00997338
\(215\) 0 0
\(216\) 0 0
\(217\) 15.2705i 1.03663i
\(218\) 8.61803i 0.583687i
\(219\) 0 0
\(220\) 0 0
\(221\) 20.5623 1.38317
\(222\) 0 0
\(223\) 1.85410i 0.124160i 0.998071 + 0.0620799i \(0.0197734\pi\)
−0.998071 + 0.0620799i \(0.980227\pi\)
\(224\) −10.1459 −0.677901
\(225\) 0 0
\(226\) −3.32624 −0.221258
\(227\) − 6.61803i − 0.439254i −0.975584 0.219627i \(-0.929516\pi\)
0.975584 0.219627i \(-0.0704841\pi\)
\(228\) 0 0
\(229\) 1.38197 0.0913229 0.0456614 0.998957i \(-0.485460\pi\)
0.0456614 + 0.998957i \(0.485460\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 15.0000i − 0.984798i
\(233\) 26.8885i 1.76153i 0.473556 + 0.880764i \(0.342970\pi\)
−0.473556 + 0.880764i \(0.657030\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −2.56231 −0.166792
\(237\) 0 0
\(238\) 20.5623i 1.33286i
\(239\) 25.8541 1.67236 0.836181 0.548453i \(-0.184783\pi\)
0.836181 + 0.548453i \(0.184783\pi\)
\(240\) 0 0
\(241\) −19.1803 −1.23551 −0.617757 0.786369i \(-0.711959\pi\)
−0.617757 + 0.786369i \(0.711959\pi\)
\(242\) 3.23607i 0.208022i
\(243\) 0 0
\(244\) 3.76393 0.240961
\(245\) 0 0
\(246\) 0 0
\(247\) − 17.5623i − 1.11746i
\(248\) − 11.3820i − 0.722756i
\(249\) 0 0
\(250\) 0 0
\(251\) −6.27051 −0.395791 −0.197896 0.980223i \(-0.563411\pi\)
−0.197896 + 0.980223i \(0.563411\pi\)
\(252\) 0 0
\(253\) 3.70820i 0.233133i
\(254\) 15.7082 0.985620
\(255\) 0 0
\(256\) 13.5623 0.847644
\(257\) 29.3607i 1.83147i 0.401784 + 0.915734i \(0.368390\pi\)
−0.401784 + 0.915734i \(0.631610\pi\)
\(258\) 0 0
\(259\) 11.1246 0.691250
\(260\) 0 0
\(261\) 0 0
\(262\) − 19.8541i − 1.22659i
\(263\) − 16.3262i − 1.00672i −0.864077 0.503359i \(-0.832097\pi\)
0.864077 0.503359i \(-0.167903\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 17.5623 1.07681
\(267\) 0 0
\(268\) − 8.56231i − 0.523026i
\(269\) 2.56231 0.156227 0.0781133 0.996944i \(-0.475110\pi\)
0.0781133 + 0.996944i \(0.475110\pi\)
\(270\) 0 0
\(271\) 20.0902 1.22039 0.610195 0.792251i \(-0.291091\pi\)
0.610195 + 0.792251i \(0.291091\pi\)
\(272\) − 20.5623i − 1.24677i
\(273\) 0 0
\(274\) 9.09017 0.549157
\(275\) 0 0
\(276\) 0 0
\(277\) − 5.29180i − 0.317953i −0.987282 0.158977i \(-0.949181\pi\)
0.987282 0.158977i \(-0.0508194\pi\)
\(278\) − 19.7984i − 1.18743i
\(279\) 0 0
\(280\) 0 0
\(281\) −12.0000 −0.715860 −0.357930 0.933748i \(-0.616517\pi\)
−0.357930 + 0.933748i \(0.616517\pi\)
\(282\) 0 0
\(283\) − 15.7082i − 0.933756i −0.884322 0.466878i \(-0.845379\pi\)
0.884322 0.466878i \(-0.154621\pi\)
\(284\) −1.85410 −0.110021
\(285\) 0 0
\(286\) −23.5623 −1.39327
\(287\) 9.00000i 0.531253i
\(288\) 0 0
\(289\) −0.944272 −0.0555454
\(290\) 0 0
\(291\) 0 0
\(292\) − 1.14590i − 0.0670586i
\(293\) 21.3607i 1.24790i 0.781463 + 0.623952i \(0.214474\pi\)
−0.781463 + 0.623952i \(0.785526\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −8.29180 −0.481951
\(297\) 0 0
\(298\) 24.2705i 1.40595i
\(299\) 6.00000 0.346989
\(300\) 0 0
\(301\) 27.0000 1.55625
\(302\) 34.1246i 1.96365i
\(303\) 0 0
\(304\) −17.5623 −1.00727
\(305\) 0 0
\(306\) 0 0
\(307\) − 6.27051i − 0.357877i −0.983860 0.178938i \(-0.942734\pi\)
0.983860 0.178938i \(-0.0572663\pi\)
\(308\) − 5.56231i − 0.316942i
\(309\) 0 0
\(310\) 0 0
\(311\) −21.2705 −1.20614 −0.603070 0.797688i \(-0.706056\pi\)
−0.603070 + 0.797688i \(0.706056\pi\)
\(312\) 0 0
\(313\) 19.4164i 1.09748i 0.835993 + 0.548740i \(0.184892\pi\)
−0.835993 + 0.548740i \(0.815108\pi\)
\(314\) 19.8541 1.12043
\(315\) 0 0
