Properties

Label 625.2.d.a.251.1
Level $625$
Weight $2$
Character 625.251
Analytic conductor $4.991$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [625,2,Mod(126,625)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("625.126"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(625, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 625 = 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 625.d (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-3,-4,3,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.99065012633\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 125)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 251.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 625.251
Dual form 625.2.d.a.376.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30902 + 0.951057i) q^{2} +(0.118034 - 0.363271i) q^{3} +(0.190983 - 0.587785i) q^{4} +(0.190983 + 0.587785i) q^{6} +3.00000 q^{7} +(-0.690983 - 2.12663i) q^{8} +(2.30902 + 1.67760i) q^{9} +(2.42705 - 1.76336i) q^{11} +(-0.190983 - 0.138757i) q^{12} +(-3.92705 - 2.85317i) q^{13} +(-3.92705 + 2.85317i) q^{14} +(3.92705 + 2.85317i) q^{16} +(-1.30902 - 4.02874i) q^{17} -4.61803 q^{18} +(-1.11803 - 3.44095i) q^{19} +(0.354102 - 1.08981i) q^{21} +(-1.50000 + 4.61653i) q^{22} +(-1.00000 + 0.726543i) q^{23} -0.854102 q^{24} +7.85410 q^{26} +(1.80902 - 1.31433i) q^{27} +(0.572949 - 1.76336i) q^{28} +(2.07295 - 6.37988i) q^{29} +(1.57295 + 4.84104i) q^{31} -3.38197 q^{32} +(-0.354102 - 1.08981i) q^{33} +(5.54508 + 4.02874i) q^{34} +(1.42705 - 1.03681i) q^{36} +(3.00000 + 2.17963i) q^{37} +(4.73607 + 3.44095i) q^{38} +(-1.50000 + 1.08981i) q^{39} +(2.42705 + 1.76336i) q^{41} +(0.572949 + 1.76336i) q^{42} +9.00000 q^{43} +(-0.572949 - 1.76336i) q^{44} +(0.618034 - 1.90211i) q^{46} +(2.57295 - 7.91872i) q^{47} +(1.50000 - 1.08981i) q^{48} +2.00000 q^{49} -1.61803 q^{51} +(-2.42705 + 1.76336i) q^{52} +(-1.42705 + 4.39201i) q^{53} +(-1.11803 + 3.44095i) q^{54} +(-2.07295 - 6.37988i) q^{56} -1.38197 q^{57} +(3.35410 + 10.3229i) q^{58} +(-3.35410 - 2.43690i) q^{59} +(4.92705 - 3.57971i) q^{61} +(-6.66312 - 4.84104i) q^{62} +(6.92705 + 5.03280i) q^{63} +(-3.42705 + 2.48990i) q^{64} +(1.50000 + 1.08981i) q^{66} +(4.28115 + 13.1760i) q^{67} -2.61803 q^{68} +(0.145898 + 0.449028i) q^{69} +(-0.927051 + 2.85317i) q^{71} +(1.97214 - 6.06961i) q^{72} +(1.50000 - 1.08981i) q^{73} -6.00000 q^{74} -2.23607 q^{76} +(7.28115 - 5.29007i) q^{77} +(0.927051 - 2.85317i) q^{78} +(0.163119 - 0.502029i) q^{79} +(2.38197 + 7.33094i) q^{81} -4.85410 q^{82} +(-0.145898 - 0.449028i) q^{83} +(-0.572949 - 0.416272i) q^{84} +(-11.7812 + 8.55951i) q^{86} +(-2.07295 - 1.50609i) q^{87} +(-5.42705 - 3.94298i) q^{88} +(10.8541 - 7.88597i) q^{89} +(-11.7812 - 8.55951i) q^{91} +(0.236068 + 0.726543i) q^{92} +1.94427 q^{93} +(4.16312 + 12.8128i) q^{94} +(-0.399187 + 1.22857i) q^{96} +(-2.42705 + 7.46969i) q^{97} +(-2.61803 + 1.90211i) q^{98} +8.56231 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{2} - 4 q^{3} + 3 q^{4} + 3 q^{6} + 12 q^{7} - 5 q^{8} + 7 q^{9} + 3 q^{11} - 3 q^{12} - 9 q^{13} - 9 q^{14} + 9 q^{16} - 3 q^{17} - 14 q^{18} - 12 q^{21} - 6 q^{22} - 4 q^{23} + 10 q^{24} + 18 q^{26}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/625\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30902 + 0.951057i −0.925615 + 0.672499i −0.944915 0.327315i \(-0.893856\pi\)
0.0193004 + 0.999814i \(0.493856\pi\)
\(3\) 0.118034 0.363271i 0.0681470 0.209735i −0.911184 0.412000i \(-0.864830\pi\)
0.979331 + 0.202265i \(0.0648303\pi\)
\(4\) 0.190983 0.587785i 0.0954915 0.293893i
\(5\) 0 0
\(6\) 0.190983 + 0.587785i 0.0779685 + 0.239962i
\(7\) 3.00000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) −0.690983 2.12663i −0.244299 0.751876i
\(9\) 2.30902 + 1.67760i 0.769672 + 0.559200i
\(10\) 0 0
\(11\) 2.42705 1.76336i 0.731783 0.531672i −0.158344 0.987384i \(-0.550615\pi\)
0.890127 + 0.455712i \(0.150615\pi\)
\(12\) −0.190983 0.138757i −0.0551320 0.0400558i
\(13\) −3.92705 2.85317i −1.08917 0.791327i −0.109909 0.993942i \(-0.535056\pi\)
−0.979259 + 0.202615i \(0.935056\pi\)
\(14\) −3.92705 + 2.85317i −1.04955 + 0.762542i
\(15\) 0 0
\(16\) 3.92705 + 2.85317i 0.981763 + 0.713292i
\(17\) −1.30902 4.02874i −0.317483 0.977113i −0.974720 0.223429i \(-0.928275\pi\)
0.657237 0.753684i \(-0.271725\pi\)
\(18\) −4.61803 −1.08848
\(19\) −1.11803 3.44095i −0.256495 0.789409i −0.993532 0.113557i \(-0.963776\pi\)
0.737037 0.675852i \(-0.236224\pi\)
\(20\) 0 0
\(21\) 0.354102 1.08981i 0.0772714 0.237817i
\(22\) −1.50000 + 4.61653i −0.319801 + 0.984247i
\(23\) −1.00000 + 0.726543i −0.208514 + 0.151495i −0.687141 0.726524i \(-0.741135\pi\)
0.478627 + 0.878018i \(0.341135\pi\)
\(24\) −0.854102 −0.174343
\(25\) 0 0
\(26\) 7.85410 1.54032
\(27\) 1.80902 1.31433i 0.348145 0.252942i
\(28\) 0.572949 1.76336i 0.108277 0.333243i
\(29\) 2.07295 6.37988i 0.384937 1.18471i −0.551589 0.834116i \(-0.685978\pi\)
0.936526 0.350598i \(-0.114022\pi\)
\(30\) 0 0
\(31\) 1.57295 + 4.84104i 0.282510 + 0.869476i 0.987134 + 0.159895i \(0.0511157\pi\)
−0.704624 + 0.709581i \(0.748884\pi\)
\(32\) −3.38197 −0.597853
\(33\) −0.354102 1.08981i −0.0616412 0.189712i
\(34\) 5.54508 + 4.02874i 0.950974 + 0.690923i
\(35\) 0 0
\(36\) 1.42705 1.03681i 0.237842 0.172802i
\(37\) 3.00000 + 2.17963i 0.493197 + 0.358329i 0.806412 0.591354i \(-0.201406\pi\)
−0.313215 + 0.949682i \(0.601406\pi\)
\(38\) 4.73607 + 3.44095i 0.768292 + 0.558197i
\(39\) −1.50000 + 1.08981i −0.240192 + 0.174510i
\(40\) 0 0
\(41\) 2.42705 + 1.76336i 0.379042 + 0.275390i 0.760950 0.648810i \(-0.224733\pi\)
−0.381909 + 0.924200i \(0.624733\pi\)
\(42\) 0.572949 + 1.76336i 0.0884080 + 0.272092i
\(43\) 9.00000 1.37249 0.686244 0.727372i \(-0.259258\pi\)
0.686244 + 0.727372i \(0.259258\pi\)
\(44\) −0.572949 1.76336i −0.0863753 0.265836i
\(45\) 0 0
\(46\) 0.618034 1.90211i 0.0911241 0.280451i
\(47\) 2.57295 7.91872i 0.375303 1.15506i −0.567971 0.823049i \(-0.692271\pi\)
0.943274 0.332016i \(-0.107729\pi\)
\(48\) 1.50000 1.08981i 0.216506 0.157301i
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) −1.61803 −0.226570
\(52\) −2.42705 + 1.76336i −0.336571 + 0.244533i
\(53\) −1.42705 + 4.39201i −0.196021 + 0.603289i 0.803943 + 0.594707i \(0.202732\pi\)
−0.999963 + 0.00858231i \(0.997268\pi\)
\(54\) −1.11803 + 3.44095i −0.152145 + 0.468255i
\(55\) 0 0
\(56\) −2.07295 6.37988i −0.277009 0.852547i
\(57\) −1.38197 −0.183046
\(58\) 3.35410 + 10.3229i 0.440415 + 1.35546i
\(59\) −3.35410 2.43690i −0.436667 0.317257i 0.347642 0.937627i \(-0.386982\pi\)
−0.784309 + 0.620370i \(0.786982\pi\)
\(60\) 0 0
\(61\) 4.92705 3.57971i 0.630844 0.458335i −0.225848 0.974162i \(-0.572515\pi\)
0.856693 + 0.515827i \(0.172515\pi\)
\(62\) −6.66312 4.84104i −0.846217 0.614813i
\(63\) 6.92705 + 5.03280i 0.872726 + 0.634073i
\(64\) −3.42705 + 2.48990i −0.428381 + 0.311237i
\(65\) 0 0
