Properties

Label 625.2.e.d.249.1
Level $625$
Weight $2$
Character 625.249
Analytic conductor $4.991$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [625,2,Mod(124,625)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("625.124"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(625, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 625 = 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 625.e (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-6,0,6,0,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.99065012633\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 125)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 249.1
Root \(-0.951057 + 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 625.249
Dual form 625.2.e.d.374.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.951057 + 1.30902i) q^{2} +(-0.363271 + 0.118034i) q^{3} +(-0.190983 - 0.587785i) q^{4} +(0.190983 - 0.587785i) q^{6} -3.00000i q^{7} +(-2.12663 - 0.690983i) q^{8} +(-2.30902 + 1.67760i) q^{9} +(2.42705 + 1.76336i) q^{11} +(0.138757 + 0.190983i) q^{12} +(-2.85317 - 3.92705i) q^{13} +(3.92705 + 2.85317i) q^{14} +(3.92705 - 2.85317i) q^{16} +(4.02874 + 1.30902i) q^{17} -4.61803i q^{18} +(1.11803 - 3.44095i) q^{19} +(0.354102 + 1.08981i) q^{21} +(-4.61653 + 1.50000i) q^{22} +(0.726543 - 1.00000i) q^{23} +0.854102 q^{24} +7.85410 q^{26} +(1.31433 - 1.80902i) q^{27} +(-1.76336 + 0.572949i) q^{28} +(-2.07295 - 6.37988i) q^{29} +(1.57295 - 4.84104i) q^{31} +3.38197i q^{32} +(-1.08981 - 0.354102i) q^{33} +(-5.54508 + 4.02874i) q^{34} +(1.42705 + 1.03681i) q^{36} +(-2.17963 - 3.00000i) q^{37} +(3.44095 + 4.73607i) q^{38} +(1.50000 + 1.08981i) q^{39} +(2.42705 - 1.76336i) q^{41} +(-1.76336 - 0.572949i) q^{42} +9.00000i q^{43} +(0.572949 - 1.76336i) q^{44} +(0.618034 + 1.90211i) q^{46} +(7.91872 - 2.57295i) q^{47} +(-1.08981 + 1.50000i) q^{48} -2.00000 q^{49} -1.61803 q^{51} +(-1.76336 + 2.42705i) q^{52} +(4.39201 - 1.42705i) q^{53} +(1.11803 + 3.44095i) q^{54} +(-2.07295 + 6.37988i) q^{56} +1.38197i q^{57} +(10.3229 + 3.35410i) q^{58} +(3.35410 - 2.43690i) q^{59} +(4.92705 + 3.57971i) q^{61} +(4.84104 + 6.66312i) q^{62} +(5.03280 + 6.92705i) q^{63} +(3.42705 + 2.48990i) q^{64} +(1.50000 - 1.08981i) q^{66} +(-13.1760 - 4.28115i) q^{67} -2.61803i q^{68} +(-0.145898 + 0.449028i) q^{69} +(-0.927051 - 2.85317i) q^{71} +(6.06961 - 1.97214i) q^{72} +(-1.08981 + 1.50000i) q^{73} +6.00000 q^{74} -2.23607 q^{76} +(5.29007 - 7.28115i) q^{77} +(-2.85317 + 0.927051i) q^{78} +(-0.163119 - 0.502029i) q^{79} +(2.38197 - 7.33094i) q^{81} +4.85410i q^{82} +(-0.449028 - 0.145898i) q^{83} +(0.572949 - 0.416272i) q^{84} +(-11.7812 - 8.55951i) q^{86} +(1.50609 + 2.07295i) q^{87} +(-3.94298 - 5.42705i) q^{88} +(-10.8541 - 7.88597i) q^{89} +(-11.7812 + 8.55951i) q^{91} +(-0.726543 - 0.236068i) q^{92} +1.94427i q^{93} +(-4.16312 + 12.8128i) q^{94} +(-0.399187 - 1.22857i) q^{96} +(-7.46969 + 2.42705i) q^{97} +(1.90211 - 2.61803i) q^{98} -8.56231 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{4} + 6 q^{6} - 14 q^{9} + 6 q^{11} + 18 q^{14} + 18 q^{16} - 24 q^{21} - 20 q^{24} + 36 q^{26} - 30 q^{29} + 26 q^{31} - 22 q^{34} - 2 q^{36} + 12 q^{39} + 6 q^{41} + 18 q^{44} - 4 q^{46} - 16 q^{49}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/625\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.951057 + 1.30902i −0.672499 + 0.925615i −0.999814 0.0193004i \(-0.993856\pi\)
0.327315 + 0.944915i \(0.393856\pi\)
\(3\) −0.363271 + 0.118034i −0.209735 + 0.0681470i −0.412000 0.911184i \(-0.635170\pi\)
0.202265 + 0.979331i \(0.435170\pi\)
\(4\) −0.190983 0.587785i −0.0954915 0.293893i
\(5\) 0 0
\(6\) 0.190983 0.587785i 0.0779685 0.239962i
\(7\) 3.00000i 1.13389i −0.823754 0.566947i \(-0.808125\pi\)
0.823754 0.566947i \(-0.191875\pi\)
\(8\) −2.12663 0.690983i −0.751876 0.244299i
\(9\) −2.30902 + 1.67760i −0.769672 + 0.559200i
\(10\) 0 0
\(11\) 2.42705 + 1.76336i 0.731783 + 0.531672i 0.890127 0.455712i \(-0.150615\pi\)
−0.158344 + 0.987384i \(0.550615\pi\)
\(12\) 0.138757 + 0.190983i 0.0400558 + 0.0551320i
\(13\) −2.85317 3.92705i −0.791327 1.08917i −0.993942 0.109909i \(-0.964944\pi\)
0.202615 0.979259i \(-0.435056\pi\)
\(14\) 3.92705 + 2.85317i 1.04955 + 0.762542i
\(15\) 0 0
\(16\) 3.92705 2.85317i 0.981763 0.713292i
\(17\) 4.02874 + 1.30902i 0.977113 + 0.317483i 0.753684 0.657237i \(-0.228275\pi\)
0.223429 + 0.974720i \(0.428275\pi\)
\(18\) 4.61803i 1.08848i
\(19\) 1.11803 3.44095i 0.256495 0.789409i −0.737037 0.675852i \(-0.763776\pi\)
0.993532 0.113557i \(-0.0362244\pi\)
\(20\) 0 0
\(21\) 0.354102 + 1.08981i 0.0772714 + 0.237817i
\(22\) −4.61653 + 1.50000i −0.984247 + 0.319801i
\(23\) 0.726543 1.00000i 0.151495 0.208514i −0.726524 0.687141i \(-0.758865\pi\)
0.878018 + 0.478627i \(0.158865\pi\)
\(24\) 0.854102 0.174343
\(25\) 0 0
\(26\) 7.85410 1.54032
\(27\) 1.31433 1.80902i 0.252942 0.348145i
\(28\) −1.76336 + 0.572949i −0.333243 + 0.108277i
\(29\) −2.07295 6.37988i −0.384937 1.18471i −0.936526 0.350598i \(-0.885978\pi\)
0.551589 0.834116i \(-0.314022\pi\)
\(30\) 0 0
\(31\) 1.57295 4.84104i 0.282510 0.869476i −0.704624 0.709581i \(-0.748884\pi\)
0.987134 0.159895i \(-0.0511157\pi\)
\(32\) 3.38197i 0.597853i
\(33\) −1.08981 0.354102i −0.189712 0.0616412i
\(34\) −5.54508 + 4.02874i −0.950974 + 0.690923i
\(35\) 0 0
\(36\) 1.42705 + 1.03681i 0.237842 + 0.172802i
\(37\) −2.17963 3.00000i −0.358329 0.493197i 0.591354 0.806412i \(-0.298594\pi\)
−0.949682 + 0.313215i \(0.898594\pi\)
\(38\) 3.44095 + 4.73607i 0.558197 + 0.768292i
\(39\) 1.50000 + 1.08981i 0.240192 + 0.174510i
\(40\) 0 0
\(41\) 2.42705 1.76336i 0.379042 0.275390i −0.381909 0.924200i \(-0.624733\pi\)
0.760950 + 0.648810i \(0.224733\pi\)
\(42\) −1.76336 0.572949i −0.272092 0.0884080i
\(43\) 9.00000i 1.37249i 0.727372 + 0.686244i \(0.240742\pi\)
−0.727372 + 0.686244i \(0.759258\pi\)
\(44\) 0.572949 1.76336i 0.0863753 0.265836i
\(45\) 0 0
\(46\) 0.618034 + 1.90211i 0.0911241 + 0.280451i
\(47\) 7.91872 2.57295i 1.15506 0.375303i 0.332016 0.943274i \(-0.392271\pi\)
0.823049 + 0.567971i \(0.192271\pi\)
\(48\) −1.08981 + 1.50000i −0.157301 + 0.216506i
\(49\) −2.00000 −0.285714