\(316\) 0.326238 0.0183523
\(317\) − 26.9443i − 1.51334i −0.653796 0.756671i \(-0.726825\pi\)
0.653796 0.756671i \(-0.273175\pi\)
\(318\) 0 0
\(319\) 20.1246 1.12676
\(320\) 0 0
\(321\) 0 0
\(322\) 6.00000i 0.334367i
\(323\) 15.3262i 0.852775i
\(324\) 0 0
\(325\) 0 0
\(326\) −32.1246 −1.77922
\(327\) 0 0
\(328\) − 6.70820i − 0.370399i
\(329\) 24.9787 1.37712
\(330\) 0 0
\(331\) −21.0902 −1.15922 −0.579610 0.814894i \(-0.696795\pi\)
−0.579610 + 0.814894i \(0.696795\pi\)
\(332\) 0.291796i 0.0160144i
\(333\) 0 0
\(334\) 14.9443 0.817714
\(335\) 0 0
\(336\) 0 0
\(337\) 29.8328i 1.62510i 0.582894 + 0.812549i \(0.301920\pi\)
−0.582894 + 0.812549i \(0.698080\pi\)
\(338\) 17.0902i 0.929583i
\(339\) 0 0
\(340\) 0 0
\(341\) 15.2705 0.826944
\(342\) 0 0
\(343\) 15.0000i 0.809924i
\(344\) −20.1246 −1.08505
\(345\) 0 0
\(346\) 0.0901699 0.00484757
\(347\) 15.9443i 0.855933i 0.903795 + 0.427967i \(0.140770\pi\)
−0.903795 + 0.427967i \(0.859230\pi\)
\(348\) 0 0
\(349\) 17.3607 0.929296 0.464648 0.885496i \(-0.346181\pi\)
0.464648 + 0.885496i \(0.346181\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 10.1459i 0.540778i
\(353\) − 3.88854i − 0.206966i −0.994631 0.103483i \(-0.967001\pi\)
0.994631 0.103483i \(-0.0329988\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 8.29180 0.439464
\(357\) 0 0
\(358\) − 10.8541i − 0.573657i
\(359\) −10.8541 −0.572858 −0.286429 0.958102i \(-0.592468\pi\)
−0.286429 + 0.958102i \(0.592468\pi\)
\(360\) 0 0
\(361\) −5.90983 −0.311044
\(362\) − 29.4164i − 1.54609i
\(363\) 0 0
\(364\) −9.00000 −0.471728
\(365\) 0 0
\(366\) 0 0
\(367\) − 1.14590i − 0.0598154i −0.999553 0.0299077i \(-0.990479\pi\)
0.999553 0.0299077i \(-0.00952133\pi\)
\(368\) − 6.00000i − 0.312772i
\(369\) 0 0
\(370\) 0 0
\(371\) 13.8541 0.719269
\(372\) 0 0
\(373\) 1.85410i 0.0960018i 0.998847 + 0.0480009i \(0.0152850\pi\)
−0.998847 + 0.0480009i \(0.984715\pi\)
\(374\) 20.5623 1.06325
\(375\) 0 0
\(376\) −18.6180 −0.960152
\(377\) − 32.5623i − 1.67704i
\(378\) 0 0
\(379\) 7.56231 0.388450 0.194225 0.980957i \(-0.437781\pi\)
0.194225 + 0.980957i \(0.437781\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 19.4164i 0.993430i
\(383\) − 35.4721i − 1.81254i −0.422698 0.906271i \(-0.638917\pi\)
0.422698 0.906271i \(-0.361083\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 24.7082 1.25761
\(387\) 0 0
\(388\) 4.85410i 0.246430i
\(389\) 1.58359 0.0802913 0.0401457 0.999194i \(-0.487218\pi\)
0.0401457 + 0.999194i \(0.487218\pi\)
\(390\) 0 0
\(391\) −5.23607 −0.264799
\(392\) 4.47214i 0.225877i
\(393\) 0 0
\(394\) −6.56231 −0.330604
\(395\) 0 0
\(396\) 0 0
\(397\) 16.4164i 0.823916i 0.911203 + 0.411958i \(0.135155\pi\)
−0.911203 + 0.411958i \(0.864845\pi\)
\(398\) 26.1803i 1.31230i
\(399\) 0 0
\(400\) 0 0
\(401\) −12.0000 −0.599251 −0.299626 0.954057i \(-0.596862\pi\)
−0.299626 + 0.954057i \(0.596862\pi\)
\(402\) 0 0
\(403\) − 24.7082i − 1.23080i
\(404\) −1.85410 −0.0922450
\(405\) 0 0
\(406\) 32.5623 1.61604
\(407\) − 11.1246i − 0.551427i
\(408\) 0 0
\(409\) 22.7639 1.12560 0.562802 0.826592i \(-0.309723\pi\)
0.562802 + 0.826592i \(0.309723\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 7.85410i − 0.386944i
\(413\) 12.4377i 0.612019i
\(414\) 0 0
\(415\) 0 0
\(416\) 16.4164 0.804881
\(417\) 0 0
\(418\) − 17.5623i − 0.859000i
\(419\) −6.70820 −0.327717 −0.163859 0.986484i \(-0.552394\pi\)
−0.163859 + 0.986484i \(0.552394\pi\)
\(420\) 0 0
\(421\) 8.90983 0.434239 0.217119 0.976145i \(-0.430334\pi\)