\(66\) 1.50000 + 1.08981i 0.184637 + 0.134147i
\(67\) 4.28115 + 13.1760i 0.523026 + 1.60971i 0.768186 + 0.640226i \(0.221159\pi\)
−0.245160 + 0.969483i \(0.578841\pi\)
\(68\) −2.61803 −0.317483
\(69\) 0.145898 + 0.449028i 0.0175641 + 0.0540566i
\(70\) 0 0
\(71\) −0.927051 + 2.85317i −0.110021 + 0.338609i −0.990876 0.134777i \(-0.956968\pi\)
0.880855 + 0.473386i \(0.156968\pi\)
\(72\) 1.97214 6.06961i 0.232418 0.715310i
\(73\) 1.50000 1.08981i 0.175562 0.127553i −0.496534 0.868017i \(-0.665394\pi\)
0.672096 + 0.740464i \(0.265394\pi\)
\(74\) −6.00000 −0.697486
\(75\) 0 0
\(76\) −2.23607 −0.256495
\(77\) 7.28115 5.29007i 0.829764 0.602859i
\(78\) 0.927051 2.85317i 0.104968 0.323058i
\(79\) 0.163119 0.502029i 0.0183523 0.0564826i −0.941461 0.337122i \(-0.890547\pi\)
0.959813 + 0.280639i \(0.0905465\pi\)
\(80\) 0 0
\(81\) 2.38197 + 7.33094i 0.264663 + 0.814549i
\(82\) −4.85410 −0.536046
\(83\) −0.145898 0.449028i −0.0160144 0.0492872i 0.942730 0.333557i \(-0.108249\pi\)
−0.958744 + 0.284270i \(0.908249\pi\)
\(84\) −0.572949 0.416272i −0.0625139 0.0454190i
\(85\) 0 0
\(86\) −11.7812 + 8.55951i −1.27039 + 0.922996i
\(87\) −2.07295 1.50609i −0.222243 0.161469i
\(88\) −5.42705 3.94298i −0.578526 0.420323i
\(89\) 10.8541 7.88597i 1.15053 0.835911i 0.161981 0.986794i \(-0.448212\pi\)
0.988552 + 0.150883i \(0.0482117\pi\)
\(90\) 0 0
\(91\) −11.7812 8.55951i −1.23500 0.897280i
\(92\) 0.236068 + 0.726543i 0.0246118 + 0.0757473i
\(93\) 1.94427 0.201612
\(94\) 4.16312 + 12.8128i 0.429393 + 1.32154i
\(95\) 0 0
\(96\) −0.399187 + 1.22857i −0.0407418 + 0.125391i
\(97\) −2.42705 + 7.46969i −0.246430 + 0.758433i 0.748968 + 0.662606i \(0.230549\pi\)
−0.995398 + 0.0958268i \(0.969451\pi\)
\(98\) −2.61803 + 1.90211i −0.264461 + 0.192142i
\(99\) 8.56231 0.860544
\(100\) 0 0
\(101\) −3.00000 −0.298511 −0.149256 0.988799i \(-0.547688\pi\)
−0.149256 + 0.988799i \(0.547688\pi\)
\(102\) 2.11803 1.53884i 0.209717 0.152368i
\(103\) −3.92705 + 12.0862i −0.386944 + 1.19089i 0.548116 + 0.836402i \(0.315345\pi\)
−0.935060 + 0.354489i \(0.884655\pi\)
\(104\) −3.35410 + 10.3229i −0.328897 + 1.01224i
\(105\) 0 0
\(106\) −2.30902 7.10642i −0.224272 0.690237i
\(107\) −0.0901699 −0.00871706 −0.00435853 0.999991i \(-0.501387\pi\)
−0.00435853 + 0.999991i \(0.501387\pi\)
\(108\) −0.427051 1.31433i −0.0410930 0.126471i
\(109\) −4.30902 3.13068i −0.412729 0.299865i 0.361977 0.932187i \(-0.382102\pi\)
−0.774706 + 0.632322i \(0.782102\pi\)
\(110\) 0 0
\(111\) 1.14590 0.832544i 0.108764 0.0790215i
\(112\) 11.7812 + 8.55951i 1.11321 + 0.808798i
\(113\) 1.66312 + 1.20833i 0.156453 + 0.113670i 0.663258 0.748391i \(-0.269173\pi\)
−0.506804 + 0.862061i \(0.669173\pi\)
\(114\) 1.80902 1.31433i 0.169430 0.123098i
\(115\) 0 0
\(116\) −3.35410 2.43690i −0.311421 0.226260i
\(117\) −4.28115 13.1760i −0.395793 1.21812i
\(118\) 6.70820 0.617540
\(119\) −3.92705 12.0862i −0.359992 1.10794i
\(120\) 0 0
\(121\) −0.618034 + 1.90211i −0.0561849 + 0.172919i
\(122\) −3.04508 + 9.37181i −0.275689 + 0.848484i
\(123\) 0.927051 0.673542i 0.0835894 0.0607312i
\(124\) 3.14590 0.282510
\(125\) 0 0
\(126\) −13.8541 −1.23422
\(127\) −7.85410 + 5.70634i −0.696939 + 0.506356i −0.878934 0.476944i \(-0.841745\pi\)
0.181995 + 0.983299i \(0.441745\pi\)
\(128\) 4.20820 12.9515i 0.371956 1.14476i
\(129\) 1.06231 3.26944i 0.0935308 0.287858i
\(130\) 0 0
\(131\) −3.79180 11.6699i −0.331291 1.01961i −0.968520 0.248934i \(-0.919920\pi\)
0.637230 0.770674i \(-0.280080\pi\)
\(132\) −0.708204 −0.0616412
\(133\) −3.35410 10.3229i −0.290838 0.895106i
\(134\) −18.1353 13.1760i −1.56665 1.13824i
\(135\) 0 0
\(136\) −7.66312 + 5.56758i −0.657107 + 0.477416i
\(137\) 4.54508 + 3.30220i 0.388313 + 0.282126i 0.764764 0.644311i \(-0.222856\pi\)
−0.376451 + 0.926437i \(0.622856\pi\)
\(138\) −0.618034 0.449028i −0.0526105 0.0382238i
\(139\) 9.89919 7.19218i 0.839638 0.610033i −0.0826315 0.996580i \(-0.526332\pi\)
0.922270 + 0.386547i \(0.126332\pi\)
\(140\) 0 0
\(141\) −2.57295 1.86936i −0.216681 0.157428i
\(142\) −1.50000 4.61653i −0.125877 0.387410i
\(143\) −14.5623 −1.21776
\(144\) 4.28115 + 13.1760i 0.356763 + 1.09800i
\(145\) 0 0
\(146\) −0.927051 + 2.85317i −0.0767233 + 0.236130i
\(147\) 0.236068 0.726543i 0.0194706 0.0599242i
\(148\) 1.85410 1.34708i 0.152406 0.110730i
\(149\) −15.0000 −1.22885 −0.614424 0.788976i \(-0.710612\pi\)
−0.614424 + 0.788976i \(0.710612\pi\)
\(150\) 0 0
\(151\) −21.0902 −1.71629 −0.858147 0.513404i \(-0.828384\pi\)
−0.858147 + 0.513404i \(0.828384\pi\)
\(152\) −6.54508 + 4.75528i −0.530876 + 0.385704i
\(153\) 3.73607 11.4984i 0.302043 0.929593i
\(154\) −4.50000 + 13.8496i −0.362620 + 1.11603i
\(155\) 0 0
\(156\) 0.354102 + 1.08981i 0.0283508 + 0.0872549i
\(157\) 12.2705 0.979293 0.489647 0.871921i \(-0.337126\pi\)
0.489647 + 0.871921i \(0.337126\pi\)
\(158\) 0.263932 + 0.812299i 0.0209973 + 0.0646231i
\(159\) 1.42705 + 1.03681i 0.113173 + 0.0822246i
\(160\) 0 0
\(161\) −3.00000 + 2.17963i −0.236433 + 0.171779i
\(162\) −10.0902 7.33094i −0.792759 0.575973i
\(163\) −16.0623 11.6699i −1.25810 0.914061i −0.259434 0.965761i \(-0.583536\pi\)
−0.998663 + 0.0516999i \(0.983536\pi\)
\(164\) 1.50000 1.08981i 0.117130 0.0851002i
\(165\) 0 0
\(166\) 0.618034 + 0.449028i 0.0479687 + 0.0348513i
\(167\) −2.85410 8.78402i −0.220857 0.679728i −0.998686 0.0512518i \(-0.983679\pi\)
0.777829 0.628476i \(-0.216321\pi\)
\(168\) −2.56231 −0.197686
\(169\) 3.26393 + 10.0453i 0.251072 + 0.772719i
\(170\) 0 0
\(171\) 3.19098 9.82084i 0.244021 0.751018i
\(172\) 1.71885 5.29007i 0.131061 0.403364i
\(173\) −0.0450850 + 0.0327561i −0.00342775 + 0.00249040i −0.589498 0.807770i \(-0.700674\pi\)
0.586070 + 0.810260i \(0.300674\pi\)
\(174\) 4.14590 0.314300
\(175\) 0 0
\(176\) 14.5623 1.09768
\(177\) −1.28115 + 0.930812i −0.0962974 + 0.0699641i
\(178\) −6.70820 + 20.6457i −0.502801 + 1.54746i
\(179\) 2.07295 6.37988i 0.154939 0.476855i −0.843215 0.537576i \(-0.819340\pi\)
0.998155 + 0.0607213i \(0.0193401\pi\)
\(180\) 0 0
\(181\) 5.61803 + 17.2905i 0.417585 + 1.28520i 0.909918 + 0.414788i \(0.136144\pi\)
−0.492333 + 0.870407i \(0.663856\pi\)
\(182\) 23.5623 1.74655
\(183\) −0.718847 2.21238i −0.0531387 0.163544i
\(184\) 2.23607 + 1.62460i 0.164845 + 0.119767i
\(185\) 0 0
\(186\) −2.54508 + 1.84911i −0.186615 + 0.135584i
\(187\) −10.2812 7.46969i −0.751832 0.546238i
\(188\) −4.16312 3.02468i −0.303627 0.220598i
\(189\) 5.42705 3.94298i 0.394760 0.286810i
\(190\) 0 0
\(191\) −9.70820 7.05342i −0.702461 0.510368i 0.178272 0.983981i \(-0.442949\pi\)
−0.880733 + 0.473614i \(0.842949\pi\)
\(192\) 0.500000 + 1.53884i 0.0360844 + 0.111056i
\(193\) −15.2705 −1.09920 −0.549598 0.835429i \(-0.685219\pi\)
−0.549598 + 0.835429i \(0.685219\pi\)
\(194\) −3.92705 12.0862i −0.281946 0.867740i
\(195\) 0 0
\(196\) 0.381966 1.17557i 0.0272833 0.0839693i
\(197\) 1.25329 3.85723i 0.0892931 0.274816i −0.896431 0.443183i \(-0.853849\pi\)