\(50\) 0 0
\(51\) −1.61803 −0.226570
\(52\) −1.76336 + 2.42705i −0.244533 + 0.336571i
\(53\) 4.39201 1.42705i 0.603289 0.196021i 0.00858231 0.999963i \(-0.497268\pi\)
0.594707 + 0.803943i \(0.297268\pi\)
\(54\) 1.11803 + 3.44095i 0.152145 + 0.468255i
\(55\) 0 0
\(56\) −2.07295 + 6.37988i −0.277009 + 0.852547i
\(57\) 1.38197i 0.183046i
\(58\) 10.3229 + 3.35410i 1.35546 + 0.440415i
\(59\) 3.35410 2.43690i 0.436667 0.317257i −0.347642 0.937627i \(-0.613018\pi\)
0.784309 + 0.620370i \(0.213018\pi\)
\(60\) 0 0
\(61\) 4.92705 + 3.57971i 0.630844 + 0.458335i 0.856693 0.515827i \(-0.172515\pi\)
−0.225848 + 0.974162i \(0.572515\pi\)
\(62\) 4.84104 + 6.66312i 0.614813 + 0.846217i
\(63\) 5.03280 + 6.92705i 0.634073 + 0.872726i
\(64\) 3.42705 + 2.48990i 0.428381 + 0.311237i
\(65\) 0 0
\(66\) 1.50000 1.08981i 0.184637 0.134147i
\(67\) −13.1760 4.28115i −1.60971 0.523026i −0.640226 0.768186i \(-0.721159\pi\)
−0.969483 + 0.245160i \(0.921159\pi\)
\(68\) 2.61803i 0.317483i
\(69\) −0.145898 + 0.449028i −0.0175641 + 0.0540566i
\(70\) 0 0
\(71\) −0.927051 2.85317i −0.110021 0.338609i 0.880855 0.473386i \(-0.156968\pi\)
−0.990876 + 0.134777i \(0.956968\pi\)
\(72\) 6.06961 1.97214i 0.715310 0.232418i
\(73\) −1.08981 + 1.50000i −0.127553 + 0.175562i −0.868017 0.496534i \(-0.834606\pi\)
0.740464 + 0.672096i \(0.234606\pi\)
\(74\) 6.00000 0.697486
\(75\) 0 0
\(76\) −2.23607 −0.256495
\(77\) 5.29007 7.28115i 0.602859 0.829764i
\(78\) −2.85317 + 0.927051i −0.323058 + 0.104968i
\(79\) −0.163119 0.502029i −0.0183523 0.0564826i 0.941461 0.337122i \(-0.109453\pi\)
−0.959813 + 0.280639i \(0.909453\pi\)
\(80\) 0 0
\(81\) 2.38197 7.33094i 0.264663 0.814549i
\(82\) 4.85410i 0.536046i
\(83\) −0.449028 0.145898i −0.0492872 0.0160144i 0.284270 0.958744i \(-0.408249\pi\)
−0.333557 + 0.942730i \(0.608249\pi\)
\(84\) 0.572949 0.416272i 0.0625139 0.0454190i
\(85\) 0 0
\(86\) −11.7812 8.55951i −1.27039 0.922996i
\(87\) 1.50609 + 2.07295i 0.161469 + 0.222243i
\(88\) −3.94298 5.42705i −0.420323 0.578526i
\(89\) −10.8541 7.88597i −1.15053 0.835911i −0.161981 0.986794i \(-0.551788\pi\)
−0.988552 + 0.150883i \(0.951788\pi\)
\(90\) 0 0
\(91\) −11.7812 + 8.55951i −1.23500 + 0.897280i
\(92\) −0.726543 0.236068i −0.0757473 0.0246118i
\(93\) 1.94427i 0.201612i
\(94\) −4.16312 + 12.8128i −0.429393 + 1.32154i
\(95\) 0 0
\(96\) −0.399187 1.22857i −0.0407418 0.125391i
\(97\) −7.46969 + 2.42705i −0.758433 + 0.246430i −0.662606 0.748968i \(-0.730549\pi\)
−0.0958268 + 0.995398i \(0.530549\pi\)
\(98\) 1.90211 2.61803i 0.192142 0.264461i
\(99\) −8.56231 −0.860544
\(100\) 0 0
\(101\) −3.00000 −0.298511 −0.149256 0.988799i \(-0.547688\pi\)
−0.149256 + 0.988799i \(0.547688\pi\)
\(102\) 1.53884 2.11803i 0.152368 0.209717i
\(103\) 12.0862 3.92705i 1.19089 0.386944i 0.354489 0.935060i \(-0.384655\pi\)
0.836402 + 0.548116i \(0.184655\pi\)
\(104\) 3.35410 + 10.3229i 0.328897 + 1.01224i
\(105\) 0 0
\(106\) −2.30902 + 7.10642i −0.224272 + 0.690237i
\(107\) 0.0901699i 0.00871706i 0.999991 + 0.00435853i \(0.00138737\pi\)
−0.999991 + 0.00435853i \(0.998613\pi\)
\(108\) −1.31433 0.427051i −0.126471 0.0410930i
\(109\) 4.30902 3.13068i 0.412729 0.299865i −0.361977 0.932187i \(-0.617898\pi\)
0.774706 + 0.632322i \(0.217898\pi\)
\(110\) 0 0
\(111\) 1.14590 + 0.832544i 0.108764 + 0.0790215i
\(112\) −8.55951 11.7812i −0.808798 1.11321i
\(113\) 1.20833 + 1.66312i 0.113670 + 0.156453i 0.862061 0.506804i \(-0.169173\pi\)
−0.748391 + 0.663258i \(0.769173\pi\)
\(114\) −1.80902 1.31433i −0.169430 0.123098i
\(115\) 0 0
\(116\) −3.35410 + 2.43690i −0.311421 + 0.226260i
\(117\) 13.1760 + 4.28115i 1.21812 + 0.395793i
\(118\) 6.70820i 0.617540i
\(119\) 3.92705 12.0862i 0.359992 1.10794i
\(120\) 0 0
\(121\) −0.618034 1.90211i −0.0561849 0.172919i
\(122\) −9.37181 + 3.04508i −0.848484 + 0.275689i
\(123\) −0.673542 + 0.927051i −0.0607312 + 0.0835894i
\(124\) −3.14590 −0.282510
\(125\) 0 0
\(126\) −13.8541 −1.23422
\(127\) −5.70634 + 7.85410i −0.506356 + 0.696939i −0.983299 0.181995i \(-0.941745\pi\)
0.476944 + 0.878934i \(0.341745\pi\)
\(128\) −12.9515 + 4.20820i −1.14476 + 0.371956i
\(129\) −1.06231 3.26944i −0.0935308 0.287858i
\(130\) 0 0
\(131\) −3.79180 + 11.6699i −0.331291 + 1.01961i 0.637230 + 0.770674i \(0.280080\pi\)
−0.968520 + 0.248934i \(0.919920\pi\)
\(132\) 0.708204i 0.0616412i
\(133\) −10.3229 3.35410i −0.895106 0.290838i
\(134\) 18.1353 13.1760i 1.56665 1.13824i
\(135\) 0 0
\(136\) −7.66312 5.56758i −0.657107 0.477416i
\(137\) −3.30220 4.54508i −0.282126 0.388313i 0.644311 0.764764i \(-0.277144\pi\)
−0.926437 + 0.376451i \(0.877144\pi\)
\(138\) −0.449028 0.618034i −0.0382238 0.0526105i
\(139\) −9.89919 7.19218i −0.839638 0.610033i 0.0826315 0.996580i \(-0.473668\pi\)
−0.922270 + 0.386547i \(0.873668\pi\)
\(140\) 0 0
\(141\) −2.57295 + 1.86936i −0.216681 + 0.157428i
\(142\) 4.61653 + 1.50000i 0.387410 + 0.125877i
\(143\) 14.5623i 1.21776i
\(144\) −4.28115 + 13.1760i −0.356763 + 1.09800i
\(145\) 0 0
\(146\) −0.927051 2.85317i −0.0767233 0.236130i
\(147\) 0.726543 0.236068i 0.0599242 0.0194706i
\(148\) −1.34708 + 1.85410i −0.110730 + 0.152406i
\(149\) 15.0000 1.22885 0.614424 0.788976i \(-0.289388\pi\)
0.614424 + 0.788976i \(0.289388\pi\)
\(150\) 0 0
\(151\) −21.0902 −1.71629 −0.858147 0.513404i \(-0.828384\pi\)
−0.858147 + 0.513404i \(0.828384\pi\)
\(152\) −4.75528 + 6.54508i −0.385704 + 0.530876i
\(153\) −11.4984 + 3.73607i −0.929593 + 0.302043i
\(154\) 4.50000 + 13.8496i 0.362620 + 1.11603i
\(155\) 0 0
\(156\) 0.354102 1.08981i 0.0283508 0.0872549i
\(157\) 12.2705i 0.979293i −0.871921 0.489647i \(-0.837126\pi\)
0.871921 0.489647i \(-0.162874\pi\)
\(158\) 0.812299 + 0.263932i 0.0646231 + 0.0209973i
\(159\) −1.42705 + 1.03681i −0.113173 + 0.0822246i
\(160\) 0 0
\(161\) −3.00000 2.17963i −0.236433 0.171779i
\(162\) 7.33094 + 10.0902i 0.575973 + 0.792759i
\(163\) −11.6699 16.0623i −0.914061 1.25810i −0.965761 0.259434i \(-0.916464\pi\)
0.0516999 0.998663i \(-0.483536\pi\)
\(164\) −1.50000 1.08981i −0.117130 0.0851002i
\(165\) 0 0
\(166\) 0.618034 0.449028i 0.0479687 0.0348513i
\(167\) 8.78402 + 2.85410i 0.679728 + 0.220857i 0.628476 0.777829i \(-0.283679\pi\)