0.217119 + 0.976145i \(0.430334\pi\)
\(422\) 6.76393i 0.329263i
\(423\) 0 0
\(424\) −10.3262 −0.501486
\(425\) 0 0
\(426\) 0 0
\(427\) − 18.2705i − 0.884172i
\(428\) − 0.0557281i − 0.00269372i
\(429\) 0 0
\(430\) 0 0
\(431\) 12.2705 0.591050 0.295525 0.955335i \(-0.404505\pi\)
0.295525 + 0.955335i \(0.404505\pi\)
\(432\) 0 0
\(433\) 14.2918i 0.686820i 0.939186 + 0.343410i \(0.111582\pi\)
−0.939186 + 0.343410i \(0.888418\pi\)
\(434\) 24.7082 1.18603
\(435\) 0 0
\(436\) 3.29180 0.157648
\(437\) 4.47214i 0.213931i
\(438\) 0 0
\(439\) −30.1246 −1.43777 −0.718885 0.695129i \(-0.755347\pi\)
−0.718885 + 0.695129i \(0.755347\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 33.2705i − 1.58252i
\(443\) − 7.18034i − 0.341148i −0.985345 0.170574i \(-0.945438\pi\)
0.985345 0.170574i \(-0.0545622\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 3.00000 0.142054
\(447\) 0 0
\(448\) − 12.7082i − 0.600406i
\(449\) −39.2705 −1.85329 −0.926645 0.375938i \(-0.877321\pi\)
−0.926645 + 0.375938i \(0.877321\pi\)
\(450\) 0 0
\(451\) 9.00000 0.423793
\(452\) 1.27051i 0.0597598i
\(453\) 0 0
\(454\) −10.7082 −0.502561
\(455\) 0 0
\(456\) 0 0
\(457\) 18.0000i 0.842004i 0.907060 + 0.421002i \(0.138322\pi\)
−0.907060 + 0.421002i \(0.861678\pi\)
\(458\) − 2.23607i − 0.104485i
\(459\) 0 0
\(460\) 0 0
\(461\) −36.2705 −1.68929 −0.844643 0.535330i \(-0.820187\pi\)
−0.844643 + 0.535330i \(0.820187\pi\)
\(462\) 0 0
\(463\) − 14.1246i − 0.656426i −0.944604 0.328213i \(-0.893554\pi\)
0.944604 0.328213i \(-0.106446\pi\)
\(464\) −32.5623 −1.51167
\(465\) 0 0
\(466\) 43.5066 2.01540
\(467\) 39.2361i 1.81563i 0.419372 + 0.907814i \(0.362250\pi\)
−0.419372 + 0.907814i \(0.637750\pi\)
\(468\) 0 0
\(469\) −41.5623 −1.91917
\(470\) 0 0
\(471\) 0 0
\(472\) − 9.27051i − 0.426710i
\(473\) − 27.0000i − 1.24146i
\(474\) 0 0
\(475\) 0 0
\(476\) 7.85410 0.359992
\(477\) 0 0
\(478\) − 41.8328i − 1.91339i
\(479\) −32.5623 −1.48781 −0.743905 0.668286i \(-0.767028\pi\)
−0.743905 + 0.668286i \(0.767028\pi\)
\(480\) 0 0
\(481\) −18.0000 −0.820729
\(482\) 31.0344i 1.41358i
\(483\) 0 0
\(484\) 1.23607 0.0561849
\(485\) 0 0
\(486\) 0 0
\(487\) − 3.70820i − 0.168035i −0.996464 0.0840174i \(-0.973225\pi\)
0.996464 0.0840174i \(-0.0267751\pi\)
\(488\) 13.6180i 0.616459i
\(489\) 0 0
\(490\) 0 0
\(491\) −36.2705 −1.63687 −0.818433 0.574603i \(-0.805157\pi\)
−0.818433 + 0.574603i \(0.805157\pi\)
\(492\) 0 0
\(493\) 28.4164i 1.27981i
\(494\) −28.4164 −1.27851
\(495\) 0 0
\(496\) −24.7082 −1.10943
\(497\) 9.00000i 0.403705i
\(498\) 0 0
\(499\) −42.3607 −1.89632 −0.948162 0.317787i \(-0.897060\pi\)
−0.948162 + 0.317787i \(0.897060\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 10.1459i 0.452834i
\(503\) − 25.7984i − 1.15029i −0.818051 0.575146i \(-0.804945\pi\)
0.818051 0.575146i \(-0.195055\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 6.00000 0.266733
\(507\) 0 0
\(508\) − 6.00000i − 0.266207i
\(509\) 13.4164 0.594672 0.297336 0.954773i \(-0.403902\pi\)
0.297336 + 0.954773i \(0.403902\pi\)
\(510\) 0 0
\(511\) −5.56231 −0.246062
\(512\) 5.29180i 0.233867i
\(513\) 0 0
\(514\) 47.5066 2.09543
\(515\) 0 0
\(516\) 0 0
\(517\) − 24.9787i − 1.09856i
\(518\) − 18.0000i − 0.790875i
\(519\) 0 0
\(520\) 0 0
\(521\) −6.27051 −0.274716 −0.137358 0.990521i \(-0.543861\pi\)
−0.137358 + 0.990521i \(0.543861\pi\)
\(522\) 0 0
\(523\) − 37.4164i − 1.63611i −0.575143 0.818053i \(-0.695054\pi\)
0.575143 0.818053i \(-0.304946\pi\)