0.985724 + 0.168367i \(0.0538493\pi\)
\(198\) −11.2082 + 8.14324i −0.796532 + 0.578715i
\(199\) 16.1803 1.14699 0.573497 0.819208i \(-0.305586\pi\)
0.573497 + 0.819208i \(0.305586\pi\)
\(200\) 0 0
\(201\) 5.29180 0.373255
\(202\) 3.92705 2.85317i 0.276306 0.200748i
\(203\) 6.21885 19.1396i 0.436477 1.34334i
\(204\) −0.309017 + 0.951057i −0.0216355 + 0.0665873i
\(205\) 0 0
\(206\) −6.35410 19.5559i −0.442711 1.36253i
\(207\) −3.52786 −0.245204
\(208\) −7.28115 22.4091i −0.504857 1.55379i
\(209\) −8.78115 6.37988i −0.607405 0.441306i
\(210\) 0 0
\(211\) 3.38197 2.45714i 0.232824 0.169157i −0.465256 0.885176i \(-0.654038\pi\)
0.698080 + 0.716019i \(0.254038\pi\)
\(212\) 2.30902 + 1.67760i 0.158584 + 0.115218i
\(213\) 0.927051 + 0.673542i 0.0635205 + 0.0461503i
\(214\) 0.118034 0.0857567i 0.00806864 0.00586221i
\(215\) 0 0
\(216\) −4.04508 2.93893i −0.275233 0.199969i
\(217\) 4.71885 + 14.5231i 0.320336 + 0.985893i
\(218\) 8.61803 0.583687
\(219\) −0.218847 0.673542i −0.0147883 0.0455137i
\(220\) 0 0
\(221\) −6.35410 + 19.5559i −0.427423 + 1.31547i
\(222\) −0.708204 + 2.17963i −0.0475315 + 0.146287i
\(223\) 1.50000 1.08981i 0.100447 0.0729793i −0.536428 0.843946i \(-0.680227\pi\)
0.636875 + 0.770967i \(0.280227\pi\)
\(224\) −10.1459 −0.677901
\(225\) 0 0
\(226\) −3.32624 −0.221258
\(227\) −5.35410 + 3.88998i −0.355364 + 0.258187i −0.751116 0.660170i \(-0.770484\pi\)
0.395752 + 0.918358i \(0.370484\pi\)
\(228\) −0.263932 + 0.812299i −0.0174793 + 0.0537958i
\(229\) −0.427051 + 1.31433i −0.0282203 + 0.0868532i −0.964175 0.265268i \(-0.914540\pi\)
0.935954 + 0.352121i \(0.114540\pi\)
\(230\) 0 0
\(231\) −1.06231 3.26944i −0.0698946 0.215113i
\(232\) −15.0000 −0.984798
\(233\) 8.30902 + 25.5725i 0.544342 + 1.67531i 0.722550 + 0.691319i \(0.242970\pi\)
−0.178208 + 0.983993i \(0.557030\pi\)
\(234\) 18.1353 + 13.1760i 1.18554 + 0.861344i
\(235\) 0 0
\(236\) −2.07295 + 1.50609i −0.134937 + 0.0980378i
\(237\) −0.163119 0.118513i −0.0105957 0.00769824i
\(238\) 16.6353 + 12.0862i 1.07830 + 0.783433i
\(239\) −20.9164 + 15.1967i −1.35297 + 0.982990i −0.354112 + 0.935203i \(0.615217\pi\)
−0.998858 + 0.0477873i \(0.984783\pi\)
\(240\) 0 0
\(241\) 15.5172 + 11.2739i 0.999552 + 0.726217i 0.961992 0.273077i \(-0.0880415\pi\)
0.0375600 + 0.999294i \(0.488041\pi\)
\(242\) −1.00000 3.07768i −0.0642824 0.197841i
\(243\) 9.65248 0.619207
\(244\) −1.16312 3.57971i −0.0744611 0.229168i
\(245\) 0 0
\(246\) −0.572949 + 1.76336i −0.0365299 + 0.112427i
\(247\) −5.42705 + 16.7027i −0.345315 + 1.06277i
\(248\) 9.20820 6.69015i 0.584722 0.424825i
\(249\) −0.180340 −0.0114286
\(250\) 0 0
\(251\) 6.27051 0.395791 0.197896 0.980223i \(-0.436589\pi\)
0.197896 + 0.980223i \(0.436589\pi\)
\(252\) 4.28115 3.11044i 0.269687 0.195939i
\(253\) −1.14590 + 3.52671i −0.0720420 + 0.221722i
\(254\) 4.85410 14.9394i 0.304573 0.937381i
\(255\) 0 0
\(256\) 4.19098 + 12.8985i 0.261936 + 0.806157i
\(257\) −29.3607 −1.83147 −0.915734 0.401784i \(-0.868390\pi\)
−0.915734 + 0.401784i \(0.868390\pi\)
\(258\) 1.71885 + 5.29007i 0.107011 + 0.329345i
\(259\) 9.00000 + 6.53888i 0.559233 + 0.406306i
\(260\) 0 0
\(261\) 15.4894 11.2537i 0.958767 0.696585i
\(262\) 16.0623 + 11.6699i 0.992333 + 0.720972i
\(263\) 13.2082 + 9.59632i 0.814453 + 0.591735i 0.915118 0.403186i \(-0.132097\pi\)
−0.100665 + 0.994920i \(0.532097\pi\)
\(264\) −2.07295 + 1.50609i −0.127581 + 0.0926932i
\(265\) 0 0
\(266\) 14.2082 + 10.3229i 0.871161 + 0.632935i
\(267\) −1.58359 4.87380i −0.0969143 0.298271i
\(268\) 8.56231 0.523026
\(269\) 0.791796 + 2.43690i 0.0482767 + 0.148580i 0.972289 0.233783i \(-0.0751104\pi\)
−0.924012 + 0.382363i \(0.875110\pi\)
\(270\) 0 0
\(271\) 6.20820 19.1069i 0.377122 1.16066i −0.564915 0.825149i \(-0.691091\pi\)
0.942036 0.335511i \(-0.108909\pi\)
\(272\) 6.35410 19.5559i 0.385274 1.18575i
\(273\) −4.50000 + 3.26944i −0.272352 + 0.197876i
\(274\) −9.09017 −0.549157
\(275\) 0 0
\(276\) 0.291796 0.0175641
\(277\) 4.28115 3.11044i 0.257230 0.186888i −0.451695 0.892172i \(-0.649181\pi\)
0.708925 + 0.705284i \(0.249181\pi\)
\(278\) −6.11803 + 18.8294i −0.366935 + 1.12931i
\(279\) −4.48936 + 13.8168i −0.268771 + 0.827191i
\(280\) 0 0
\(281\) 3.70820 + 11.4127i 0.221213 + 0.680823i 0.998654 + 0.0518675i \(0.0165174\pi\)
−0.777441 + 0.628956i \(0.783483\pi\)
\(282\) 5.14590 0.306434
\(283\) 4.85410 + 14.9394i 0.288546 + 0.888055i 0.985313 + 0.170757i \(0.0546212\pi\)
−0.696767 + 0.717298i \(0.745379\pi\)
\(284\) 1.50000 + 1.08981i 0.0890086 + 0.0646686i
\(285\) 0 0
\(286\) 19.0623 13.8496i 1.12718 0.818943i
\(287\) 7.28115 + 5.29007i 0.429793 + 0.312263i
\(288\) −7.80902 5.67358i −0.460151 0.334319i
\(289\) −0.763932 + 0.555029i −0.0449372 + 0.0326488i
\(290\) 0 0
\(291\) 2.42705 + 1.76336i 0.142276 + 0.103370i
\(292\) −0.354102 1.08981i −0.0207223 0.0637765i
\(293\) 21.3607 1.24790 0.623952 0.781463i \(-0.285526\pi\)
0.623952 + 0.781463i \(0.285526\pi\)
\(294\) 0.381966 + 1.17557i 0.0222767 + 0.0685607i
\(295\) 0 0
\(296\) 2.56231 7.88597i 0.148931 0.458363i
\(297\) 2.07295 6.37988i 0.120285 0.370198i
\(298\) 19.6353 14.2658i 1.13744 0.826398i
\(299\) 6.00000 0.346989
\(300\) 0 0
\(301\) 27.0000 1.55625
\(302\) 27.6074 20.0579i 1.58863 1.15420i
\(303\) −0.354102 + 1.08981i −0.0203426 + 0.0626082i
\(304\) 5.42705 16.7027i 0.311263 0.957968i
\(305\) 0 0
\(306\) 6.04508 + 18.6049i 0.345575 + 1.06357i
\(307\) −6.27051 −0.357877 −0.178938 0.983860i \(-0.557266\pi\)
−0.178938 + 0.983860i \(0.557266\pi\)
\(308\) −1.71885 5.29007i −0.0979404 0.301430i
\(309\) 3.92705 + 2.85317i 0.223402 + 0.162311i
\(310\) 0 0
\(311\) −17.2082 + 12.5025i −0.975788 + 0.708951i −0.956763 0.290868i \(-0.906056\pi\)
−0.0190245 + 0.999819i \(0.506056\pi\)
\(312\) 3.35410 + 2.43690i 0.189889 + 0.137962i
\(313\) 15.7082 + 11.4127i 0.887880 + 0.645083i 0.935324 0.353791i \(-0.115108\pi\)
−0.0474443 + 0.998874i \(0.515108\pi\)
\(314\) −16.0623 + 11.6699i −0.906448 + 0.658573i
\(315\) 0 0
\(316\) −0.263932 0.191758i −0.0148473 0.0107872i
\(317\) 8.32624 + 25.6255i 0.467648 + 1.43927i 0.855621 + 0.517602i \(0.173175\pi\)
−0.387973 + 0.921671i \(0.626825\pi\)
\(318\) −2.85410 −0.160050
\(319\) −6.21885 19.1396i −0.348189 1.07161i
\(320\) 0 0
\(321\) −0.0106431 + 0.0327561i −0.000594041 + 0.00182827i
\(322\) 1.85410 5.70634i 0.103325 0.318002i
\(323\) −12.3992 + 9.00854i −0.689909 + 0.501248i
\(324\) 4.76393 0.264663
\(325\) 0 0
\(326\) 32.1246 1.77922
\(327\) −1.64590 + 1.19581i −0.0910184 + 0.0661287i
\(328\) 2.07295 6.37988i 0.114459 0.352270i
\(329\) 7.71885 23.7562i 0.425554 1.30972i
\(330\) 0 0
\(331\) −6.51722 20.0579i −0.358219 1.10248i −0.954119 0.299426i \(-0.903205\pi\)
0.595901 0.803058i \(-0.296795\pi\)
\(332\) −0.291796 −0.0160144
\(333\) 3.27051 + 10.0656i 0.179223 + 0.551591i
\(334\) 12.0902 + 8.78402i 0.661545 + 0.480640i
\(335\) 0 0
\(336\) 4.50000 3.26944i 0.245495 0.178363i
\(337\) −24.1353 17.5353i −1.31473 0.955208i −0.999982 0.00603323i \(-0.998080\pi\)