0.0512518 + 0.998686i \(0.483679\pi\)
\(168\) 2.56231i 0.197686i
\(169\) −3.26393 + 10.0453i −0.251072 + 0.772719i
\(170\) 0 0
\(171\) 3.19098 + 9.82084i 0.244021 + 0.751018i
\(172\) 5.29007 1.71885i 0.403364 0.131061i
\(173\) 0.0327561 0.0450850i 0.00249040 0.00342775i −0.807770 0.589498i \(-0.799326\pi\)
0.810260 + 0.586070i \(0.199326\pi\)
\(174\) −4.14590 −0.314300
\(175\) 0 0
\(176\) 14.5623 1.09768
\(177\) −0.930812 + 1.28115i −0.0699641 + 0.0962974i
\(178\) 20.6457 6.70820i 1.54746 0.502801i
\(179\) −2.07295 6.37988i −0.154939 0.476855i 0.843215 0.537576i \(-0.180660\pi\)
−0.998155 + 0.0607213i \(0.980660\pi\)
\(180\) 0 0
\(181\) 5.61803 17.2905i 0.417585 1.28520i −0.492333 0.870407i \(-0.663856\pi\)
0.909918 0.414788i \(-0.136144\pi\)
\(182\) 23.5623i 1.74655i
\(183\) −2.21238 0.718847i −0.163544 0.0531387i
\(184\) −2.23607 + 1.62460i −0.164845 + 0.119767i
\(185\) 0 0
\(186\) −2.54508 1.84911i −0.186615 0.135584i
\(187\) 7.46969 + 10.2812i 0.546238 + 0.751832i
\(188\) −3.02468 4.16312i −0.220598 0.303627i
\(189\) −5.42705 3.94298i −0.394760 0.286810i
\(190\) 0 0
\(191\) −9.70820 + 7.05342i −0.702461 + 0.510368i −0.880733 0.473614i \(-0.842949\pi\)
0.178272 + 0.983981i \(0.442949\pi\)
\(192\) −1.53884 0.500000i −0.111056 0.0360844i
\(193\) 15.2705i 1.09920i −0.835429 0.549598i \(-0.814781\pi\)
0.835429 0.549598i \(-0.185219\pi\)
\(194\) 3.92705 12.0862i 0.281946 0.867740i
\(195\) 0 0
\(196\) 0.381966 + 1.17557i 0.0272833 + 0.0839693i
\(197\) 3.85723 1.25329i 0.274816 0.0892931i −0.168367 0.985724i \(-0.553849\pi\)
0.443183 + 0.896431i \(0.353849\pi\)
\(198\) 8.14324 11.2082i 0.578715 0.796532i
\(199\) −16.1803 −1.14699 −0.573497 0.819208i \(-0.694414\pi\)
−0.573497 + 0.819208i \(0.694414\pi\)
\(200\) 0 0
\(201\) 5.29180 0.373255
\(202\) 2.85317 3.92705i 0.200748 0.276306i
\(203\) −19.1396 + 6.21885i −1.34334 + 0.436477i
\(204\) 0.309017 + 0.951057i 0.0216355 + 0.0665873i
\(205\) 0 0
\(206\) −6.35410 + 19.5559i −0.442711 + 1.36253i
\(207\) 3.52786i 0.245204i
\(208\) −22.4091 7.28115i −1.55379 0.504857i
\(209\) 8.78115 6.37988i 0.607405 0.441306i
\(210\) 0 0
\(211\) 3.38197 + 2.45714i 0.232824 + 0.169157i 0.698080 0.716019i \(-0.254038\pi\)
−0.465256 + 0.885176i \(0.654038\pi\)
\(212\) −1.67760 2.30902i −0.115218 0.158584i
\(213\) 0.673542 + 0.927051i 0.0461503 + 0.0635205i
\(214\) −0.118034 0.0857567i −0.00806864 0.00586221i
\(215\) 0 0
\(216\) −4.04508 + 2.93893i −0.275233 + 0.199969i
\(217\) −14.5231 4.71885i −0.985893 0.320336i
\(218\) 8.61803i 0.583687i
\(219\) 0.218847 0.673542i 0.0147883 0.0455137i
\(220\) 0 0
\(221\) −6.35410 19.5559i −0.427423 1.31547i
\(222\) −2.17963 + 0.708204i −0.146287 + 0.0475315i
\(223\) −1.08981 + 1.50000i −0.0729793 + 0.100447i −0.843946 0.536428i \(-0.819773\pi\)
0.770967 + 0.636875i \(0.219773\pi\)
\(224\) 10.1459 0.677901
\(225\) 0 0
\(226\) −3.32624 −0.221258
\(227\) −3.88998 + 5.35410i −0.258187 + 0.355364i −0.918358 0.395752i \(-0.870484\pi\)
0.660170 + 0.751116i \(0.270484\pi\)
\(228\) 0.812299 0.263932i 0.0537958 0.0174793i
\(229\) 0.427051 + 1.31433i 0.0282203 + 0.0868532i 0.964175 0.265268i \(-0.0854605\pi\)
−0.935954 + 0.352121i \(0.885460\pi\)
\(230\) 0 0
\(231\) −1.06231 + 3.26944i −0.0698946 + 0.215113i
\(232\) 15.0000i 0.984798i
\(233\) 25.5725 + 8.30902i 1.67531 + 0.544342i 0.983993 0.178208i \(-0.0570300\pi\)
0.691319 + 0.722550i \(0.257030\pi\)
\(234\) −18.1353 + 13.1760i −1.18554 + 0.861344i
\(235\) 0 0
\(236\) −2.07295 1.50609i −0.134937 0.0980378i
\(237\) 0.118513 + 0.163119i 0.00769824 + 0.0105957i
\(238\) 12.0862 + 16.6353i 0.783433 + 1.07830i
\(239\) 20.9164 + 15.1967i 1.35297 + 0.982990i 0.998858 + 0.0477873i \(0.0152170\pi\)
0.354112 + 0.935203i \(0.384783\pi\)
\(240\) 0 0
\(241\) 15.5172 11.2739i 0.999552 0.726217i 0.0375600 0.999294i \(-0.488041\pi\)
0.961992 + 0.273077i \(0.0880415\pi\)
\(242\) 3.07768 + 1.00000i 0.197841 + 0.0642824i
\(243\) 9.65248i 0.619207i
\(244\) 1.16312 3.57971i 0.0744611 0.229168i
\(245\) 0 0
\(246\) −0.572949 1.76336i −0.0365299 0.112427i
\(247\) −16.7027 + 5.42705i −1.06277 + 0.345315i
\(248\) −6.69015 + 9.20820i −0.424825 + 0.584722i
\(249\) 0.180340 0.0114286
\(250\) 0 0
\(251\) 6.27051 0.395791 0.197896 0.980223i \(-0.436589\pi\)
0.197896 + 0.980223i \(0.436589\pi\)
\(252\) 3.11044 4.28115i 0.195939 0.269687i
\(253\) 3.52671 1.14590i 0.221722 0.0720420i
\(254\) −4.85410 14.9394i −0.304573 0.937381i
\(255\) 0 0
\(256\) 4.19098 12.8985i 0.261936 0.806157i
\(257\) 29.3607i 1.83147i 0.401784 + 0.915734i \(0.368390\pi\)
−0.401784 + 0.915734i \(0.631610\pi\)
\(258\) 5.29007 + 1.71885i 0.329345 + 0.107011i
\(259\) −9.00000 + 6.53888i −0.559233 + 0.406306i
\(260\) 0 0
\(261\) 15.4894 + 11.2537i 0.958767 + 0.696585i
\(262\) −11.6699 16.0623i −0.720972 0.992333i
\(263\) 9.59632 + 13.2082i 0.591735 + 0.814453i 0.994920 0.100665i \(-0.0320972\pi\)
−0.403186 + 0.915118i \(0.632097\pi\)
\(264\) 2.07295 + 1.50609i 0.127581 + 0.0926932i
\(265\) 0 0
\(266\) 14.2082 10.3229i 0.871161 0.632935i
\(267\) 4.87380 + 1.58359i 0.298271 + 0.0969143i
\(268\) 8.56231i 0.523026i
\(269\) −0.791796 + 2.43690i −0.0482767 + 0.148580i −0.972289 0.233783i \(-0.924890\pi\)
0.924012 + 0.382363i \(0.124890\pi\)
\(270\) 0 0
\(271\) 6.20820 + 19.1069i 0.377122 + 1.16066i 0.942036 + 0.335511i \(0.108909\pi\)
−0.564915 + 0.825149i \(0.691091\pi\)
\(272\) 19.5559 6.35410i 1.18575 0.385274i
\(273\) 3.26944 4.50000i 0.197876 0.272352i
\(274\) 9.09017 0.549157
\(275\) 0 0
\(276\) 0.291796 0.0175641
\(277\) 3.11044 4.28115i 0.186888 0.257230i −0.705284 0.708925i \(-0.749181\pi\)
0.892172 + 0.451695i \(0.149181\pi\)
\(278\) 18.8294 6.11803i 1.12931 0.366935i
\(279\) 4.48936 + 13.8168i 0.268771 + 0.827191i
\(280\) 0 0
\(281\) 3.70820 11.4127i 0.221213 0.680823i −0.777441 0.628956i \(-0.783483\pi\)
0.998654 0.0518675i \(-0.0165174\pi\)
\(282\) 5.14590i 0.306434i
\(283\) 14.9394 + 4.85410i 0.888055 + 0.288546i 0.717298 0.696767i \(-0.245379\pi\)
0.170757 + 0.985313i \(0.445379\pi\)
\(284\) −1.50000 + 1.08981i −0.0890086 + 0.0646686i
\(285\) 0 0
\(286\) 19.0623 + 13.8496i 1.12718 + 0.818943i
\(287\) −5.29007 7.28115i −0.312263 0.429793i