\(524\) −7.58359 −0.331291
\(525\) 0 0
\(526\) −26.4164 −1.15181
\(527\) 21.5623i 0.939269i
\(528\) 0 0
\(529\) 21.4721 0.933571
\(530\) 0 0
\(531\) 0 0
\(532\) − 6.70820i − 0.290838i
\(533\) − 14.5623i − 0.630763i
\(534\) 0 0
\(535\) 0 0
\(536\) 30.9787 1.33808
\(537\) 0 0
\(538\) − 4.14590i − 0.178742i
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) −34.1803 −1.46953 −0.734764 0.678323i \(-0.762707\pi\)
−0.734764 + 0.678323i \(0.762707\pi\)
\(542\) − 32.5066i − 1.39628i
\(543\) 0 0
\(544\) −14.3262 −0.614232
\(545\) 0 0
\(546\) 0 0
\(547\) 22.1459i 0.946890i 0.880823 + 0.473445i \(0.156990\pi\)
−0.880823 + 0.473445i \(0.843010\pi\)
\(548\) − 3.47214i − 0.148322i
\(549\) 0 0
\(550\) 0 0
\(551\) 24.2705 1.03396
\(552\) 0 0
\(553\) − 1.58359i − 0.0673412i
\(554\) −8.56231 −0.363778
\(555\) 0 0
\(556\) −7.56231 −0.320713
\(557\) − 40.3607i − 1.71014i −0.518515 0.855068i \(-0.673515\pi\)
0.518515 0.855068i \(-0.326485\pi\)
\(558\) 0 0
\(559\) −43.6869 −1.84776
\(560\) 0 0
\(561\) 0 0
\(562\) 19.4164i 0.819032i
\(563\) − 7.05573i − 0.297363i −0.988885 0.148682i \(-0.952497\pi\)
0.988885 0.148682i \(-0.0475030\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −25.4164 −1.06833
\(567\) 0 0
\(568\) − 6.70820i − 0.281470i
\(569\) 26.8328 1.12489 0.562445 0.826835i \(-0.309861\pi\)
0.562445 + 0.826835i \(0.309861\pi\)
\(570\) 0 0
\(571\) −13.0000 −0.544033 −0.272017 0.962293i \(-0.587691\pi\)
−0.272017 + 0.962293i \(0.587691\pi\)
\(572\) 9.00000i 0.376309i
\(573\) 0 0
\(574\) 14.5623 0.607819
\(575\) 0 0
\(576\) 0 0
\(577\) − 29.5623i − 1.23069i −0.788256 0.615347i \(-0.789016\pi\)
0.788256 0.615347i \(-0.210984\pi\)
\(578\) 1.52786i 0.0635508i
\(579\) 0 0
\(580\) 0 0
\(581\) 1.41641 0.0587625
\(582\) 0 0
\(583\) − 13.8541i − 0.573778i
\(584\) 4.14590 0.171558
\(585\) 0 0
\(586\) 34.5623 1.42776
\(587\) − 2.47214i − 0.102036i −0.998698 0.0510180i \(-0.983753\pi\)
0.998698 0.0510180i \(-0.0162466\pi\)
\(588\) 0 0
\(589\) 18.4164 0.758835
\(590\) 0 0
\(591\) 0 0
\(592\) 18.0000i 0.739795i
\(593\) 41.3607i 1.69848i 0.528007 + 0.849240i \(0.322939\pi\)
−0.528007 + 0.849240i \(0.677061\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 9.27051 0.379735
\(597\) 0 0
\(598\) − 9.70820i − 0.396998i
\(599\) −24.2705 −0.991666 −0.495833 0.868418i \(-0.665137\pi\)
−0.495833 + 0.868418i \(0.665137\pi\)
\(600\) 0 0
\(601\) −0.639320 −0.0260784 −0.0130392 0.999915i \(-0.504151\pi\)
−0.0130392 + 0.999915i \(0.504151\pi\)
\(602\) − 43.6869i − 1.78055i
\(603\) 0 0
\(604\) 13.0344 0.530364
\(605\) 0 0
\(606\) 0 0
\(607\) − 30.5410i − 1.23962i −0.784751 0.619811i \(-0.787209\pi\)
0.784751 0.619811i \(-0.212791\pi\)
\(608\) 12.2361i 0.496238i
\(609\) 0 0
\(610\) 0 0
\(611\) −40.4164 −1.63507
\(612\) 0 0
\(613\) 4.41641i 0.178377i 0.996015 + 0.0891885i \(0.0284274\pi\)
−0.996015 + 0.0891885i \(0.971573\pi\)
\(614\) −10.1459 −0.409455
\(615\) 0 0
\(616\) 20.1246 0.810844
\(617\) − 25.7639i − 1.03722i −0.855012 0.518608i \(-0.826450\pi\)
0.855012 0.518608i \(-0.173550\pi\)
\(618\) 0 0
\(619\) 20.5279 0.825085 0.412542 0.910938i \(-0.364641\pi\)
0.412542 + 0.910938i \(0.364641\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 34.4164i 1.37997i
\(623\) − 40.2492i − 1.61255i
\(624\) 0 0
\(625\) 0 0
\(626\) 31.4164 1.25565
\(627\) 0 0
\(628\) − 7.58359i − 0.302618i
\(629\) 15.7082 0.626327
\(630\) 0 0
\(631\) 2.00000 0.0796187 0.0398094 0.999207i \(-0.487325\pi\)
0.0398094 + 0.999207i \(0.487325\pi\)