−0.314749 0.949175i \(-0.601920\pi\)
\(338\) −13.8262 10.0453i −0.752048 0.546395i
\(339\) 0.635255 0.461540i 0.0345023 0.0250674i
\(340\) 0 0
\(341\) 12.3541 + 8.97578i 0.669012 + 0.486066i
\(342\) 5.16312 + 15.8904i 0.279189 + 0.859257i
\(343\) −15.0000 −0.809924
\(344\) −6.21885 19.1396i −0.335298 1.03194i
\(345\) 0 0
\(346\) 0.0278640 0.0857567i 0.00149798 0.00461031i
\(347\) −4.92705 + 15.1639i −0.264498 + 0.814041i 0.727311 + 0.686308i \(0.240770\pi\)
−0.991809 + 0.127733i \(0.959230\pi\)
\(348\) −1.28115 + 0.930812i −0.0686770 + 0.0498968i
\(349\) −17.3607 −0.929296 −0.464648 0.885496i \(-0.653819\pi\)
−0.464648 + 0.885496i \(0.653819\pi\)
\(350\) 0 0
\(351\) −10.8541 −0.579349
\(352\) −8.20820 + 5.96361i −0.437499 + 0.317861i
\(353\) −1.20163 + 3.69822i −0.0639561 + 0.196837i −0.977929 0.208940i \(-0.932999\pi\)
0.913972 + 0.405776i \(0.132999\pi\)
\(354\) 0.791796 2.43690i 0.0420835 0.129520i
\(355\) 0 0
\(356\) −2.56231 7.88597i −0.135802 0.417955i
\(357\) −4.85410 −0.256906
\(358\) 3.35410 + 10.3229i 0.177270 + 0.545580i
\(359\) 8.78115 + 6.37988i 0.463452 + 0.336717i 0.794884 0.606762i \(-0.207532\pi\)
−0.331432 + 0.943479i \(0.607532\pi\)
\(360\) 0 0
\(361\) 4.78115 3.47371i 0.251640 0.182827i
\(362\) −23.7984 17.2905i −1.25081 0.908770i
\(363\) 0.618034 + 0.449028i 0.0324384 + 0.0235679i
\(364\) −7.28115 + 5.29007i −0.381636 + 0.277275i
\(365\) 0 0
\(366\) 3.04508 + 2.21238i 0.159169 + 0.115643i
\(367\) −0.354102 1.08981i −0.0184840 0.0568878i 0.941389 0.337323i \(-0.109521\pi\)
−0.959873 + 0.280435i \(0.909521\pi\)
\(368\) −6.00000 −0.312772
\(369\) 2.64590 + 8.14324i 0.137740 + 0.423920i
\(370\) 0 0
\(371\) −4.28115 + 13.1760i −0.222266 + 0.684066i
\(372\) 0.371323 1.14281i 0.0192522 0.0592522i
\(373\) 1.50000 1.08981i 0.0776671 0.0564284i −0.548274 0.836299i \(-0.684715\pi\)
0.625941 + 0.779870i \(0.284715\pi\)
\(374\) 20.5623 1.06325
\(375\) 0 0
\(376\) −18.6180 −0.960152
\(377\) −26.3435 + 19.1396i −1.35676 + 0.985742i
\(378\) −3.35410 + 10.3229i −0.172516 + 0.530951i
\(379\) −2.33688 + 7.19218i −0.120038 + 0.369437i −0.992964 0.118414i \(-0.962219\pi\)
0.872927 + 0.487851i \(0.162219\pi\)
\(380\) 0 0
\(381\) 1.14590 + 3.52671i 0.0587061 + 0.180679i
\(382\) 19.4164 0.993430
\(383\) −10.9615 33.7360i −0.560106 1.72383i −0.682062 0.731294i \(-0.738917\pi\)
0.121956 0.992535i \(-0.461083\pi\)
\(384\) −4.20820 3.05744i −0.214749 0.156024i
\(385\) 0 0
\(386\) 19.9894 14.5231i 1.01743 0.739207i
\(387\) 20.7812 + 15.0984i 1.05637 + 0.767494i
\(388\) 3.92705 + 2.85317i 0.199366 + 0.144848i
\(389\) −1.28115 + 0.930812i −0.0649570 + 0.0471940i −0.619790 0.784768i \(-0.712782\pi\)
0.554833 + 0.831962i \(0.312782\pi\)
\(390\) 0 0
\(391\) 4.23607 + 3.07768i 0.214227 + 0.155645i
\(392\) −1.38197 4.25325i −0.0697998 0.214822i
\(393\) −4.68692 −0.236424
\(394\) 2.02786 + 6.24112i 0.102162 + 0.314423i
\(395\) 0 0
\(396\) 1.63525 5.03280i 0.0821747 0.252908i
\(397\) 5.07295 15.6129i 0.254604 0.783591i −0.739303 0.673372i \(-0.764845\pi\)
0.993907 0.110218i \(-0.0351549\pi\)
\(398\) −21.1803 + 15.3884i −1.06167 + 0.771352i
\(399\) −4.14590 −0.207555
\(400\) 0 0
\(401\) 12.0000 0.599251 0.299626 0.954057i \(-0.403138\pi\)
0.299626 + 0.954057i \(0.403138\pi\)
\(402\) −6.92705 + 5.03280i −0.345490 + 0.251013i
\(403\) 7.63525 23.4989i 0.380339 1.17056i
\(404\) −0.572949 + 1.76336i −0.0285053 + 0.0877302i
\(405\) 0 0
\(406\) 10.0623 + 30.9686i 0.499384 + 1.53695i
\(407\) 11.1246 0.551427
\(408\) 1.11803 + 3.44095i 0.0553509 + 0.170353i
\(409\) 18.4164 + 13.3803i 0.910633 + 0.661613i 0.941175 0.337920i \(-0.109723\pi\)
−0.0305421 + 0.999533i \(0.509723\pi\)
\(410\) 0 0
\(411\) 1.73607 1.26133i 0.0856339 0.0622167i
\(412\) 6.35410 + 4.61653i 0.313044 + 0.227440i
\(413\) −10.0623 7.31069i −0.495134 0.359736i
\(414\) 4.61803 3.35520i 0.226964 0.164899i
\(415\) 0 0
\(416\) 13.2812 + 9.64932i 0.651162 + 0.473097i
\(417\) −1.44427 4.44501i −0.0707263 0.217673i
\(418\) 17.5623 0.859000
\(419\) −2.07295 6.37988i −0.101270 0.311678i 0.887567 0.460679i \(-0.152394\pi\)
−0.988837 + 0.149001i \(0.952394\pi\)
\(420\) 0 0
\(421\) 2.75329 8.47375i 0.134187 0.412985i −0.861276 0.508138i \(-0.830334\pi\)
0.995463 + 0.0951527i \(0.0303339\pi\)
\(422\) −2.09017 + 6.43288i −0.101748 + 0.313148i
\(423\) 19.2254 13.9681i 0.934772 0.679152i
\(424\) 10.3262 0.501486
\(425\) 0 0
\(426\) −1.85410 −0.0898315
\(427\) 14.7812 10.7391i 0.715310 0.519703i
\(428\) −0.0172209 + 0.0530006i −0.000832405 + 0.00256188i
\(429\) −1.71885 + 5.29007i −0.0829867 + 0.255407i
\(430\) 0 0
\(431\) −3.79180 11.6699i −0.182644 0.562122i 0.817255 0.576276i \(-0.195495\pi\)
−0.999900 + 0.0141540i \(0.995495\pi\)
\(432\) 10.8541 0.522218
\(433\) −4.41641 13.5923i −0.212239 0.653205i −0.999338 0.0363780i \(-0.988418\pi\)
0.787099 0.616827i \(-0.211582\pi\)
\(434\) −19.9894 14.5231i −0.959520 0.697132i
\(435\) 0 0
\(436\) −2.66312 + 1.93487i −0.127540 + 0.0926634i
\(437\) 3.61803 + 2.62866i 0.173074 + 0.125746i
\(438\) 0.927051 + 0.673542i 0.0442962 + 0.0321831i
\(439\) −24.3713 + 17.7068i −1.16318 + 0.845100i −0.990177 0.139822i \(-0.955347\pi\)
−0.173003 + 0.984921i \(0.555347\pi\)
\(440\) 0 0
\(441\) 4.61803 + 3.35520i 0.219906 + 0.159771i
\(442\) −10.2812 31.6421i −0.489025 1.50506i
\(443\) −7.18034 −0.341148 −0.170574 0.985345i \(-0.554562\pi\)
−0.170574 + 0.985345i \(0.554562\pi\)
\(444\) −0.270510 0.832544i −0.0128378 0.0395108i
\(445\) 0 0
\(446\) −0.927051 + 2.85317i −0.0438971 + 0.135101i
\(447\) −1.77051 + 5.44907i −0.0837422 + 0.257732i
\(448\) −10.2812 + 7.46969i −0.485739 + 0.352910i
\(449\) −39.2705 −1.85329 −0.926645 0.375938i \(-0.877321\pi\)
−0.926645 + 0.375938i \(0.877321\pi\)
\(450\) 0 0
\(451\) 9.00000 0.423793
\(452\) 1.02786 0.746787i 0.0483467 0.0351259i
\(453\) −2.48936 + 7.66145i −0.116960 + 0.359966i
\(454\) 3.30902 10.1841i 0.155300 0.477964i
\(455\) 0 0
\(456\) 0.954915 + 2.93893i 0.0447180 + 0.137628i
\(457\) 18.0000 0.842004 0.421002 0.907060i \(-0.361678\pi\)
0.421002 + 0.907060i \(0.361678\pi\)
\(458\) −0.690983 2.12663i −0.0322875 0.0993708i
\(459\) −7.66312 5.56758i −0.357684 0.259872i
\(460\) 0 0
\(461\) −29.3435 + 21.3193i −1.36666 + 0.992937i −0.368672 + 0.929560i \(0.620187\pi\)
−0.997990 + 0.0633777i \(0.979813\pi\)
\(462\) 4.50000 + 3.26944i 0.209359 + 0.152108i
\(463\) −11.4271 8.30224i −0.531060 0.385838i 0.289694 0.957119i \(-0.406446\pi\)
−0.820754 + 0.571282i \(0.806446\pi\)
\(464\) 26.3435 19.1396i 1.22296 0.888536i
\(465\) 0 0
\(466\) −35.1976 25.5725i −1.63050 1.18462i
\(467\) −12.1246 37.3157i −0.561060 1.72677i −0.679377 0.733790i \(-0.737750\pi\)
0.118317 0.992976i \(-0.462250\pi\)
\(468\) −8.56231 −0.395793
\(469\) 12.8435 + 39.5281i 0.593056 + 1.82524i
\(470\) 0 0
\(471\) 1.44834 4.45752i 0.0667359 0.205392i
\(472\) −2.86475 + 8.81678i −0.131861 + 0.405825i
\(473\) 21.8435 15.8702i 1.00436 0.729713i