\(288\) −5.67358 7.80902i −0.334319 0.460151i
\(289\) 0.763932 + 0.555029i 0.0449372 + 0.0326488i
\(290\) 0 0
\(291\) 2.42705 1.76336i 0.142276 0.103370i
\(292\) 1.08981 + 0.354102i 0.0637765 + 0.0207223i
\(293\) 21.3607i 1.24790i 0.781463 + 0.623952i \(0.214474\pi\)
−0.781463 + 0.623952i \(0.785526\pi\)
\(294\) −0.381966 + 1.17557i −0.0222767 + 0.0685607i
\(295\) 0 0
\(296\) 2.56231 + 7.88597i 0.148931 + 0.458363i
\(297\) 6.37988 2.07295i 0.370198 0.120285i
\(298\) −14.2658 + 19.6353i −0.826398 + 1.13744i
\(299\) −6.00000 −0.346989
\(300\) 0 0
\(301\) 27.0000 1.55625
\(302\) 20.0579 27.6074i 1.15420 1.58863i
\(303\) 1.08981 0.354102i 0.0626082 0.0203426i
\(304\) −5.42705 16.7027i −0.311263 0.957968i
\(305\) 0 0
\(306\) 6.04508 18.6049i 0.345575 1.06357i
\(307\) 6.27051i 0.357877i 0.983860 + 0.178938i \(0.0572663\pi\)
−0.983860 + 0.178938i \(0.942734\pi\)
\(308\) −5.29007 1.71885i −0.301430 0.0979404i
\(309\) −3.92705 + 2.85317i −0.223402 + 0.162311i
\(310\) 0 0
\(311\) −17.2082 12.5025i −0.975788 0.708951i −0.0190245 0.999819i \(-0.506056\pi\)
−0.956763 + 0.290868i \(0.906056\pi\)
\(312\) −2.43690 3.35410i −0.137962 0.189889i
\(313\) 11.4127 + 15.7082i 0.645083 + 0.887880i 0.998874 0.0474443i \(-0.0151076\pi\)
−0.353791 + 0.935324i \(0.615108\pi\)
\(314\) 16.0623 + 11.6699i 0.906448 + 0.658573i
\(315\) 0 0
\(316\) −0.263932 + 0.191758i −0.0148473 + 0.0107872i
\(317\) −25.6255 8.32624i −1.43927 0.467648i −0.517602 0.855621i \(-0.673175\pi\)
−0.921671 + 0.387973i \(0.873175\pi\)
\(318\) 2.85410i 0.160050i
\(319\) 6.21885 19.1396i 0.348189 1.07161i
\(320\) 0 0
\(321\) −0.0106431 0.0327561i −0.000594041 0.00182827i
\(322\) 5.70634 1.85410i 0.318002 0.103325i
\(323\) 9.00854 12.3992i 0.501248 0.689909i
\(324\) −4.76393 −0.264663
\(325\) 0 0
\(326\) 32.1246 1.77922
\(327\) −1.19581 + 1.64590i −0.0661287 + 0.0910184i
\(328\) −6.37988 + 2.07295i −0.352270 + 0.114459i
\(329\) −7.71885 23.7562i −0.425554 1.30972i
\(330\) 0 0
\(331\) −6.51722 + 20.0579i −0.358219 + 1.10248i 0.595901 + 0.803058i \(0.296795\pi\)
−0.954119 + 0.299426i \(0.903205\pi\)
\(332\) 0.291796i 0.0160144i
\(333\) 10.0656 + 3.27051i 0.551591 + 0.179223i
\(334\) −12.0902 + 8.78402i −0.661545 + 0.480640i
\(335\) 0 0
\(336\) 4.50000 + 3.26944i 0.245495 + 0.178363i
\(337\) 17.5353 + 24.1353i 0.955208 + 1.31473i 0.949175 + 0.314749i \(0.101920\pi\)
0.00603323 + 0.999982i \(0.498080\pi\)
\(338\) −10.0453 13.8262i −0.546395 0.752048i
\(339\) −0.635255 0.461540i −0.0345023 0.0250674i
\(340\) 0 0
\(341\) 12.3541 8.97578i 0.669012 0.486066i
\(342\) −15.8904 5.16312i −0.859257 0.279189i
\(343\) 15.0000i 0.809924i
\(344\) 6.21885 19.1396i 0.335298 1.03194i
\(345\) 0 0
\(346\) 0.0278640 + 0.0857567i 0.00149798 + 0.00461031i
\(347\) −15.1639 + 4.92705i −0.814041 + 0.264498i −0.686308 0.727311i \(-0.740770\pi\)
−0.127733 + 0.991809i \(0.540770\pi\)
\(348\) 0.930812 1.28115i 0.0498968 0.0686770i
\(349\) 17.3607 0.929296 0.464648 0.885496i \(-0.346181\pi\)
0.464648 + 0.885496i \(0.346181\pi\)
\(350\) 0 0
\(351\) −10.8541 −0.579349
\(352\) −5.96361 + 8.20820i −0.317861 + 0.437499i
\(353\) 3.69822 1.20163i 0.196837 0.0639561i −0.208940 0.977929i \(-0.567001\pi\)
0.405776 + 0.913972i \(0.367001\pi\)
\(354\) −0.791796 2.43690i −0.0420835 0.129520i
\(355\) 0 0
\(356\) −2.56231 + 7.88597i −0.135802 + 0.417955i
\(357\) 4.85410i 0.256906i
\(358\) 10.3229 + 3.35410i 0.545580 + 0.177270i
\(359\) −8.78115 + 6.37988i −0.463452 + 0.336717i −0.794884 0.606762i \(-0.792468\pi\)
0.331432 + 0.943479i \(0.392468\pi\)
\(360\) 0 0
\(361\) 4.78115 + 3.47371i 0.251640 + 0.182827i
\(362\) 17.2905 + 23.7984i 0.908770 + 1.25081i
\(363\) 0.449028 + 0.618034i 0.0235679 + 0.0324384i
\(364\) 7.28115 + 5.29007i 0.381636 + 0.277275i
\(365\) 0 0
\(366\) 3.04508 2.21238i 0.159169 0.115643i
\(367\) 1.08981 + 0.354102i 0.0568878 + 0.0184840i 0.337323 0.941389i \(-0.390479\pi\)
−0.280435 + 0.959873i \(0.590479\pi\)
\(368\) 6.00000i 0.312772i
\(369\) −2.64590 + 8.14324i −0.137740 + 0.423920i
\(370\) 0 0
\(371\) −4.28115 13.1760i −0.222266 0.684066i
\(372\) 1.14281 0.371323i 0.0592522 0.0192522i
\(373\) −1.08981 + 1.50000i −0.0564284 + 0.0776671i −0.836299 0.548274i \(-0.815285\pi\)
0.779870 + 0.625941i \(0.215285\pi\)
\(374\) −20.5623 −1.06325
\(375\) 0 0
\(376\) −18.6180 −0.960152
\(377\) −19.1396 + 26.3435i −0.985742 + 1.35676i
\(378\) 10.3229 3.35410i 0.530951 0.172516i
\(379\) 2.33688 + 7.19218i 0.120038 + 0.369437i 0.992964 0.118414i \(-0.0377809\pi\)
−0.872927 + 0.487851i \(0.837781\pi\)
\(380\) 0 0
\(381\) 1.14590 3.52671i 0.0587061 0.180679i
\(382\) 19.4164i 0.993430i
\(383\) −33.7360 10.9615i −1.72383 0.560106i −0.731294 0.682062i \(-0.761083\pi\)
−0.992535 + 0.121956i \(0.961083\pi\)
\(384\) 4.20820 3.05744i 0.214749 0.156024i
\(385\) 0 0
\(386\) 19.9894 + 14.5231i 1.01743 + 0.739207i
\(387\) −15.0984 20.7812i −0.767494 1.05637i
\(388\) 2.85317 + 3.92705i 0.144848 + 0.199366i
\(389\) 1.28115 + 0.930812i 0.0649570 + 0.0471940i 0.619790 0.784768i \(-0.287218\pi\)
−0.554833 + 0.831962i \(0.687218\pi\)
\(390\) 0 0
\(391\) 4.23607 3.07768i 0.214227 0.155645i
\(392\) 4.25325 + 1.38197i 0.214822 + 0.0697998i
\(393\) 4.68692i 0.236424i
\(394\) −2.02786 + 6.24112i −0.102162 + 0.314423i
\(395\) 0 0
\(396\) 1.63525 + 5.03280i 0.0821747 + 0.252908i
\(397\) 15.6129 5.07295i 0.783591 0.254604i 0.110218 0.993907i \(-0.464845\pi\)
0.673372 + 0.739303i \(0.264845\pi\)
\(398\) 15.3884 21.1803i 0.771352 1.06167i
\(399\) 4.14590 0.207555
\(400\) 0 0
\(401\) 12.0000 0.599251 0.299626 0.954057i \(-0.403138\pi\)
0.299626 + 0.954057i \(0.403138\pi\)
\(402\) −5.03280 + 6.92705i −0.251013 + 0.345490i
\(403\) −23.4989 + 7.63525i −1.17056 + 0.380339i
\(404\) 0.572949 + 1.76336i 0.0285053 + 0.0877302i
\(405\) 0 0
\(406\) 10.0623 30.9686i 0.499384 1.53695i
\(407\) 11.1246i 0.551427i
\(408\) 3.44095 + 1.11803i 0.170353 + 0.0553509i
\(409\) −18.4164 + 13.3803i −0.910633 + 0.661613i −0.941175 0.337920i \(-0.890277\pi\)
0.0305421 + 0.999533i \(0.490277\pi\)
\(410\) 0 0
\(411\) 1.73607 + 1.26133i 0.0856339 + 0.0622167i
\(412\) −4.61653 6.35410i −0.227440 0.313044i
\(413\) −7.31069 10.0623i −0.359736 0.495134i