\(632\) 1.18034i 0.0469514i
\(633\) 0 0
\(634\) −43.5967 −1.73145
\(635\) 0 0
\(636\) 0 0
\(637\) 9.70820i 0.384653i
\(638\) − 32.5623i − 1.28915i
\(639\) 0 0
\(640\) 0 0
\(641\) 8.72949 0.344794 0.172397 0.985028i \(-0.444849\pi\)
0.172397 + 0.985028i \(0.444849\pi\)
\(642\) 0 0
\(643\) − 18.2705i − 0.720519i −0.932852 0.360259i \(-0.882688\pi\)
0.932852 0.360259i \(-0.117312\pi\)
\(644\) 2.29180 0.0903094
\(645\) 0 0
\(646\) 24.7984 0.975679
\(647\) − 20.2361i − 0.795562i −0.917480 0.397781i \(-0.869780\pi\)
0.917480 0.397781i \(-0.130220\pi\)
\(648\) 0 0
\(649\) 12.4377 0.488222
\(650\) 0 0
\(651\) 0 0
\(652\) 12.2705i 0.480550i
\(653\) 4.65248i 0.182065i 0.995848 + 0.0910327i \(0.0290168\pi\)
−0.995848 + 0.0910327i \(0.970983\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −14.5623 −0.568563
\(657\) 0 0
\(658\) − 40.4164i − 1.57560i
\(659\) −25.8541 −1.00713 −0.503566 0.863957i \(-0.667979\pi\)
−0.503566 + 0.863957i \(0.667979\pi\)
\(660\) 0 0
\(661\) 14.3607 0.558566 0.279283 0.960209i \(-0.409903\pi\)
0.279283 + 0.960209i \(0.409903\pi\)
\(662\) 34.1246i 1.32629i
\(663\) 0 0
\(664\) −1.05573 −0.0409702
\(665\) 0 0
\(666\) 0 0
\(667\) 8.29180i 0.321060i
\(668\) − 5.70820i − 0.220857i
\(669\) 0 0
\(670\) 0 0
\(671\) −18.2705 −0.705325
\(672\) 0 0
\(673\) − 31.6869i − 1.22144i −0.791846 0.610720i \(-0.790880\pi\)
0.791846 0.610720i \(-0.209120\pi\)
\(674\) 48.2705 1.85931
\(675\) 0 0
\(676\) 6.52786 0.251072
\(677\) 4.11146i 0.158016i 0.996874 + 0.0790080i \(0.0251753\pi\)
−0.996874 + 0.0790080i \(0.974825\pi\)
\(678\) 0 0
\(679\) 23.5623 0.904238
\(680\) 0 0
\(681\) 0 0
\(682\) − 24.7082i − 0.946126i
\(683\) 43.0689i 1.64799i 0.566601 + 0.823993i \(0.308258\pi\)
−0.566601 + 0.823993i \(0.691742\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 24.2705 0.926652
\(687\) 0 0
\(688\) 43.6869i 1.66555i
\(689\) −22.4164 −0.853997
\(690\) 0 0
\(691\) 25.8197 0.982226 0.491113 0.871096i \(-0.336590\pi\)
0.491113 + 0.871096i \(0.336590\pi\)
\(692\) − 0.0344419i − 0.00130928i
\(693\) 0 0
\(694\) 25.7984 0.979293
\(695\) 0 0
\(696\) 0 0
\(697\) 12.7082i 0.481358i
\(698\) − 28.0902i − 1.06323i
\(699\) 0 0
\(700\) 0 0
\(701\) −2.72949 −0.103091 −0.0515457 0.998671i \(-0.516415\pi\)
−0.0515457 + 0.998671i \(0.516415\pi\)
\(702\) 0 0
\(703\) − 13.4164i − 0.506009i
\(704\) −12.7082 −0.478958
\(705\) 0 0
\(706\) −6.29180 −0.236795
\(707\) 9.00000i 0.338480i
\(708\) 0 0
\(709\) 17.0344 0.639742 0.319871 0.947461i \(-0.396360\pi\)
0.319871 + 0.947461i \(0.396360\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 30.0000i 1.12430i
\(713\) 6.29180i 0.235630i
\(714\) 0 0
\(715\) 0 0
\(716\) −4.14590 −0.154939
\(717\) 0 0
\(718\) 17.5623i 0.655419i
\(719\) 47.5623 1.77377 0.886887 0.461986i \(-0.152863\pi\)
0.886887 + 0.461986i \(0.152863\pi\)
\(720\) 0 0
\(721\) −38.1246 −1.41983
\(722\) 9.56231i 0.355872i
\(723\) 0 0
\(724\) −11.2361 −0.417585
\(725\) 0 0
\(726\) 0 0
\(727\) − 38.8328i − 1.44023i −0.693855 0.720115i \(-0.744089\pi\)
0.693855 0.720115i \(-0.255911\pi\)
\(728\) − 32.5623i − 1.20684i
\(729\) 0 0
\(730\) 0 0
\(731\) 38.1246 1.41009
\(732\) 0 0
\(733\) 23.5623i 0.870294i 0.900360 + 0.435147i \(0.143304\pi\)
−0.900360 + 0.435147i \(0.856696\pi\)
\(734\) −1.85410 −0.0684362
\(735\) 0 0
\(736\) −4.18034 −0.154089
\(737\) 41.5623i 1.53097i
\(738\) 0 0
\(739\) −17.7639 −0.653457 −0.326728 0.945118i \(-0.605946\pi\)