\(474\) 0.326238 0.0149846
\(475\) 0 0
\(476\) −7.85410 −0.359992
\(477\) −10.6631 + 7.74721i −0.488231 + 0.354720i
\(478\) 12.9271 39.7854i 0.591270 1.81974i
\(479\) −10.0623 + 30.9686i −0.459758 + 1.41499i 0.405698 + 0.914007i \(0.367028\pi\)
−0.865457 + 0.500984i \(0.832972\pi\)
\(480\) 0 0
\(481\) −5.56231 17.1190i −0.253619 0.780560i
\(482\) −31.0344 −1.41358
\(483\) 0.437694 + 1.34708i 0.0199158 + 0.0612944i
\(484\) 1.00000 + 0.726543i 0.0454545 + 0.0330247i
\(485\) 0 0
\(486\) −12.6353 + 9.18005i −0.573147 + 0.416416i
\(487\) 3.00000 + 2.17963i 0.135943 + 0.0987684i 0.653679 0.756772i \(-0.273225\pi\)
−0.517736 + 0.855541i \(0.673225\pi\)
\(488\) −11.0172 8.00448i −0.498726 0.362346i
\(489\) −6.13525 + 4.45752i −0.277446 + 0.201576i
\(490\) 0 0
\(491\) −29.3435 21.3193i −1.32425 0.962125i −0.999869 0.0161994i \(-0.994843\pi\)
−0.324383 0.945926i \(-0.605157\pi\)
\(492\) −0.218847 0.673542i −0.00986639 0.0303656i
\(493\) −28.4164 −1.27981
\(494\) −8.78115 27.0256i −0.395083 1.21594i
\(495\) 0 0
\(496\) −7.63525 + 23.4989i −0.342833 + 1.05513i
\(497\) −2.78115 + 8.55951i −0.124752 + 0.383946i
\(498\) 0.236068 0.171513i 0.0105785 0.00768570i
\(499\) 42.3607 1.89632 0.948162 0.317787i \(-0.102940\pi\)
0.948162 + 0.317787i \(0.102940\pi\)
\(500\) 0 0
\(501\) −3.52786 −0.157613
\(502\) −8.20820 + 5.96361i −0.366350 + 0.266169i
\(503\) −7.97214 + 24.5357i −0.355460 + 1.09399i 0.600282 + 0.799788i \(0.295055\pi\)
−0.955742 + 0.294205i \(0.904945\pi\)
\(504\) 5.91641 18.2088i 0.263538 0.811086i
\(505\) 0 0
\(506\) −1.85410 5.70634i −0.0824249 0.253678i
\(507\) 4.03444 0.179176
\(508\) 1.85410 + 5.70634i 0.0822625 + 0.253178i
\(509\) −10.8541 7.88597i −0.481100 0.349539i 0.320652 0.947197i \(-0.396098\pi\)
−0.801751 + 0.597658i \(0.796098\pi\)
\(510\) 0 0
\(511\) 4.50000 3.26944i 0.199068 0.144632i
\(512\) 4.28115 + 3.11044i 0.189202 + 0.137463i
\(513\) −6.54508 4.75528i −0.288973 0.209951i
\(514\) 38.4336 27.9237i 1.69523 1.23166i
\(515\) 0 0
\(516\) −1.71885 1.24882i −0.0756680 0.0549760i
\(517\) −7.71885 23.7562i −0.339475 1.04480i
\(518\) −18.0000 −0.790875
\(519\) 0.00657781 + 0.0202444i 0.000288734 + 0.000888631i
\(520\) 0 0
\(521\) 1.93769 5.96361i 0.0848919 0.261270i −0.899596 0.436723i \(-0.856139\pi\)
0.984488 + 0.175453i \(0.0561389\pi\)
\(522\) −9.57295 + 29.4625i −0.418997 + 1.28954i
\(523\) −30.2705 + 21.9928i −1.32364 + 0.961679i −0.323758 + 0.946140i \(0.604946\pi\)
−0.999879 + 0.0155385i \(0.995054\pi\)
\(524\) −7.58359 −0.331291
\(525\) 0 0
\(526\) −26.4164 −1.15181
\(527\) 17.4443 12.6740i 0.759884 0.552088i
\(528\) 1.71885 5.29007i 0.0748032 0.230221i
\(529\) −6.63525 + 20.4212i −0.288489 + 0.887879i
\(530\) 0 0
\(531\) −3.65654 11.2537i −0.158680 0.488368i
\(532\) −6.70820 −0.290838
\(533\) −4.50000 13.8496i −0.194917 0.599892i
\(534\) 6.70820 + 4.87380i 0.290292 + 0.210910i
\(535\) 0 0
\(536\) 25.0623 18.2088i 1.08253 0.786502i
\(537\) −2.07295 1.50609i −0.0894544 0.0649924i
\(538\) −3.35410 2.43690i −0.144606 0.105062i
\(539\) 4.85410 3.52671i 0.209081 0.151906i
\(540\) 0 0
\(541\) 27.6525 + 20.0907i 1.18887 + 0.863767i 0.993145 0.116892i \(-0.0372930\pi\)
0.195728 + 0.980658i \(0.437293\pi\)
\(542\) 10.0451 + 30.9156i 0.431473 + 1.32794i
\(543\) 6.94427 0.298007
\(544\) 4.42705 + 13.6251i 0.189808 + 0.584170i
\(545\) 0 0
\(546\) 2.78115 8.55951i 0.119022 0.366313i
\(547\) 6.84346 21.0620i 0.292605 0.900546i −0.691410 0.722462i \(-0.743010\pi\)
0.984015 0.178084i \(-0.0569898\pi\)
\(548\) 2.80902 2.04087i 0.119995 0.0871817i
\(549\) 17.3820 0.741844
\(550\) 0 0
\(551\) −24.2705 −1.03396
\(552\) 0.854102 0.620541i 0.0363530 0.0264120i
\(553\) 0.489357 1.50609i 0.0208096 0.0640453i
\(554\) −2.64590 + 8.14324i −0.112413 + 0.345973i
\(555\) 0 0
\(556\) −2.33688 7.19218i −0.0991058 0.305016i
\(557\) 40.3607 1.71014 0.855068 0.518515i \(-0.173515\pi\)
0.855068 + 0.518515i \(0.173515\pi\)
\(558\) −7.26393 22.3561i −0.307507 0.946409i
\(559\) −35.3435 25.6785i −1.49487 1.08609i
\(560\) 0 0
\(561\) −3.92705 + 2.85317i −0.165800 + 0.120461i
\(562\) −15.7082 11.4127i −0.662611 0.481415i
\(563\) 5.70820 + 4.14725i 0.240572 + 0.174786i 0.701538 0.712632i \(-0.252497\pi\)
−0.460966 + 0.887418i \(0.652497\pi\)
\(564\) −1.59017 + 1.15533i −0.0669582 + 0.0486480i
\(565\) 0 0
\(566\) −20.5623 14.9394i −0.864298 0.627949i
\(567\) 7.14590 + 21.9928i 0.300100 + 0.923611i
\(568\) 6.70820 0.281470
\(569\) 8.29180 + 25.5195i 0.347610 + 1.06983i 0.960172 + 0.279411i \(0.0901392\pi\)
−0.612561 + 0.790423i \(0.709861\pi\)
\(570\) 0 0
\(571\) −4.01722 + 12.3637i −0.168115 + 0.517406i −0.999252 0.0386617i \(-0.987691\pi\)
0.831137 + 0.556068i \(0.187691\pi\)
\(572\) −2.78115 + 8.55951i −0.116286 + 0.357891i
\(573\) −3.70820 + 2.69417i −0.154912 + 0.112550i
\(574\) −14.5623 −0.607819
\(575\) 0 0
\(576\) −12.0902 −0.503757
\(577\) 23.9164 17.3763i 0.995653 0.723384i 0.0345013 0.999405i \(-0.489016\pi\)
0.961152 + 0.276020i \(0.0890157\pi\)
\(578\) 0.472136 1.45309i 0.0196383 0.0604404i
\(579\) −1.80244 + 5.54734i −0.0749068 + 0.230539i
\(580\) 0 0
\(581\) −0.437694 1.34708i −0.0181586 0.0558865i
\(582\) −4.85410 −0.201209
\(583\) 4.28115 + 13.1760i 0.177307 + 0.545696i
\(584\) −3.35410 2.43690i −0.138794 0.100840i
\(585\) 0 0
\(586\) −27.9615 + 20.3152i −1.15508 + 0.839214i
\(587\) −2.00000 1.45309i −0.0825488 0.0599752i 0.545745 0.837951i \(-0.316247\pi\)
−0.628294 + 0.777976i \(0.716247\pi\)
\(588\) −0.381966 0.277515i −0.0157520 0.0114445i
\(589\) 14.8992 10.8249i 0.613910 0.446032i
\(590\) 0 0
\(591\) −1.25329 0.910568i −0.0515534 0.0374557i
\(592\) 5.56231 + 17.1190i 0.228609 + 0.703587i
\(593\) 41.3607 1.69848 0.849240 0.528007i \(-0.177061\pi\)
0.849240 + 0.528007i \(0.177061\pi\)
\(594\) 3.35410 + 10.3229i 0.137620 + 0.423552i
\(595\) 0 0
\(596\) −2.86475 + 8.81678i −0.117345 + 0.361149i
\(597\) 1.90983 5.87785i 0.0781641 0.240564i
\(598\) −7.85410 + 5.70634i −0.321178 + 0.233350i
\(599\) −24.2705 −0.991666 −0.495833 0.868418i \(-0.665137\pi\)
−0.495833 + 0.868418i \(0.665137\pi\)
\(600\) 0 0
\(601\) −0.639320 −0.0260784 −0.0130392 0.999915i \(-0.504151\pi\)
−0.0130392 + 0.999915i \(0.504151\pi\)
\(602\) −35.3435 + 25.6785i −1.44049 + 1.04658i
\(603\) −12.2188 + 37.6057i −0.497590 + 1.53142i
\(604\) −4.02786 + 12.3965i −0.163891 + 0.504406i
\(605\) 0 0
\(606\) −0.572949 1.76336i −0.0232745 0.0716314i
\(607\) −30.5410 −1.23962 −0.619811 0.784751i \(-0.712791\pi\)
−0.619811 + 0.784751i \(0.712791\pi\)
\(608\) 3.78115 + 11.6372i 0.153346 + 0.471950i
\(609\) −6.21885 4.51826i −0.252000 0.183089i
\(610\) 0 0
\(611\) −32.6976 + 23.7562i −1.32280 + 0.961072i
\(612\) −6.04508 4.39201i −0.244358 0.177537i
\(613\) 3.57295 + 2.59590i 0.144310 + 0.104847i 0.657598 0.753369i \(-0.271573\pi\)
−0.513288 + 0.858217i \(0.671573\pi\)
\(614\) 8.20820 5.96361i 0.331256 0.240672i
\(615\) 0 0
\(616\) −16.2812 11.8290i −0.655986 0.476602i