\(414\) −4.61803 3.35520i −0.226964 0.164899i
\(415\) 0 0
\(416\) 13.2812 9.64932i 0.651162 0.473097i
\(417\) 4.44501 + 1.44427i 0.217673 + 0.0707263i
\(418\) 17.5623i 0.859000i
\(419\) 2.07295 6.37988i 0.101270 0.311678i −0.887567 0.460679i \(-0.847606\pi\)
0.988837 + 0.149001i \(0.0476059\pi\)
\(420\) 0 0
\(421\) 2.75329 + 8.47375i 0.134187 + 0.412985i 0.995463 0.0951527i \(-0.0303339\pi\)
−0.861276 + 0.508138i \(0.830334\pi\)
\(422\) −6.43288 + 2.09017i −0.313148 + 0.101748i
\(423\) −13.9681 + 19.2254i −0.679152 + 0.934772i
\(424\) −10.3262 −0.501486
\(425\) 0 0
\(426\) −1.85410 −0.0898315
\(427\) 10.7391 14.7812i 0.519703 0.715310i
\(428\) 0.0530006 0.0172209i 0.00256188 0.000832405i
\(429\) 1.71885 + 5.29007i 0.0829867 + 0.255407i
\(430\) 0 0
\(431\) −3.79180 + 11.6699i −0.182644 + 0.562122i −0.999900 0.0141540i \(-0.995495\pi\)
0.817255 + 0.576276i \(0.195495\pi\)
\(432\) 10.8541i 0.522218i
\(433\) −13.5923 4.41641i −0.653205 0.212239i −0.0363780 0.999338i \(-0.511582\pi\)
−0.616827 + 0.787099i \(0.711582\pi\)
\(434\) 19.9894 14.5231i 0.959520 0.697132i
\(435\) 0 0
\(436\) −2.66312 1.93487i −0.127540 0.0926634i
\(437\) −2.62866 3.61803i −0.125746 0.173074i
\(438\) 0.673542 + 0.927051i 0.0321831 + 0.0442962i
\(439\) 24.3713 + 17.7068i 1.16318 + 0.845100i 0.990177 0.139822i \(-0.0446529\pi\)
0.173003 + 0.984921i \(0.444653\pi\)
\(440\) 0 0
\(441\) 4.61803 3.35520i 0.219906 0.159771i
\(442\) 31.6421 + 10.2812i 1.50506 + 0.489025i
\(443\) 7.18034i 0.341148i −0.985345 0.170574i \(-0.945438\pi\)
0.985345 0.170574i \(-0.0545622\pi\)
\(444\) 0.270510 0.832544i 0.0128378 0.0395108i
\(445\) 0 0
\(446\) −0.927051 2.85317i −0.0438971 0.135101i
\(447\) −5.44907 + 1.77051i −0.257732 + 0.0837422i
\(448\) 7.46969 10.2812i 0.352910 0.485739i
\(449\) 39.2705 1.85329 0.926645 0.375938i \(-0.122679\pi\)
0.926645 + 0.375938i \(0.122679\pi\)
\(450\) 0 0
\(451\) 9.00000 0.423793
\(452\) 0.746787 1.02786i 0.0351259 0.0483467i
\(453\) 7.66145 2.48936i 0.359966 0.116960i
\(454\) −3.30902 10.1841i −0.155300 0.477964i
\(455\) 0 0
\(456\) 0.954915 2.93893i 0.0447180 0.137628i
\(457\) 18.0000i 0.842004i −0.907060 0.421002i \(-0.861678\pi\)
0.907060 0.421002i \(-0.138322\pi\)
\(458\) −2.12663 0.690983i −0.0993708 0.0322875i
\(459\) 7.66312 5.56758i 0.357684 0.259872i
\(460\) 0 0
\(461\) −29.3435 21.3193i −1.36666 0.992937i −0.997990 0.0633777i \(-0.979813\pi\)
−0.368672 0.929560i \(-0.620187\pi\)
\(462\) −3.26944 4.50000i −0.152108 0.209359i
\(463\) −8.30224 11.4271i −0.385838 0.531060i 0.571282 0.820754i \(-0.306446\pi\)
−0.957119 + 0.289694i \(0.906446\pi\)
\(464\) −26.3435 19.1396i −1.22296 0.888536i
\(465\) 0 0
\(466\) −35.1976 + 25.5725i −1.63050 + 1.18462i
\(467\) 37.3157 + 12.1246i 1.72677 + 0.561060i 0.992976 0.118317i \(-0.0377498\pi\)
0.733790 + 0.679377i \(0.237750\pi\)
\(468\) 8.56231i 0.395793i
\(469\) −12.8435 + 39.5281i −0.593056 + 1.82524i
\(470\) 0 0
\(471\) 1.44834 + 4.45752i 0.0667359 + 0.205392i
\(472\) −8.81678 + 2.86475i −0.405825 + 0.131861i
\(473\) −15.8702 + 21.8435i −0.729713 + 1.00436i
\(474\) −0.326238 −0.0149846
\(475\) 0 0
\(476\) −7.85410 −0.359992
\(477\) −7.74721 + 10.6631i −0.354720 + 0.488231i
\(478\) −39.7854 + 12.9271i −1.81974 + 0.591270i
\(479\) 10.0623 + 30.9686i 0.459758 + 1.41499i 0.865457 + 0.500984i \(0.167028\pi\)
−0.405698 + 0.914007i \(0.632972\pi\)
\(480\) 0 0
\(481\) −5.56231 + 17.1190i −0.253619 + 0.780560i
\(482\) 31.0344i 1.41358i
\(483\) 1.34708 + 0.437694i 0.0612944 + 0.0199158i
\(484\) −1.00000 + 0.726543i −0.0454545 + 0.0330247i
\(485\) 0 0
\(486\) −12.6353 9.18005i −0.573147 0.416416i
\(487\) −2.17963 3.00000i −0.0987684 0.135943i 0.756772 0.653679i \(-0.226775\pi\)
−0.855541 + 0.517736i \(0.826775\pi\)
\(488\) −8.00448 11.0172i −0.362346 0.498726i
\(489\) 6.13525 + 4.45752i 0.277446 + 0.201576i
\(490\) 0 0
\(491\) −29.3435 + 21.3193i −1.32425 + 0.962125i −0.324383 + 0.945926i \(0.605157\pi\)
−0.999869 + 0.0161994i \(0.994843\pi\)
\(492\) 0.673542 + 0.218847i 0.0303656 + 0.00986639i
\(493\) 28.4164i 1.27981i
\(494\) 8.78115 27.0256i 0.395083 1.21594i
\(495\) 0 0
\(496\) −7.63525 23.4989i −0.342833 1.05513i
\(497\) −8.55951 + 2.78115i −0.383946 + 0.124752i
\(498\) −0.171513 + 0.236068i −0.00768570 + 0.0105785i
\(499\) −42.3607 −1.89632 −0.948162 0.317787i \(-0.897060\pi\)
−0.948162 + 0.317787i \(0.897060\pi\)
\(500\) 0 0
\(501\) −3.52786 −0.157613
\(502\) −5.96361 + 8.20820i −0.266169 + 0.366350i
\(503\) 24.5357 7.97214i 1.09399 0.355460i 0.294205 0.955742i \(-0.404945\pi\)
0.799788 + 0.600282i \(0.204945\pi\)
\(504\) −5.91641 18.2088i −0.263538 0.811086i
\(505\) 0 0
\(506\) −1.85410 + 5.70634i −0.0824249 + 0.253678i
\(507\) 4.03444i 0.179176i
\(508\) 5.70634 + 1.85410i 0.253178 + 0.0822625i
\(509\) 10.8541 7.88597i 0.481100 0.349539i −0.320652 0.947197i \(-0.603902\pi\)
0.801751 + 0.597658i \(0.203902\pi\)
\(510\) 0 0
\(511\) 4.50000 + 3.26944i 0.199068 + 0.144632i
\(512\) −3.11044 4.28115i −0.137463 0.189202i
\(513\) −4.75528 6.54508i −0.209951 0.288973i
\(514\) −38.4336 27.9237i −1.69523 1.23166i
\(515\) 0 0
\(516\) −1.71885 + 1.24882i −0.0756680 + 0.0549760i
\(517\) 23.7562 + 7.71885i 1.04480 + 0.339475i
\(518\) 18.0000i 0.790875i
\(519\) −0.00657781 + 0.0202444i −0.000288734 + 0.000888631i
\(520\) 0 0
\(521\) 1.93769 + 5.96361i 0.0848919 + 0.261270i 0.984488 0.175453i \(-0.0561389\pi\)
−0.899596 + 0.436723i \(0.856139\pi\)
\(522\) −29.4625 + 9.57295i −1.28954 + 0.418997i
\(523\) 21.9928 30.2705i 0.961679 1.32364i 0.0155385 0.999879i \(-0.495054\pi\)
0.946140 0.323758i \(-0.104946\pi\)
\(524\) 7.58359 0.331291
\(525\) 0 0
\(526\) −26.4164 −1.15181
\(527\) 12.6740 17.4443i 0.552088 0.759884i
\(528\) −5.29007 + 1.71885i −0.230221 + 0.0748032i
\(529\) 6.63525 + 20.4212i 0.288489 + 0.887879i
\(530\) 0 0
\(531\) −3.65654 + 11.2537i −0.158680 + 0.488368i
\(532\) 6.70820i 0.290838i
\(533\) −13.8496 4.50000i −0.599892 0.194917i
\(534\) −6.70820 + 4.87380i −0.290292 + 0.210910i
\(535\) 0 0
\(536\) 25.0623 + 18.2088i 1.08253 + 0.786502i
\(537\) 1.50609 + 2.07295i 0.0649924 + 0.0894544i
\(538\) −2.43690 3.35410i −0.105062 0.144606i
\(539\) −4.85410 3.52671i −0.209081 0.151906i