−0.326728 + 0.945118i \(0.605946\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 22.4164i − 0.822932i
\(743\) 25.9098i 0.950539i 0.879840 + 0.475270i \(0.157650\pi\)
−0.879840 + 0.475270i \(0.842350\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 3.00000 0.109838
\(747\) 0 0
\(748\) − 7.85410i − 0.287174i
\(749\) −0.270510 −0.00988421
\(750\) 0 0
\(751\) −15.3607 −0.560519 −0.280260 0.959924i \(-0.590421\pi\)
−0.280260 + 0.959924i \(0.590421\pi\)
\(752\) 40.4164i 1.47383i
\(753\) 0 0
\(754\) −52.6869 −1.91874
\(755\) 0 0
\(756\) 0 0
\(757\) − 27.0000i − 0.981332i −0.871348 0.490666i \(-0.836754\pi\)
0.871348 0.490666i \(-0.163246\pi\)
\(758\) − 12.2361i − 0.444434i
\(759\) 0 0
\(760\) 0 0
\(761\) 18.0000 0.652499 0.326250 0.945284i \(-0.394215\pi\)
0.326250 + 0.945284i \(0.394215\pi\)
\(762\) 0 0
\(763\) − 15.9787i − 0.578468i
\(764\) 7.41641 0.268316
\(765\) 0 0
\(766\) −57.3951 −2.07377
\(767\) − 20.1246i − 0.726658i
\(768\) 0 0
\(769\) 12.8885 0.464773 0.232386 0.972624i \(-0.425347\pi\)
0.232386 + 0.972624i \(0.425347\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 9.43769i − 0.339670i
\(773\) 21.2361i 0.763808i 0.924202 + 0.381904i \(0.124732\pi\)
−0.924202 + 0.381904i \(0.875268\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −17.5623 −0.630450
\(777\) 0 0
\(778\) − 2.56231i − 0.0918631i
\(779\) 10.8541 0.388889
\(780\) 0 0
\(781\) 9.00000 0.322045
\(782\) 8.47214i 0.302963i
\(783\) 0 0
\(784\) 9.70820 0.346722
\(785\) 0 0
\(786\) 0 0
\(787\) 11.2918i 0.402509i 0.979539 + 0.201255i \(0.0645018\pi\)
−0.979539 + 0.201255i \(0.935498\pi\)
\(788\) 2.50658i 0.0892931i
\(789\) 0 0
\(790\) 0 0
\(791\) 6.16718 0.219280
\(792\) 0 0
\(793\) 29.5623i 1.04979i
\(794\) 26.5623 0.942661
\(795\) 0 0
\(796\) 10.0000 0.354441
\(797\) 35.2148i 1.24737i 0.781675 + 0.623686i \(0.214366\pi\)
−0.781675 + 0.623686i \(0.785634\pi\)
\(798\) 0 0
\(799\) 35.2705 1.24778
\(800\) 0 0
\(801\) 0 0
\(802\) 19.4164i 0.685617i
\(803\) 5.56231i 0.196290i
\(804\) 0 0
\(805\) 0 0
\(806\) −39.9787 −1.40819
\(807\) 0 0
\(808\) − 6.70820i − 0.235994i
\(809\) −5.12461 −0.180172 −0.0900859 0.995934i \(-0.528714\pi\)
−0.0900859 + 0.995934i \(0.528714\pi\)
\(810\) 0 0
\(811\) −11.8197 −0.415044 −0.207522 0.978230i \(-0.566540\pi\)
−0.207522 + 0.978230i \(0.566540\pi\)
\(812\) − 12.4377i − 0.436477i
\(813\) 0 0
\(814\) −18.0000 −0.630900
\(815\) 0 0
\(816\) 0 0
\(817\) − 32.5623i − 1.13921i
\(818\) − 36.8328i − 1.28783i
\(819\) 0 0
\(820\) 0 0
\(821\) −21.2705 −0.742346 −0.371173 0.928564i \(-0.621044\pi\)
−0.371173 + 0.928564i \(0.621044\pi\)
\(822\) 0 0
\(823\) − 22.4164i − 0.781387i −0.920521 0.390693i \(-0.872235\pi\)
0.920521 0.390693i \(-0.127765\pi\)
\(824\) 28.4164 0.989932
\(825\) 0 0
\(826\) 20.1246 0.700225
\(827\) − 31.6180i − 1.09947i −0.835340 0.549733i \(-0.814729\pi\)
0.835340 0.549733i \(-0.185271\pi\)
\(828\) 0 0
\(829\) −6.25735 −0.217327 −0.108663 0.994079i \(-0.534657\pi\)
−0.108663 + 0.994079i \(0.534657\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 20.5623i 0.712870i
\(833\) − 8.47214i − 0.293542i
\(834\) 0 0
\(835\) 0 0
\(836\) −6.70820 −0.232008
\(837\) 0 0
\(838\) 10.8541i 0.374949i
\(839\) 29.3951 1.01483 0.507416 0.861701i \(-0.330601\pi\)
0.507416 + 0.861701i \(0.330601\pi\)
\(840\) 0 0
\(841\) 16.0000 0.551724
\(842\) − 14.4164i − 0.496822i
\(843\) 0 0
\(844\) 2.58359 0.0889309
\(845\) 0 0
\(846\) 0 0
\(847\) − 6.00000i − 0.206162i
\(848\) 22.4164i 0.769783i
\(849\) 0 0
\(850\) 0 0