\(617\) 7.96149 + 24.5030i 0.320518 + 0.986452i 0.973423 + 0.229013i \(0.0735497\pi\)
−0.652906 + 0.757439i \(0.726450\pi\)
\(618\) −7.85410 −0.315938
\(619\) −6.34346 19.5232i −0.254965 0.784702i −0.993837 0.110856i \(-0.964641\pi\)
0.738871 0.673846i \(-0.235359\pi\)
\(620\) 0 0
\(621\) −0.854102 + 2.62866i −0.0342739 + 0.105484i
\(622\) 10.6353 32.7319i 0.426435 1.31243i
\(623\) 32.5623 23.6579i 1.30458 0.947834i
\(624\) −9.00000 −0.360288
\(625\) 0 0
\(626\) −31.4164 −1.25565
\(627\) −3.35410 + 2.43690i −0.133950 + 0.0973203i
\(628\) 2.34346 7.21242i 0.0935142 0.287807i
\(629\) 4.85410 14.9394i 0.193546 0.595672i
\(630\) 0 0
\(631\) 0.618034 + 1.90211i 0.0246035 + 0.0757219i 0.962604 0.270911i \(-0.0873249\pi\)
−0.938001 + 0.346633i \(0.887325\pi\)
\(632\) −1.18034 −0.0469514
\(633\) −0.493422 1.51860i −0.0196118 0.0603588i
\(634\) −35.2705 25.6255i −1.40077 1.01772i
\(635\) 0 0
\(636\) 0.881966 0.640786i 0.0349722 0.0254088i
\(637\) −7.85410 5.70634i −0.311191 0.226093i
\(638\) 26.3435 + 19.1396i 1.04295 + 0.757746i
\(639\) −6.92705 + 5.03280i −0.274030 + 0.199094i
\(640\) 0 0
\(641\) 7.06231 + 5.13107i 0.278944 + 0.202665i 0.718457 0.695572i \(-0.244849\pi\)
−0.439513 + 0.898236i \(0.644849\pi\)
\(642\) −0.0172209 0.0530006i −0.000679656 0.00209177i
\(643\) 18.2705 0.720519 0.360259 0.932852i \(-0.382688\pi\)
0.360259 + 0.932852i \(0.382688\pi\)
\(644\) 0.708204 + 2.17963i 0.0279071 + 0.0858894i
\(645\) 0 0
\(646\) 7.66312 23.5847i 0.301501 0.927926i
\(647\) 6.25329 19.2456i 0.245842 0.756624i −0.749655 0.661829i \(-0.769780\pi\)
0.995497 0.0947951i \(-0.0302196\pi\)
\(648\) 13.9443 10.1311i 0.547783 0.397987i
\(649\) −12.4377 −0.488222
\(650\) 0 0
\(651\) 5.83282 0.228606
\(652\) −9.92705 + 7.21242i −0.388773 + 0.282460i
\(653\) 1.43769 4.42477i 0.0562613 0.173155i −0.918977 0.394311i \(-0.870983\pi\)
0.975238 + 0.221157i \(0.0709832\pi\)
\(654\) 1.01722 3.13068i 0.0397765 0.122419i
\(655\) 0 0
\(656\) 4.50000 + 13.8496i 0.175695 + 0.540735i
\(657\) 5.29180 0.206453
\(658\) 12.4894 + 38.4383i 0.486886 + 1.49848i
\(659\) 20.9164 + 15.1967i 0.814788 + 0.591978i 0.915215 0.402967i \(-0.132021\pi\)
−0.100427 + 0.994944i \(0.532021\pi\)
\(660\) 0 0
\(661\) −11.6180 + 8.44100i −0.451889 + 0.328317i −0.790341 0.612667i \(-0.790097\pi\)
0.338452 + 0.940984i \(0.390097\pi\)
\(662\) 27.6074 + 20.0579i 1.07299 + 0.779574i
\(663\) 6.35410 + 4.61653i 0.246773 + 0.179291i
\(664\) −0.854102 + 0.620541i −0.0331456 + 0.0240817i
\(665\) 0 0
\(666\) −13.8541 10.0656i −0.536836 0.390034i
\(667\) 2.56231 + 7.88597i 0.0992129 + 0.305346i
\(668\) −5.70820 −0.220857
\(669\) −0.218847 0.673542i −0.00846112 0.0260406i
\(670\) 0 0
\(671\) 5.64590 17.3763i 0.217957 0.670804i
\(672\) −1.19756 + 3.68571i −0.0461969 + 0.142179i
\(673\) −25.6353 + 18.6251i −0.988166 + 0.717945i −0.959519 0.281645i \(-0.909120\pi\)
−0.0286477 + 0.999590i \(0.509120\pi\)
\(674\) 48.2705 1.85931
\(675\) 0 0
\(676\) 6.52786 0.251072
\(677\) 3.32624 2.41665i 0.127838 0.0928795i −0.522029 0.852928i \(-0.674825\pi\)
0.649867 + 0.760048i \(0.274825\pi\)
\(678\) −0.392609 + 1.20833i −0.0150781 + 0.0464055i
\(679\) −7.28115 + 22.4091i −0.279425 + 0.859982i
\(680\) 0 0
\(681\) 0.781153 + 2.40414i 0.0299338 + 0.0921269i
\(682\) −24.7082 −0.946126
\(683\) 13.3090 + 40.9609i 0.509255 + 1.56733i 0.793497 + 0.608574i \(0.208258\pi\)
−0.284242 + 0.958753i \(0.591742\pi\)
\(684\) −5.16312 3.75123i −0.197417 0.143432i
\(685\) 0 0
\(686\) 19.6353 14.2658i 0.749678 0.544673i
\(687\) 0.427051 + 0.310271i 0.0162930 + 0.0118376i
\(688\) 35.3435 + 25.6785i 1.34746 + 0.978985i
\(689\) 18.1353 13.1760i 0.690898 0.501967i
\(690\) 0 0
\(691\) −20.8885 15.1764i −0.794638 0.577338i 0.114698 0.993400i \(-0.463410\pi\)
−0.909336 + 0.416062i \(0.863410\pi\)
\(692\) 0.0106431 + 0.0327561i 0.000404591 + 0.00124520i
\(693\) 25.6869 0.975765
\(694\) −7.97214 24.5357i −0.302618 0.931363i
\(695\) 0 0
\(696\) −1.77051 + 5.44907i −0.0671110 + 0.206546i
\(697\) 3.92705 12.0862i 0.148748 0.457798i
\(698\) 22.7254 16.5110i 0.860170 0.624950i
\(699\) 10.2705 0.388466
\(700\) 0 0
\(701\) 2.72949 0.103091 0.0515457 0.998671i \(-0.483585\pi\)
0.0515457 + 0.998671i \(0.483585\pi\)
\(702\) 14.2082 10.3229i 0.536254 0.389611i
\(703\) 4.14590 12.7598i 0.156366 0.481244i
\(704\) −3.92705 + 12.0862i −0.148006 + 0.455517i
\(705\) 0 0
\(706\) −1.94427 5.98385i −0.0731736 0.225205i
\(707\) −9.00000 −0.338480
\(708\) 0.302439 + 0.930812i 0.0113664 + 0.0349821i
\(709\) 13.7812 + 10.0126i 0.517562 + 0.376031i 0.815685 0.578497i \(-0.196360\pi\)
−0.298123 + 0.954528i \(0.596360\pi\)
\(710\) 0 0
\(711\) 1.21885 0.885544i 0.0457103 0.0332105i
\(712\) −24.2705 17.6336i −0.909576 0.660846i
\(713\) −5.09017 3.69822i −0.190628 0.138500i
\(714\) 6.35410 4.61653i 0.237796 0.172769i
\(715\) 0 0
\(716\) −3.35410 2.43690i −0.125349 0.0910711i
\(717\) 3.05166 + 9.39205i 0.113966 + 0.350753i
\(718\) −17.5623 −0.655419
\(719\) 14.6976 + 45.2344i 0.548127 + 1.68696i 0.713438 + 0.700719i \(0.247137\pi\)
−0.165311 + 0.986241i \(0.552863\pi\)
\(720\) 0 0
\(721\) −11.7812 + 36.2587i −0.438753 + 1.35034i
\(722\) −2.95492 + 9.09429i −0.109971 + 0.338455i
\(723\) 5.92705 4.30625i 0.220429 0.160151i
\(724\) 11.2361 0.417585
\(725\) 0 0
\(726\) −1.23607 −0.0458748
\(727\) 31.4164 22.8254i 1.16517 0.846546i 0.174747 0.984613i \(-0.444089\pi\)
0.990423 + 0.138068i \(0.0440892\pi\)
\(728\) −10.0623 + 30.9686i −0.372934 + 1.14777i
\(729\) −6.00658 + 18.4863i −0.222466 + 0.684679i
\(730\) 0 0
\(731\) −11.7812 36.2587i −0.435742 1.34108i
\(732\) −1.43769 −0.0531387
\(733\) −7.28115 22.4091i −0.268936 0.827698i −0.990761 0.135623i \(-0.956696\pi\)
0.721825 0.692076i \(-0.243304\pi\)
\(734\) 1.50000 + 1.08981i 0.0553660 + 0.0402258i
\(735\) 0 0
\(736\) 3.38197 2.45714i 0.124661 0.0905715i
\(737\) 33.6246 + 24.4297i 1.23858 + 0.899880i
\(738\) −11.2082 8.14324i −0.412580 0.299757i
\(739\) −14.3713 + 10.4414i −0.528658 + 0.384092i −0.819855 0.572571i \(-0.805946\pi\)
0.291198 + 0.956663i \(0.405946\pi\)
\(740\) 0 0
\(741\) 5.42705 + 3.94298i 0.199368 + 0.144849i
\(742\) −6.92705 21.3193i −0.254300 0.782655i
\(743\) 25.9098 0.950539 0.475270 0.879840i \(-0.342350\pi\)
0.475270 + 0.879840i \(0.342350\pi\)
\(744\) −1.34346 4.13474i −0.0492536 0.151587i
\(745\) 0 0
\(746\) −0.927051 + 2.85317i −0.0339417 + 0.104462i
\(747\) 0.416408 1.28157i 0.0152356 0.0468903i
\(748\) −6.35410 + 4.61653i −0.232329 + 0.168797i
\(749\) −0.270510 −0.00988421
\(750\) 0 0
\(751\) −15.3607 −0.560519 −0.280260 0.959924i \(-0.590421\pi\)
−0.280260 + 0.959924i \(0.590421\pi\)
\(752\) 32.6976 23.7562i 1.19236 0.866298i
\(753\) 0.740133 2.27790i 0.0269720 0.0830111i
\(754\) 16.2812 50.1082i 0.592925 1.82483i
\(755\) 0 0
\(756\) −1.28115 3.94298i −0.0465951 0.143405i
\(757\) −27.0000 −0.981332 −0.490666 0.871348i \(-0.663246\pi\)
−0.490666 + 0.871348i \(0.663246\pi\)