\(540\) 0 0
\(541\) 27.6525 20.0907i 1.18887 0.863767i 0.195728 0.980658i \(-0.437293\pi\)
0.993145 + 0.116892i \(0.0372930\pi\)
\(542\) −30.9156 10.0451i −1.32794 0.431473i
\(543\) 6.94427i 0.298007i
\(544\) −4.42705 + 13.6251i −0.189808 + 0.584170i
\(545\) 0 0
\(546\) 2.78115 + 8.55951i 0.119022 + 0.366313i
\(547\) 21.0620 6.84346i 0.900546 0.292605i 0.178084 0.984015i \(-0.443010\pi\)
0.722462 + 0.691410i \(0.243010\pi\)
\(548\) −2.04087 + 2.80902i −0.0871817 + 0.119995i
\(549\) −17.3820 −0.741844
\(550\) 0 0
\(551\) −24.2705 −1.03396
\(552\) 0.620541 0.854102i 0.0264120 0.0363530i
\(553\) −1.50609 + 0.489357i −0.0640453 + 0.0208096i
\(554\) 2.64590 + 8.14324i 0.112413 + 0.345973i
\(555\) 0 0
\(556\) −2.33688 + 7.19218i −0.0991058 + 0.305016i
\(557\) 40.3607i 1.71014i −0.518515 0.855068i \(-0.673515\pi\)
0.518515 0.855068i \(-0.326485\pi\)
\(558\) −22.3561 7.26393i −0.946409 0.307507i
\(559\) 35.3435 25.6785i 1.49487 1.08609i
\(560\) 0 0
\(561\) −3.92705 2.85317i −0.165800 0.120461i
\(562\) 11.4127 + 15.7082i 0.481415 + 0.662611i
\(563\) 4.14725 + 5.70820i 0.174786 + 0.240572i 0.887418 0.460966i \(-0.152497\pi\)
−0.712632 + 0.701538i \(0.752497\pi\)
\(564\) 1.59017 + 1.15533i 0.0669582 + 0.0486480i
\(565\) 0 0
\(566\) −20.5623 + 14.9394i −0.864298 + 0.627949i
\(567\) −21.9928 7.14590i −0.923611 0.300100i
\(568\) 6.70820i 0.281470i
\(569\) −8.29180 + 25.5195i −0.347610 + 1.06983i 0.612561 + 0.790423i \(0.290139\pi\)
−0.960172 + 0.279411i \(0.909861\pi\)
\(570\) 0 0
\(571\) −4.01722 12.3637i −0.168115 0.517406i 0.831137 0.556068i \(-0.187691\pi\)
−0.999252 + 0.0386617i \(0.987691\pi\)
\(572\) −8.55951 + 2.78115i −0.357891 + 0.116286i
\(573\) 2.69417 3.70820i 0.112550 0.154912i
\(574\) 14.5623 0.607819
\(575\) 0 0
\(576\) −12.0902 −0.503757
\(577\) 17.3763 23.9164i 0.723384 0.995653i −0.276020 0.961152i \(-0.589016\pi\)
0.999405 0.0345013i \(-0.0109843\pi\)
\(578\) −1.45309 + 0.472136i −0.0604404 + 0.0196383i
\(579\) 1.80244 + 5.54734i 0.0749068 + 0.230539i
\(580\) 0 0
\(581\) −0.437694 + 1.34708i −0.0181586 + 0.0558865i
\(582\) 4.85410i 0.201209i
\(583\) 13.1760 + 4.28115i 0.545696 + 0.177307i
\(584\) 3.35410 2.43690i 0.138794 0.100840i
\(585\) 0 0
\(586\) −27.9615 20.3152i −1.15508 0.839214i
\(587\) 1.45309 + 2.00000i 0.0599752 + 0.0825488i 0.837951 0.545745i \(-0.183753\pi\)
−0.777976 + 0.628294i \(0.783753\pi\)
\(588\) −0.277515 0.381966i −0.0114445 0.0157520i
\(589\) −14.8992 10.8249i −0.613910 0.446032i
\(590\) 0 0
\(591\) −1.25329 + 0.910568i −0.0515534 + 0.0374557i
\(592\) −17.1190 5.56231i −0.703587 0.228609i
\(593\) 41.3607i 1.69848i 0.528007 + 0.849240i \(0.322939\pi\)
−0.528007 + 0.849240i \(0.677061\pi\)
\(594\) −3.35410 + 10.3229i −0.137620 + 0.423552i
\(595\) 0 0
\(596\) −2.86475 8.81678i −0.117345 0.361149i
\(597\) 5.87785 1.90983i 0.240564 0.0781641i
\(598\) 5.70634 7.85410i 0.233350 0.321178i
\(599\) 24.2705 0.991666 0.495833 0.868418i \(-0.334863\pi\)
0.495833 + 0.868418i \(0.334863\pi\)
\(600\) 0 0
\(601\) −0.639320 −0.0260784 −0.0130392 0.999915i \(-0.504151\pi\)
−0.0130392 + 0.999915i \(0.504151\pi\)
\(602\) −25.6785 + 35.3435i −1.04658 + 1.44049i
\(603\) 37.6057 12.2188i 1.53142 0.497590i
\(604\) 4.02786 + 12.3965i 0.163891 + 0.504406i
\(605\) 0 0
\(606\) −0.572949 + 1.76336i −0.0232745 + 0.0716314i
\(607\) 30.5410i 1.23962i 0.784751 + 0.619811i \(0.212791\pi\)
−0.784751 + 0.619811i \(0.787209\pi\)
\(608\) 11.6372 + 3.78115i 0.471950 + 0.153346i
\(609\) 6.21885 4.51826i 0.252000 0.183089i
\(610\) 0 0
\(611\) −32.6976 23.7562i −1.32280 0.961072i
\(612\) 4.39201 + 6.04508i 0.177537 + 0.244358i
\(613\) 2.59590 + 3.57295i 0.104847 + 0.144310i 0.858217 0.513288i \(-0.171573\pi\)
−0.753369 + 0.657598i \(0.771573\pi\)
\(614\) −8.20820 5.96361i −0.331256 0.240672i
\(615\) 0 0
\(616\) −16.2812 + 11.8290i −0.655986 + 0.476602i
\(617\) −24.5030 7.96149i −0.986452 0.320518i −0.229013 0.973423i \(-0.573550\pi\)
−0.757439 + 0.652906i \(0.773550\pi\)
\(618\) 7.85410i 0.315938i
\(619\) 6.34346 19.5232i 0.254965 0.784702i −0.738871 0.673846i \(-0.764641\pi\)
0.993837 0.110856i \(-0.0353591\pi\)
\(620\) 0 0
\(621\) −0.854102 2.62866i −0.0342739 0.105484i
\(622\) 32.7319 10.6353i 1.31243 0.426435i
\(623\) −23.6579 + 32.5623i −0.947834 + 1.30458i
\(624\) 9.00000 0.360288
\(625\) 0 0
\(626\) −31.4164 −1.25565
\(627\) −2.43690 + 3.35410i −0.0973203 + 0.133950i
\(628\) −7.21242 + 2.34346i −0.287807 + 0.0935142i
\(629\) −4.85410 14.9394i −0.193546 0.595672i
\(630\) 0 0
\(631\) 0.618034 1.90211i 0.0246035 0.0757219i −0.938001 0.346633i \(-0.887325\pi\)
0.962604 + 0.270911i \(0.0873249\pi\)
\(632\) 1.18034i 0.0469514i
\(633\) −1.51860 0.493422i −0.0603588 0.0196118i
\(634\) 35.2705 25.6255i 1.40077 1.01772i
\(635\) 0 0
\(636\) 0.881966 + 0.640786i 0.0349722 + 0.0254088i
\(637\) 5.70634 + 7.85410i 0.226093 + 0.311191i
\(638\) 19.1396 + 26.3435i 0.757746 + 1.04295i
\(639\) 6.92705 + 5.03280i 0.274030 + 0.199094i
\(640\) 0 0
\(641\) 7.06231 5.13107i 0.278944 0.202665i −0.439513 0.898236i \(-0.644849\pi\)
0.718457 + 0.695572i \(0.244849\pi\)
\(642\) 0.0530006 + 0.0172209i 0.00209177 + 0.000679656i
\(643\) 18.2705i 0.720519i 0.932852 + 0.360259i \(0.117312\pi\)
−0.932852 + 0.360259i \(0.882688\pi\)
\(644\) −0.708204 + 2.17963i −0.0279071 + 0.0858894i
\(645\) 0 0
\(646\) 7.66312 + 23.5847i 0.301501 + 0.927926i
\(647\) 19.2456 6.25329i 0.756624 0.245842i 0.0947951 0.995497i \(-0.469780\pi\)
0.661829 + 0.749655i \(0.269780\pi\)
\(648\) −10.1311 + 13.9443i −0.397987 + 0.547783i
\(649\) 12.4377 0.488222
\(650\) 0 0
\(651\) 5.83282 0.228606
\(652\) −7.21242 + 9.92705i −0.282460 + 0.388773i
\(653\) −4.42477 + 1.43769i −0.173155 + 0.0562613i −0.394311 0.918977i \(-0.629017\pi\)
0.221157 + 0.975238i \(0.429017\pi\)
\(654\) −1.01722 3.13068i −0.0397765 0.122419i
\(655\) 0 0
\(656\) 4.50000 13.8496i 0.175695 0.540735i
\(657\) 5.29180i 0.206453i
\(658\) 38.4383 + 12.4894i 1.49848 + 0.486886i
\(659\) −20.9164 + 15.1967i −0.814788 + 0.591978i −0.915215 0.402967i \(-0.867979\pi\)
0.100427 + 0.994944i \(0.467979\pi\)
\(660\) 0 0
\(661\) −11.6180 8.44100i −0.451889 0.328317i 0.338452 0.940984i \(-0.390097\pi\)