\(851\) 4.58359 0.157124
\(852\) 0 0
\(853\) − 5.83282i − 0.199712i −0.995002 0.0998559i \(-0.968162\pi\)
0.995002 0.0998559i \(-0.0318382\pi\)
\(854\) −29.5623 −1.01160
\(855\) 0 0
\(856\) 0.201626 0.00689144
\(857\) − 34.1803i − 1.16758i −0.811905 0.583789i \(-0.801569\pi\)
0.811905 0.583789i \(-0.198431\pi\)
\(858\) 0 0
\(859\) 25.1246 0.857241 0.428620 0.903485i \(-0.359000\pi\)
0.428620 + 0.903485i \(0.359000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 19.8541i − 0.676233i
\(863\) 6.76393i 0.230247i 0.993351 + 0.115123i \(0.0367264\pi\)
−0.993351 + 0.115123i \(0.963274\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 23.1246 0.785806
\(867\) 0 0
\(868\) − 9.43769i − 0.320336i
\(869\) −1.58359 −0.0537197
\(870\) 0 0
\(871\) 67.2492 2.27865
\(872\) 11.9098i 0.403318i
\(873\) 0 0
\(874\) 7.23607 0.244764
\(875\) 0 0
\(876\) 0 0
\(877\) 18.9787i 0.640866i 0.947271 + 0.320433i \(0.103828\pi\)
−0.947271 + 0.320433i \(0.896172\pi\)
\(878\) 48.7426i 1.64498i
\(879\) 0 0
\(880\) 0 0
\(881\) −45.5410 −1.53432 −0.767158 0.641458i \(-0.778330\pi\)
−0.767158 + 0.641458i \(0.778330\pi\)
\(882\) 0 0
\(883\) 17.8328i 0.600122i 0.953920 + 0.300061i \(0.0970070\pi\)
−0.953920 + 0.300061i \(0.902993\pi\)
\(884\) −12.7082 −0.427423
\(885\) 0 0
\(886\) −11.6180 −0.390315
\(887\) − 42.4721i − 1.42607i −0.701126 0.713037i \(-0.747319\pi\)
0.701126 0.713037i \(-0.252681\pi\)
\(888\) 0 0
\(889\) −29.1246 −0.976808
\(890\) 0 0
\(891\) 0 0
\(892\) − 1.14590i − 0.0383675i
\(893\) − 30.1246i − 1.00808i
\(894\) 0 0
\(895\) 0 0
\(896\) −40.8541 −1.36484
\(897\) 0 0
\(898\) 63.5410i 2.12039i
\(899\) 34.1459 1.13883
\(900\) 0 0
\(901\) 19.5623 0.651715
\(902\) − 14.5623i − 0.484872i
\(903\) 0 0
\(904\) −4.59675 −0.152886
\(905\) 0 0
\(906\) 0 0
\(907\) 42.2705i 1.40357i 0.712389 + 0.701785i \(0.247613\pi\)
−0.712389 + 0.701785i \(0.752387\pi\)
\(908\) 4.09017i 0.135737i
\(909\) 0 0
\(910\) 0 0
\(911\) 36.5410 1.21066 0.605329 0.795975i \(-0.293042\pi\)
0.605329 + 0.795975i \(0.293042\pi\)
\(912\) 0 0
\(913\) − 1.41641i − 0.0468763i
\(914\) 29.1246 0.963357
\(915\) 0 0
\(916\) −0.854102 −0.0282203
\(917\) 36.8115i 1.21562i
\(918\) 0 0
\(919\) 24.0689 0.793959 0.396980 0.917827i \(-0.370058\pi\)
0.396980 + 0.917827i \(0.370058\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 58.6869i 1.93275i
\(923\) − 14.5623i − 0.479324i
\(924\) 0 0
\(925\) 0 0
\(926\) −22.8541 −0.751032
\(927\) 0 0
\(928\) 22.6869i 0.744735i
\(929\) 36.7082 1.20436 0.602179 0.798361i \(-0.294300\pi\)
0.602179 + 0.798361i \(0.294300\pi\)
\(930\) 0 0
\(931\) −7.23607 −0.237153
\(932\) − 16.6180i − 0.544342i
\(933\) 0 0
\(934\) 63.4853 2.07730
\(935\) 0 0
\(936\) 0 0
\(937\) − 9.43769i − 0.308316i −0.988046 0.154158i \(-0.950734\pi\)
0.988046 0.154158i \(-0.0492665\pi\)
\(938\) 67.2492i 2.19576i
\(939\) 0 0
\(940\) 0 0
\(941\) 27.2705 0.888993 0.444497 0.895781i \(-0.353383\pi\)
0.444497 + 0.895781i \(0.353383\pi\)
\(942\) 0 0
\(943\) 3.70820i 0.120756i
\(944\) −20.1246 −0.655000
\(945\) 0 0
\(946\) −43.6869 −1.42038
\(947\) − 22.5967i − 0.734296i −0.930163 0.367148i \(-0.880334\pi\)
0.930163 0.367148i \(-0.119666\pi\)
\(948\) 0 0
\(949\) 9.00000 0.292152
\(950\) 0 0
\(951\) 0 0
\(952\) 28.4164i 0.920981i
\(953\) − 13.1591i − 0.426264i −0.977023 0.213132i \(-0.931634\pi\)
0.977023 0.213132i \(-0.0683664\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −15.9787 −0.516789
\(957\) 0 0
\(958\) 52.6869i 1.70224i
\(959\) −16.8541 −0.544247