\(758\) −3.78115 11.6372i −0.137338 0.422682i
\(759\) 1.14590 + 0.832544i 0.0415935 + 0.0302194i
\(760\) 0 0
\(761\) 14.5623 10.5801i 0.527883 0.383530i −0.291682 0.956515i \(-0.594215\pi\)
0.819565 + 0.572986i \(0.194215\pi\)
\(762\) −4.85410 3.52671i −0.175846 0.127759i
\(763\) −12.9271 9.39205i −0.467991 0.340015i
\(764\) −6.00000 + 4.35926i −0.217072 + 0.157712i
\(765\) 0 0
\(766\) 46.4336 + 33.7360i 1.67772 + 1.21893i
\(767\) 6.21885 + 19.1396i 0.224550 + 0.691092i
\(768\) 5.18034 0.186929
\(769\) −3.98278 12.2577i −0.143623 0.442025i 0.853209 0.521570i \(-0.174653\pi\)
−0.996831 + 0.0795446i \(0.974653\pi\)
\(770\) 0 0
\(771\) −3.46556 + 10.6659i −0.124809 + 0.384123i
\(772\) −2.91641 + 8.97578i −0.104964 + 0.323045i
\(773\) −17.1803 + 12.4822i −0.617934 + 0.448955i −0.852199 0.523217i \(-0.824732\pi\)
0.234265 + 0.972173i \(0.424732\pi\)
\(774\) −41.5623 −1.49393
\(775\) 0 0
\(776\) 17.5623 0.630450
\(777\) 3.43769 2.49763i 0.123327 0.0896020i
\(778\) 0.791796 2.43690i 0.0283873 0.0873670i
\(779\) 3.35410 10.3229i 0.120173 0.369855i
\(780\) 0 0
\(781\) 2.78115 + 8.55951i 0.0995175 + 0.306283i
\(782\) −8.47214 −0.302963
\(783\) −4.63525 14.2658i −0.165650 0.509820i
\(784\) 7.85410 + 5.70634i 0.280504 + 0.203798i
\(785\) 0 0
\(786\) 6.13525 4.45752i 0.218837 0.158995i
\(787\) −9.13525 6.63715i −0.325637 0.236589i 0.412940 0.910758i \(-0.364502\pi\)
−0.738577 + 0.674169i \(0.764502\pi\)
\(788\) −2.02786 1.47333i −0.0722397 0.0524852i
\(789\) 5.04508 3.66547i 0.179610 0.130494i
\(790\) 0 0
\(791\) 4.98936 + 3.62498i 0.177401 + 0.128889i
\(792\) −5.91641 18.2088i −0.210230 0.647023i
\(793\) −29.5623 −1.04979
\(794\) 8.20820 + 25.2623i 0.291298 + 0.896524i
\(795\) 0 0
\(796\) 3.09017 9.51057i 0.109528 0.337093i
\(797\) −10.8820 + 33.4912i −0.385459 + 1.18632i 0.550688 + 0.834711i \(0.314366\pi\)
−0.936147 + 0.351610i \(0.885634\pi\)
\(798\) 5.42705 3.94298i 0.192116 0.139580i
\(799\) −35.2705 −1.24778
\(800\) 0 0
\(801\) 38.2918 1.35297
\(802\) −15.7082 + 11.4127i −0.554676 + 0.402996i
\(803\) 1.71885 5.29007i 0.0606568 0.186682i
\(804\) 1.01064 3.11044i 0.0356426 0.109697i
\(805\) 0 0
\(806\) 12.3541 + 38.0220i 0.435155 + 1.33927i
\(807\) 0.978714 0.0344524
\(808\) 2.07295 + 6.37988i 0.0729261 + 0.224443i
\(809\) 4.14590 + 3.01217i 0.145762 + 0.105902i 0.658276 0.752776i \(-0.271286\pi\)
−0.512514 + 0.858679i \(0.671286\pi\)
\(810\) 0 0
\(811\) 9.56231 6.94742i 0.335778 0.243957i −0.407100 0.913383i \(-0.633460\pi\)
0.742878 + 0.669426i \(0.233460\pi\)
\(812\) −10.0623 7.31069i −0.353118 0.256555i
\(813\) −6.20820 4.51052i −0.217731 0.158191i
\(814\) −14.5623 + 10.5801i −0.510409 + 0.370834i
\(815\) 0 0
\(816\) −6.35410 4.61653i −0.222438 0.161611i
\(817\) −10.0623 30.9686i −0.352036 1.08345i
\(818\) −36.8328 −1.28783
\(819\) −12.8435 39.5281i −0.448787 1.38122i
\(820\) 0 0
\(821\) 6.57295 20.2295i 0.229398 0.706013i −0.768418 0.639948i \(-0.778956\pi\)
0.997815 0.0660645i \(-0.0210443\pi\)
\(822\) −1.07295 + 3.30220i −0.0374234 + 0.115177i
\(823\) −18.1353 + 13.1760i −0.632155 + 0.459288i −0.857146 0.515073i \(-0.827765\pi\)
0.224991 + 0.974361i \(0.427765\pi\)
\(824\) 28.4164 0.989932
\(825\) 0 0
\(826\) 20.1246 0.700225
\(827\) −25.5795 + 18.5846i −0.889487 + 0.646250i −0.935744 0.352679i \(-0.885271\pi\)
0.0462570 + 0.998930i \(0.485271\pi\)
\(828\) −0.673762 + 2.07363i −0.0234149 + 0.0720635i
\(829\) 1.93363 5.95110i 0.0671577 0.206690i −0.911846 0.410532i \(-0.865343\pi\)
0.979004 + 0.203842i \(0.0653429\pi\)
\(830\) 0 0
\(831\) −0.624612 1.92236i −0.0216675 0.0666858i
\(832\) 20.5623 0.712870
\(833\) −2.61803 8.05748i −0.0907095 0.279175i
\(834\) 6.11803 + 4.44501i 0.211850 + 0.153918i
\(835\) 0 0
\(836\) −5.42705 + 3.94298i −0.187698 + 0.136371i
\(837\) 9.20820 + 6.69015i 0.318282 + 0.231245i
\(838\) 8.78115 + 6.37988i 0.303340 + 0.220389i
\(839\) −23.7812 + 17.2780i −0.821017 + 0.596503i −0.917004 0.398879i \(-0.869399\pi\)
0.0959869 + 0.995383i \(0.469399\pi\)
\(840\) 0 0
\(841\) −12.9443 9.40456i −0.446354 0.324295i
\(842\) 4.45492 + 13.7108i 0.153527 + 0.472506i
\(843\) 4.58359 0.157867
\(844\) −0.798374 2.45714i −0.0274812 0.0845783i
\(845\) 0 0
\(846\) −11.8820 + 36.5689i −0.408510 + 1.25727i
\(847\) −1.85410 + 5.70634i −0.0637077 + 0.196072i
\(848\) −18.1353 + 13.1760i −0.622767 + 0.452467i
\(849\) 6.00000 0.205919
\(850\) 0 0
\(851\) −4.58359 −0.157124
\(852\) 0.572949 0.416272i 0.0196289 0.0142612i
\(853\) 1.80244 5.54734i 0.0617143 0.189937i −0.915446 0.402441i \(-0.868162\pi\)
0.977160 + 0.212504i \(0.0681618\pi\)
\(854\) −9.13525 + 28.1154i −0.312602 + 0.962090i
\(855\) 0 0
\(856\) 0.0623059 + 0.191758i 0.00212957 + 0.00655415i
\(857\) 34.1803 1.16758 0.583789 0.811905i \(-0.301569\pi\)
0.583789 + 0.811905i \(0.301569\pi\)
\(858\) −2.78115 8.55951i −0.0949470 0.292217i
\(859\) 20.3262 + 14.7679i 0.693522 + 0.503873i 0.877816 0.478998i \(-0.159000\pi\)
−0.184294 + 0.982871i \(0.559000\pi\)
\(860\) 0 0
\(861\) 2.78115 2.02063i 0.0947814 0.0688627i
\(862\) 16.0623 + 11.6699i 0.547084 + 0.397480i
\(863\) −5.47214 3.97574i −0.186274 0.135336i 0.490740 0.871306i \(-0.336726\pi\)
−0.677014 + 0.735970i \(0.736726\pi\)
\(864\) −6.11803 + 4.44501i −0.208140 + 0.151222i
\(865\) 0 0
\(866\) 18.7082 + 13.5923i 0.635731 + 0.461885i
\(867\) 0.111456 + 0.343027i 0.00378525 + 0.0116498i
\(868\) 9.43769 0.320336
\(869\) −0.489357 1.50609i −0.0166003 0.0510905i
\(870\) 0 0
\(871\) 20.7812 63.9578i 0.704143 2.16713i
\(872\) −3.68034 + 11.3269i −0.124632 + 0.383578i
\(873\) −18.1353 + 13.1760i −0.613785 + 0.445941i
\(874\) −7.23607 −0.244764
\(875\) 0 0
\(876\) −0.437694 −0.0147883
\(877\) −15.3541 + 11.1554i −0.518471 + 0.376691i −0.816028 0.578013i \(-0.803828\pi\)
0.297556 + 0.954704i \(0.403828\pi\)
\(878\) 15.0623 46.3570i 0.508328 1.56447i
\(879\) 2.52129 7.75972i 0.0850409 0.261729i
\(880\) 0 0
\(881\) 14.0729 + 43.3121i 0.474130 + 1.45922i 0.847128 + 0.531389i \(0.178330\pi\)
−0.372998 + 0.927832i \(0.621670\pi\)
\(882\) −9.23607 −0.310995
\(883\) −5.51064 16.9600i −0.185448 0.570750i 0.814508 0.580152i \(-0.197007\pi\)
−0.999956 + 0.00940251i \(0.997007\pi\)
\(884\) 10.2812 + 7.46969i 0.345793 + 0.251233i
\(885\) 0 0
\(886\) 9.39919 6.82891i 0.315772 0.229422i
\(887\) −34.3607 24.9645i −1.15372 0.838226i −0.164748 0.986336i \(-0.552681\pi\)
−0.988971 + 0.148110i \(0.952681\pi\)
\(888\) −2.56231 1.86162i −0.0859854 0.0624720i
\(889\) −23.5623 + 17.1190i −0.790254 + 0.574153i
\(890\) 0 0
\(891\) 18.7082 + 13.5923i 0.626748 + 0.455359i
\(892\) −0.354102 1.08981i −0.0118562 0.0364897i
\(893\) −30.1246 −1.00808
\(894\) −2.86475 8.81678i −0.0958114 0.294877i
\(895\) 0 0
\(896\) 12.6246 38.8546i 0.421759 1.29804i
\(897\) 0.708204 2.17963i 0.0236462 0.0727756i
\(898\) 51.4058 37.3485i 1.71543 1.24633i
\(899\) 34.1459 1.13883
\(900\) 0 0
\(901\) 19.5623 0.651715
\(902\) −11.7812 + 8.55951i −0.392269 + 0.285000i