−0.790341 + 0.612667i \(0.790097\pi\)
\(662\) −20.0579 27.6074i −0.779574 1.07299i
\(663\) 4.61653 + 6.35410i 0.179291 + 0.246773i
\(664\) 0.854102 + 0.620541i 0.0331456 + 0.0240817i
\(665\) 0 0
\(666\) −13.8541 + 10.0656i −0.536836 + 0.390034i
\(667\) −7.88597 2.56231i −0.305346 0.0992129i
\(668\) 5.70820i 0.220857i
\(669\) 0.218847 0.673542i 0.00846112 0.0260406i
\(670\) 0 0
\(671\) 5.64590 + 17.3763i 0.217957 + 0.670804i
\(672\) −3.68571 + 1.19756i −0.142179 + 0.0461969i
\(673\) 18.6251 25.6353i 0.717945 0.988166i −0.281645 0.959519i \(-0.590880\pi\)
0.999590 0.0286477i \(-0.00912008\pi\)
\(674\) −48.2705 −1.85931
\(675\) 0 0
\(676\) 6.52786 0.251072
\(677\) 2.41665 3.32624i 0.0928795 0.127838i −0.760048 0.649867i \(-0.774825\pi\)
0.852928 + 0.522029i \(0.174825\pi\)
\(678\) 1.20833 0.392609i 0.0464055 0.0150781i
\(679\) 7.28115 + 22.4091i 0.279425 + 0.859982i
\(680\) 0 0
\(681\) 0.781153 2.40414i 0.0299338 0.0921269i
\(682\) 24.7082i 0.946126i
\(683\) 40.9609 + 13.3090i 1.56733 + 0.509255i 0.958753 0.284242i \(-0.0917418\pi\)
0.608574 + 0.793497i \(0.291742\pi\)
\(684\) 5.16312 3.75123i 0.197417 0.143432i
\(685\) 0 0
\(686\) 19.6353 + 14.2658i 0.749678 + 0.544673i
\(687\) −0.310271 0.427051i −0.0118376 0.0162930i
\(688\) 25.6785 + 35.3435i 0.978985 + 1.34746i
\(689\) −18.1353 13.1760i −0.690898 0.501967i
\(690\) 0 0
\(691\) −20.8885 + 15.1764i −0.794638 + 0.577338i −0.909336 0.416062i \(-0.863410\pi\)
0.114698 + 0.993400i \(0.463410\pi\)
\(692\) −0.0327561 0.0106431i −0.00124520 0.000404591i
\(693\) 25.6869i 0.975765i
\(694\) 7.97214 24.5357i 0.302618 0.931363i
\(695\) 0 0
\(696\) −1.77051 5.44907i −0.0671110 0.206546i
\(697\) 12.0862 3.92705i 0.457798 0.148748i
\(698\) −16.5110 + 22.7254i −0.624950 + 0.860170i
\(699\) −10.2705 −0.388466
\(700\) 0 0
\(701\) 2.72949 0.103091 0.0515457 0.998671i \(-0.483585\pi\)
0.0515457 + 0.998671i \(0.483585\pi\)
\(702\) 10.3229 14.2082i 0.389611 0.536254i
\(703\) −12.7598 + 4.14590i −0.481244 + 0.156366i
\(704\) 3.92705 + 12.0862i 0.148006 + 0.455517i
\(705\) 0 0
\(706\) −1.94427 + 5.98385i −0.0731736 + 0.225205i
\(707\) 9.00000i 0.338480i
\(708\) 0.930812 + 0.302439i 0.0349821 + 0.0113664i
\(709\) −13.7812 + 10.0126i −0.517562 + 0.376031i −0.815685 0.578497i \(-0.803640\pi\)
0.298123 + 0.954528i \(0.403640\pi\)
\(710\) 0 0
\(711\) 1.21885 + 0.885544i 0.0457103 + 0.0332105i
\(712\) 17.6336 + 24.2705i 0.660846 + 0.909576i
\(713\) −3.69822 5.09017i −0.138500 0.190628i
\(714\) −6.35410 4.61653i −0.237796 0.172769i
\(715\) 0 0
\(716\) −3.35410 + 2.43690i −0.125349 + 0.0910711i
\(717\) −9.39205 3.05166i −0.350753 0.113966i
\(718\) 17.5623i 0.655419i
\(719\) −14.6976 + 45.2344i −0.548127 + 1.68696i 0.165311 + 0.986241i \(0.447137\pi\)
−0.713438 + 0.700719i \(0.752863\pi\)
\(720\) 0 0
\(721\) −11.7812 36.2587i −0.438753 1.35034i
\(722\) −9.09429 + 2.95492i −0.338455 + 0.109971i
\(723\) −4.30625 + 5.92705i −0.160151 + 0.220429i
\(724\) −11.2361 −0.417585
\(725\) 0 0
\(726\) −1.23607 −0.0458748
\(727\) 22.8254 31.4164i 0.846546 1.16517i −0.138068 0.990423i \(-0.544089\pi\)
0.984613 0.174747i \(-0.0559108\pi\)
\(728\) 30.9686 10.0623i 1.14777 0.372934i
\(729\) 6.00658 + 18.4863i 0.222466 + 0.684679i
\(730\) 0 0
\(731\) −11.7812 + 36.2587i −0.435742 + 1.34108i
\(732\) 1.43769i 0.0531387i
\(733\) −22.4091 7.28115i −0.827698 0.268936i −0.135623 0.990761i \(-0.543304\pi\)
−0.692076 + 0.721825i \(0.743304\pi\)
\(734\) −1.50000 + 1.08981i −0.0553660 + 0.0402258i
\(735\) 0 0
\(736\) 3.38197 + 2.45714i 0.124661 + 0.0905715i
\(737\) −24.4297 33.6246i −0.899880 1.23858i
\(738\) −8.14324 11.2082i −0.299757 0.412580i
\(739\) 14.3713 + 10.4414i 0.528658 + 0.384092i 0.819855 0.572571i \(-0.194054\pi\)
−0.291198 + 0.956663i \(0.594054\pi\)
\(740\) 0 0
\(741\) 5.42705 3.94298i 0.199368 0.144849i
\(742\) 21.3193 + 6.92705i 0.782655 + 0.254300i
\(743\) 25.9098i 0.950539i 0.879840 + 0.475270i \(0.157650\pi\)
−0.879840 + 0.475270i \(0.842350\pi\)
\(744\) 1.34346 4.13474i 0.0492536 0.151587i
\(745\) 0 0
\(746\) −0.927051 2.85317i −0.0339417 0.104462i
\(747\) 1.28157 0.416408i 0.0468903 0.0152356i
\(748\) 4.61653 6.35410i 0.168797 0.232329i
\(749\) 0.270510 0.00988421
\(750\) 0 0
\(751\) −15.3607 −0.560519 −0.280260 0.959924i \(-0.590421\pi\)
−0.280260 + 0.959924i \(0.590421\pi\)
\(752\) 23.7562 32.6976i 0.866298 1.19236i
\(753\) −2.27790 + 0.740133i −0.0830111 + 0.0269720i
\(754\) −16.2812 50.1082i −0.592925 1.82483i
\(755\) 0 0
\(756\) −1.28115 + 3.94298i −0.0465951 + 0.143405i
\(757\) 27.0000i 0.981332i 0.871348 + 0.490666i \(0.163246\pi\)
−0.871348 + 0.490666i \(0.836754\pi\)
\(758\) −11.6372 3.78115i −0.422682 0.137338i
\(759\) −1.14590 + 0.832544i −0.0415935 + 0.0302194i
\(760\) 0 0
\(761\) 14.5623 + 10.5801i 0.527883 + 0.383530i 0.819565 0.572986i \(-0.194215\pi\)
−0.291682 + 0.956515i \(0.594215\pi\)
\(762\) 3.52671 + 4.85410i 0.127759 + 0.175846i
\(763\) −9.39205 12.9271i −0.340015 0.467991i
\(764\) 6.00000 + 4.35926i 0.217072 + 0.157712i
\(765\) 0 0
\(766\) 46.4336 33.7360i 1.67772 1.21893i
\(767\) −19.1396 6.21885i −0.691092 0.224550i
\(768\) 5.18034i 0.186929i
\(769\) 3.98278 12.2577i 0.143623 0.442025i −0.853209 0.521570i \(-0.825347\pi\)
0.996831 + 0.0795446i \(0.0253466\pi\)
\(770\) 0 0
\(771\) −3.46556 10.6659i −0.124809 0.384123i
\(772\) −8.97578 + 2.91641i −0.323045 + 0.104964i
\(773\) 12.4822 17.1803i 0.448955 0.617934i −0.523217 0.852199i \(-0.675268\pi\)
0.972173 + 0.234265i \(0.0752684\pi\)
\(774\) 41.5623 1.49393
\(775\) 0 0
\(776\) 17.5623 0.630450
\(777\) 2.49763 3.43769i 0.0896020 0.123327i
\(778\) −2.43690 + 0.791796i −0.0873670 + 0.0283873i
\(779\) −3.35410 10.3229i −0.120173 0.369855i
\(780\) 0 0
\(781\) 2.78115 8.55951i 0.0995175 0.306283i
\(782\) 8.47214i 0.302963i
\(783\) −14.2658 4.63525i −0.509820 0.165650i
\(784\) −7.85410 + 5.70634i −0.280504 + 0.203798i
\(785\) 0 0
\(786\) 6.13525 + 4.45752i 0.218837 + 0.158995i
\(787\) 6.63715 + 9.13525i 0.236589 + 0.325637i 0.910758 0.412940i \(-0.135498\pi\)
−0.674169 + 0.738577i \(0.735498\pi\)
\(788\) −1.47333 2.02786i −0.0524852 0.0722397i
\(789\) −5.04508 3.66547i −0.179610 0.130494i