\(960\) 0 0
\(961\) −5.09017 −0.164199
\(962\) 29.1246i 0.939015i
\(963\) 0 0
\(964\) 11.8541 0.381795
\(965\) 0 0
\(966\) 0 0
\(967\) − 16.1459i − 0.519217i −0.965714 0.259609i \(-0.916406\pi\)
0.965714 0.259609i \(-0.0835935\pi\)
\(968\) 4.47214i 0.143740i
\(969\) 0 0
\(970\) 0 0
\(971\) 51.5410 1.65403 0.827015 0.562180i \(-0.190037\pi\)
0.827015 + 0.562180i \(0.190037\pi\)
\(972\) 0 0
\(973\) 36.7082i 1.17681i
\(974\) −6.00000 −0.192252
\(975\) 0 0
\(976\) 29.5623 0.946266
\(977\) 23.3820i 0.748055i 0.927418 + 0.374028i \(0.122024\pi\)
−0.927418 + 0.374028i \(0.877976\pi\)
\(978\) 0 0
\(979\) −40.2492 −1.28637
\(980\) 0 0
\(981\) 0 0
\(982\) 58.6869i 1.87277i
\(983\) 5.25735i 0.167684i 0.996479 + 0.0838418i \(0.0267190\pi\)
−0.996479 + 0.0838418i \(0.973281\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 45.9787 1.46426
\(987\) 0 0
\(988\) 10.8541i 0.345315i
\(989\) 11.1246 0.353742
\(990\) 0 0
\(991\) −26.8197 −0.851955 −0.425977 0.904734i \(-0.640070\pi\)
−0.425977 + 0.904734i \(0.640070\pi\)
\(992\) 17.2148i 0.546570i
\(993\) 0 0
\(994\) 14.5623 0.461888
\(995\) 0 0
\(996\) 0 0
\(997\) − 52.8541i − 1.67391i −0.547275 0.836953i \(-0.684335\pi\)
0.547275 0.836953i \(-0.315665\pi\)
\(998\) 68.5410i 2.16963i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1125.2.b.f.874.1 4
3.2 odd 2 125.2.b.b.124.4 4
5.2 odd 4 1125.2.a.d.1.2 2
5.3 odd 4 1125.2.a.c.1.1 2
5.4 even 2 inner 1125.2.b.f.874.4 4
12.11 even 2 2000.2.c.e.1249.3 4
15.2 even 4 125.2.a.a.1.1 2
15.8 even 4 125.2.a.b.1.2 yes 2
15.14 odd 2 125.2.b.b.124.1 4
60.23 odd 4 2000.2.a.a.1.2 2
60.47 odd 4 2000.2.a.l.1.1 2
60.59 even 2 2000.2.c.e.1249.2 4
75.2 even 20 625.2.d.d.501.1 4
75.8 even 20 625.2.d.a.251.1 4
75.11 odd 10 625.2.e.g.124.2 8
75.14 odd 10 625.2.e.g.124.1 8
75.17 even 20 625.2.d.j.251.1 4
75.23 even 20 625.2.d.g.501.1 4
75.29 odd 10 625.2.e.d.249.1 8
75.38 even 20 625.2.d.g.126.1 4
75.41 odd 10 625.2.e.g.499.1 8
75.44 odd 10 625.2.e.d.374.2 8
75.47 even 20 625.2.d.j.376.1 4
75.53 even 20 625.2.d.a.376.1 4
75.56 odd 10 625.2.e.d.374.1 8
75.59 odd 10 625.2.e.g.499.2 8
75.62 even 20 625.2.d.d.126.1 4
75.71 odd 10 625.2.e.d.249.2 8
105.62 odd 4 6125.2.a.d.1.1 2
105.83 odd 4 6125.2.a.g.1.2 2
120.53 even 4 8000.2.a.d.1.2 2
120.77 even 4 8000.2.a.v.1.1 2
120.83 odd 4 8000.2.a.u.1.1 2
120.107 odd 4 8000.2.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
125.2.a.a.1.1 2 15.2 even 4
125.2.a.b.1.2 yes 2 15.8 even 4
125.2.b.b.124.1 4 15.14 odd 2
125.2.b.b.124.4 4 3.2 odd 2
625.2.d.a.251.1 4 75.8 even 20
625.2.d.a.376.1 4 75.53 even 20
625.2.d.d.126.1 4 75.62 even 20
625.2.d.d.501.1 4 75.2 even 20
625.2.d.g.126.1 4 75.38 even 20
625.2.d.g.501.1 4 75.23 even 20
625.2.d.j.251.1 4 75.17 even 20
625.2.d.j.376.1 4 75.47 even 20
625.2.e.d.249.1 8 75.29 odd 10
625.2.e.d.249.2 8 75.71 odd 10
625.2.e.d.374.1 8 75.56 odd 10
625.2.e.d.374.2 8 75.44 odd 10
625.2.e.g.124.1 8 75.14 odd 10
625.2.e.g.124.2 8 75.11 odd 10
625.2.e.g.499.1 8 75.41 odd 10
625.2.e.g.499.2 8 75.59 odd 10
1125.2.a.c.1.1 2 5.3 odd 4
1125.2.a.d.1.2 2 5.2 odd 4
1125.2.b.f.874.1 4 1.1 even 1 trivial
1125.2.b.f.874.4 4 5.4 even 2 inner
2000.2.a.a.1.2 2 60.23 odd 4
2000.2.a.l.1.1 2 60.47 odd 4
2000.2.c.e.1249.2 4 60.59 even 2
2000.2.c.e.1249.3 4 12.11 even 2
6125.2.a.d.1.1 2 105.62 odd 4
6125.2.a.g.1.2 2 105.83 odd 4
8000.2.a.c.1.2 2 120.107 odd 4
8000.2.a.d.1.2 2 120.53 even 4
8000.2.a.u.1.1 2 120.83 odd 4
8000.2.a.v.1.1 2 120.77 even 4