\(903\) 3.18692 9.80832i 0.106054 0.326401i
\(904\) 1.42047 4.37177i 0.0472442 0.145403i
\(905\) 0 0
\(906\) −4.02786 12.3965i −0.133817 0.411846i
\(907\) 42.2705 1.40357 0.701785 0.712389i \(-0.252387\pi\)
0.701785 + 0.712389i \(0.252387\pi\)
\(908\) 1.26393 + 3.88998i 0.0419451 + 0.129094i
\(909\) −6.92705 5.03280i −0.229756 0.166927i
\(910\) 0 0
\(911\) 29.5623 21.4783i 0.979443 0.711607i 0.0218589 0.999761i \(-0.493042\pi\)
0.957584 + 0.288154i \(0.0930416\pi\)
\(912\) −5.42705 3.94298i −0.179708 0.130565i
\(913\) −1.14590 0.832544i −0.0379237 0.0275532i
\(914\) −23.5623 + 17.1190i −0.779372 + 0.566247i
\(915\) 0 0
\(916\) 0.690983 + 0.502029i 0.0228307 + 0.0165875i
\(917\) −11.3754 35.0098i −0.375648 1.15613i
\(918\) 15.3262 0.505841
\(919\) −7.43769 22.8909i −0.245347 0.755100i −0.995579 0.0939258i \(-0.970058\pi\)
0.750232 0.661174i \(-0.229942\pi\)
\(920\) 0 0
\(921\) −0.740133 + 2.27790i −0.0243882 + 0.0750592i
\(922\) 18.1353 55.8146i 0.597253 1.83816i
\(923\) 11.7812 8.55951i 0.387781 0.281740i
\(924\) −2.12461 −0.0698946
\(925\) 0 0
\(926\) 22.8541 0.751032
\(927\) −29.3435 + 21.3193i −0.963766 + 0.700217i
\(928\) −7.01064 + 21.5765i −0.230136 + 0.708285i
\(929\) 11.3435 34.9116i 0.372167 1.14541i −0.573203 0.819413i \(-0.694300\pi\)
0.945370 0.325999i \(-0.105700\pi\)
\(930\) 0 0
\(931\) −2.23607 6.88191i −0.0732842 0.225545i
\(932\) 16.6180 0.544342
\(933\) 2.51064 + 7.72696i 0.0821948 + 0.252969i
\(934\) 51.3607 + 37.3157i 1.68057 + 1.22101i
\(935\) 0 0
\(936\) −25.0623 + 18.2088i −0.819187 + 0.595174i
\(937\) 7.63525 + 5.54734i 0.249433 + 0.181224i 0.705475 0.708734i \(-0.250734\pi\)
−0.456043 + 0.889958i \(0.650734\pi\)
\(938\) −54.4058 39.5281i −1.77641 1.29064i
\(939\) 6.00000 4.35926i 0.195803 0.142259i
\(940\) 0 0
\(941\) 22.0623 + 16.0292i 0.719211 + 0.522537i 0.886132 0.463433i \(-0.153383\pi\)
−0.166921 + 0.985970i \(0.553383\pi\)
\(942\) 2.34346 + 7.21242i 0.0763540 + 0.234993i
\(943\) −3.70820 −0.120756
\(944\) −6.21885 19.1396i −0.202406 0.622942i
\(945\) 0 0
\(946\) −13.5000 + 41.5487i −0.438923 + 1.35087i
\(947\) 6.98278 21.4908i 0.226910 0.698357i −0.771182 0.636614i \(-0.780334\pi\)
0.998092 0.0617423i \(-0.0196657\pi\)
\(948\) −0.100813 + 0.0732450i −0.00327426 + 0.00237889i
\(949\) −9.00000 −0.292152
\(950\) 0 0
\(951\) 10.2918 0.333734
\(952\) −22.9894 + 16.7027i −0.745089 + 0.541339i
\(953\) −4.06637 + 12.5150i −0.131723 + 0.405401i −0.995066 0.0992165i \(-0.968366\pi\)
0.863343 + 0.504617i \(0.168366\pi\)
\(954\) 6.59017 20.2825i 0.213365 0.656669i
\(955\) 0 0
\(956\) 4.93769 + 15.1967i 0.159696 + 0.491495i
\(957\) −7.68692 −0.248483
\(958\) −16.2812 50.1082i −0.526020 1.61892i
\(959\) 13.6353 + 9.90659i 0.440305 + 0.319901i
\(960\) 0 0
\(961\) 4.11803 2.99193i 0.132840 0.0965138i
\(962\) 23.5623 + 17.1190i 0.759679 + 0.551939i
\(963\) −0.208204 0.151269i −0.00670928 0.00487458i
\(964\) 9.59017 6.96767i 0.308879 0.224413i
\(965\) 0 0
\(966\) −1.85410 1.34708i −0.0596548 0.0433417i
\(967\) −4.98936 15.3557i −0.160447 0.493805i 0.838225 0.545324i \(-0.183594\pi\)
−0.998672 + 0.0515196i \(0.983594\pi\)
\(968\) 4.47214 0.143740
\(969\) 1.80902 + 5.56758i 0.0581140 + 0.178856i
\(970\) 0 0
\(971\) −15.9271 + 49.0184i −0.511123 + 1.57308i 0.279103 + 0.960261i \(0.409963\pi\)
−0.790226 + 0.612815i \(0.790037\pi\)
\(972\) 1.84346 5.67358i 0.0591290 0.181980i
\(973\) 29.6976 21.5765i 0.952060 0.691712i
\(974\) −6.00000 −0.192252
\(975\) 0 0
\(976\) 29.5623 0.946266
\(977\) 18.9164 13.7436i 0.605190 0.439696i −0.242528 0.970145i \(-0.577976\pi\)
0.847717 + 0.530449i \(0.177976\pi\)
\(978\) 3.79180 11.6699i 0.121248 0.373164i
\(979\) 12.4377 38.2793i 0.397510 1.22341i
\(980\) 0 0
\(981\) −4.69756 14.4576i −0.149982 0.461596i
\(982\) 58.6869 1.87277
\(983\) 1.62461 + 5.00004i 0.0518171 + 0.159477i 0.973616 0.228191i \(-0.0732810\pi\)
−0.921799 + 0.387667i \(0.873281\pi\)
\(984\) −2.07295 1.50609i −0.0660832 0.0480123i
\(985\) 0 0
\(986\) 37.1976 27.0256i 1.18461 0.860671i
\(987\) −7.71885 5.60807i −0.245694 0.178507i
\(988\) 8.78115 + 6.37988i 0.279366 + 0.202971i
\(989\) −9.00000 + 6.53888i −0.286183 + 0.207924i
\(990\) 0 0
\(991\) 21.6976 + 15.7642i 0.689246 + 0.500766i 0.876412 0.481562i \(-0.159930\pi\)
−0.187166 + 0.982328i \(0.559930\pi\)
\(992\) −5.31966 16.3722i −0.168899 0.519819i
\(993\) −8.05573 −0.255641
\(994\) −4.50000 13.8496i −0.142731 0.439282i
\(995\) 0 0
\(996\) −0.0344419 + 0.106001i −0.00109133 + 0.00335877i
\(997\) −16.3328 + 50.2672i −0.517265 + 1.59198i 0.261856 + 0.965107i \(0.415665\pi\)
−0.779122 + 0.626873i \(0.784335\pi\)
\(998\) −55.4508 + 40.2874i −1.75527 + 1.27528i
\(999\) 8.29180 0.262341
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 625.2.d.a.251.1 4
5.2 odd 4 625.2.e.d.374.1 8
5.3 odd 4 625.2.e.d.374.2 8
5.4 even 2 625.2.d.j.251.1 4
25.2 odd 20 625.2.e.g.499.1 8
25.3 odd 20 125.2.b.b.124.1 4
25.4 even 10 125.2.a.a.1.1 2
25.6 even 5 625.2.d.g.501.1 4
25.8 odd 20 625.2.e.g.124.1 8
25.9 even 10 625.2.d.j.376.1 4
25.11 even 5 625.2.d.g.126.1 4
25.12 odd 20 625.2.e.d.249.2 8
25.13 odd 20 625.2.e.d.249.1 8
25.14 even 10 625.2.d.d.126.1 4
25.16 even 5 inner 625.2.d.a.376.1 4
25.17 odd 20 625.2.e.g.124.2 8
25.19 even 10 625.2.d.d.501.1 4
25.21 even 5 125.2.a.b.1.2 yes 2
25.22 odd 20 125.2.b.b.124.4 4
25.23 odd 20 625.2.e.g.499.2 8
75.29 odd 10 1125.2.a.d.1.2 2
75.47 even 20 1125.2.b.f.874.1 4
75.53 even 20 1125.2.b.f.874.4 4
75.71 odd 10 1125.2.a.c.1.1 2
100.3 even 20 2000.2.c.e.1249.2 4
100.47 even 20 2000.2.c.e.1249.3 4
100.71 odd 10 2000.2.a.a.1.2 2
100.79 odd 10 2000.2.a.l.1.1 2
175.104 odd 10 6125.2.a.d.1.1 2
175.146 odd 10 6125.2.a.g.1.2 2
200.21 even 10 8000.2.a.d.1.2 2
200.29 even 10 8000.2.a.v.1.1 2
200.171 odd 10 8000.2.a.u.1.1 2
200.179 odd 10 8000.2.a.c.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
125.2.a.a.1.1 2 25.4 even 10
125.2.a.b.1.2 yes 2 25.21 even 5
125.2.b.b.124.1 4 25.3 odd 20
125.2.b.b.124.4 4 25.22 odd 20
625.2.d.a.251.1 4 1.1 even 1 trivial
625.2.d.a.376.1 4 25.16 even 5 inner
625.2.d.d.126.1 4 25.14 even 10
625.2.d.d.501.1 4 25.19 even 10
625.2.d.g.126.1 4 25.11 even 5
625.2.d.g.501.1 4 25.6 even 5
625.2.d.j.251.1 4 5.4 even 2
625.2.d.j.376.1 4 25.9 even 10
625.2.e.d.249.1 8 25.13 odd 20
625.2.e.d.249.2 8 25.12 odd 20
625.2.e.d.374.1 8 5.2 odd 4
625.2.e.d.374.2 8 5.3 odd 4
625.2.e.g.124.1 8 25.8 odd 20
625.2.e.g.124.2 8 25.17 odd 20
625.2.e.g.499.1 8 25.2 odd 20
625.2.e.g.499.2 8 25.23 odd 20
1125.2.a.c.1.1 2 75.71 odd 10
1125.2.a.d.1.2 2 75.29 odd 10
1125.2.b.f.874.1 4 75.47 even 20
1125.2.b.f.874.4 4 75.53 even 20
2000.2.a.a.1.2 2 100.71 odd 10
2000.2.a.l.1.1 2 100.79 odd 10
2000.2.c.e.1249.2 4 100.3 even 20
2000.2.c.e.1249.3 4 100.47 even 20
6125.2.a.d.1.1 2 175.104 odd 10
6125.2.a.g.1.2 2 175.146 odd 10
8000.2.a.c.1.2 2 200.179 odd 10
8000.2.a.d.1.2 2 200.21 even 10
8000.2.a.u.1.1 2 200.171 odd 10
8000.2.a.v.1.1 2 200.29 even 10