\(790\) 0 0
\(791\) 4.98936 3.62498i 0.177401 0.128889i
\(792\) 18.2088 + 5.91641i 0.647023 + 0.210230i
\(793\) 29.5623i 1.04979i
\(794\) −8.20820 + 25.2623i −0.291298 + 0.896524i
\(795\) 0 0
\(796\) 3.09017 + 9.51057i 0.109528 + 0.337093i
\(797\) −33.4912 + 10.8820i −1.18632 + 0.385459i −0.834711 0.550688i \(-0.814366\pi\)
−0.351610 + 0.936147i \(0.614366\pi\)
\(798\) −3.94298 + 5.42705i −0.139580 + 0.192116i
\(799\) 35.2705 1.24778
\(800\) 0 0
\(801\) 38.2918 1.35297
\(802\) −11.4127 + 15.7082i −0.402996 + 0.554676i
\(803\) −5.29007 + 1.71885i −0.186682 + 0.0606568i
\(804\) −1.01064 3.11044i −0.0356426 0.109697i
\(805\) 0 0
\(806\) 12.3541 38.0220i 0.435155 1.33927i
\(807\) 0.978714i 0.0344524i
\(808\) 6.37988 + 2.07295i 0.224443 + 0.0729261i
\(809\) −4.14590 + 3.01217i −0.145762 + 0.105902i −0.658276 0.752776i \(-0.728714\pi\)
0.512514 + 0.858679i \(0.328714\pi\)
\(810\) 0 0
\(811\) 9.56231 + 6.94742i 0.335778 + 0.243957i 0.742878 0.669426i \(-0.233460\pi\)
−0.407100 + 0.913383i \(0.633460\pi\)
\(812\) 7.31069 + 10.0623i 0.256555 + 0.353118i
\(813\) −4.51052 6.20820i −0.158191 0.217731i
\(814\) 14.5623 + 10.5801i 0.510409 + 0.370834i
\(815\) 0 0
\(816\) −6.35410 + 4.61653i −0.222438 + 0.161611i
\(817\) 30.9686 + 10.0623i 1.08345 + 0.352036i
\(818\) 36.8328i 1.28783i
\(819\) 12.8435 39.5281i 0.448787 1.38122i
\(820\) 0 0
\(821\) 6.57295 + 20.2295i 0.229398 + 0.706013i 0.997815 + 0.0660645i \(0.0210443\pi\)
−0.768418 + 0.639948i \(0.778956\pi\)
\(822\) −3.30220 + 1.07295i −0.115177 + 0.0374234i
\(823\) 13.1760 18.1353i 0.459288 0.632155i −0.515073 0.857146i \(-0.672235\pi\)
0.974361 + 0.224991i \(0.0722353\pi\)
\(824\) −28.4164 −0.989932
\(825\) 0 0
\(826\) 20.1246 0.700225
\(827\) −18.5846 + 25.5795i −0.646250 + 0.889487i −0.998930 0.0462570i \(-0.985271\pi\)
0.352679 + 0.935744i \(0.385271\pi\)
\(828\) 2.07363 0.673762i 0.0720635 0.0234149i
\(829\) −1.93363 5.95110i −0.0671577 0.206690i 0.911846 0.410532i \(-0.134657\pi\)
−0.979004 + 0.203842i \(0.934657\pi\)
\(830\) 0 0
\(831\) −0.624612 + 1.92236i −0.0216675 + 0.0666858i
\(832\) 20.5623i 0.712870i
\(833\) −8.05748 2.61803i −0.279175 0.0907095i
\(834\) −6.11803 + 4.44501i −0.211850 + 0.153918i
\(835\) 0 0
\(836\) −5.42705 3.94298i −0.187698 0.136371i
\(837\) −6.69015 9.20820i −0.231245 0.318282i
\(838\) 6.37988 + 8.78115i 0.220389 + 0.303340i
\(839\) 23.7812 + 17.2780i 0.821017 + 0.596503i 0.917004 0.398879i \(-0.130601\pi\)
−0.0959869 + 0.995383i \(0.530601\pi\)
\(840\) 0 0
\(841\) −12.9443 + 9.40456i −0.446354 + 0.324295i
\(842\) −13.7108 4.45492i −0.472506 0.153527i
\(843\) 4.58359i 0.157867i
\(844\) 0.798374 2.45714i 0.0274812 0.0845783i
\(845\) 0 0
\(846\) −11.8820 36.5689i −0.408510 1.25727i
\(847\) −5.70634 + 1.85410i −0.196072 + 0.0637077i
\(848\) 13.1760 18.1353i 0.452467 0.622767i
\(849\) −6.00000 −0.205919
\(850\) 0 0
\(851\) −4.58359 −0.157124
\(852\) 0.416272 0.572949i 0.0142612 0.0196289i
\(853\) −5.54734 + 1.80244i −0.189937 + 0.0617143i −0.402441 0.915446i \(-0.631838\pi\)
0.212504 + 0.977160i \(0.431838\pi\)
\(854\) 9.13525 + 28.1154i 0.312602 + 0.962090i
\(855\) 0 0
\(856\) 0.0623059 0.191758i 0.00212957 0.00655415i
\(857\) 34.1803i 1.16758i −0.811905 0.583789i \(-0.801569\pi\)
0.811905 0.583789i \(-0.198431\pi\)
\(858\) −8.55951 2.78115i −0.292217 0.0949470i
\(859\) −20.3262 + 14.7679i −0.693522 + 0.503873i −0.877816 0.478998i \(-0.841000\pi\)
0.184294 + 0.982871i \(0.441000\pi\)
\(860\) 0 0
\(861\) 2.78115 + 2.02063i 0.0947814 + 0.0688627i
\(862\) −11.6699 16.0623i −0.397480 0.547084i
\(863\) −3.97574 5.47214i −0.135336 0.186274i 0.735970 0.677014i \(-0.236726\pi\)
−0.871306 + 0.490740i \(0.836726\pi\)
\(864\) 6.11803 + 4.44501i 0.208140 + 0.151222i
\(865\) 0 0
\(866\) 18.7082 13.5923i 0.635731 0.461885i
\(867\) −0.343027 0.111456i −0.0116498 0.00378525i
\(868\) 9.43769i 0.320336i
\(869\) 0.489357 1.50609i 0.0166003 0.0510905i
\(870\) 0 0
\(871\) 20.7812 + 63.9578i 0.704143 + 2.16713i
\(872\) −11.3269 + 3.68034i −0.383578 + 0.124632i
\(873\) 13.1760 18.1353i 0.445941 0.613785i
\(874\) 7.23607 0.244764
\(875\) 0 0
\(876\) −0.437694 −0.0147883
\(877\) −11.1554 + 15.3541i −0.376691 + 0.518471i −0.954704 0.297556i \(-0.903828\pi\)
0.578013 + 0.816028i \(0.303828\pi\)
\(878\) −46.3570 + 15.0623i −1.56447 + 0.508328i
\(879\) −2.52129 7.75972i −0.0850409 0.261729i
\(880\) 0 0
\(881\) 14.0729 43.3121i 0.474130 1.45922i −0.372998 0.927832i \(-0.621670\pi\)
0.847128 0.531389i \(-0.178330\pi\)
\(882\) 9.23607i 0.310995i
\(883\) −16.9600 5.51064i −0.570750 0.185448i 0.00940251 0.999956i \(-0.497007\pi\)
−0.580152 + 0.814508i \(0.697007\pi\)
\(884\) −10.2812 + 7.46969i −0.345793 + 0.251233i
\(885\) 0 0
\(886\) 9.39919 + 6.82891i 0.315772 + 0.229422i
\(887\) 24.9645 + 34.3607i 0.838226 + 1.15372i 0.986336 + 0.164748i \(0.0526810\pi\)
−0.148110 + 0.988971i \(0.547319\pi\)
\(888\) −1.86162 2.56231i −0.0624720 0.0859854i
\(889\) 23.5623 + 17.1190i 0.790254 + 0.574153i
\(890\) 0 0
\(891\) 18.7082 13.5923i 0.626748 0.455359i
\(892\) 1.08981 + 0.354102i 0.0364897 + 0.0118562i
\(893\) 30.1246i 1.00808i
\(894\) 2.86475 8.81678i 0.0958114 0.294877i
\(895\) 0 0
\(896\) 12.6246 + 38.8546i 0.421759 + 1.29804i
\(897\) 2.17963 0.708204i 0.0727756 0.0236462i
\(898\) −37.3485 + 51.4058i −1.24633 + 1.71543i
\(899\) −34.1459 −1.13883
\(900\) 0 0
\(901\) 19.5623 0.651715
\(902\) −8.55951 + 11.7812i −0.285000 + 0.392269i
\(903\) −9.80832 + 3.18692i −0.326401 + 0.106054i
\(904\) −1.42047 4.37177i −0.0472442 0.145403i
\(905\) 0 0
\(906\) −4.02786 + 12.3965i −0.133817 + 0.411846i
\(907\) 42.2705i 1.40357i −0.712389 0.701785i \(-0.752387\pi\)
0.712389 0.701785i \(-0.247613\pi\)
\(908\) 3.88998 + 1.26393i 0.129094 + 0.0419451i
\(909\) 6.92705 5.03280i 0.229756 0.166927i
\(910\) 0 0
\(911\) 29.5623 + 21.4783i 0.979443 + 0.711607i 0.957584 0.288154i \(-0.0930416\pi\)
0.0218589 + 0.999761i \(0.493042\pi\)
\(912\) 3.94298 + 5.42705i 0.130565 + 0.179708i
\(913\) −0.832544 1.14590i −0.0275532 0.0379237i
\(914\) 23.5623 + 17.1190i 0.779372 + 0.566247i
\(915\) 0 0
\(916\) 0.690983 0.502029i 0.0228307 0.0165875i
\(917\) 35.0098 + 11.3754i 1.15613 + 0.375648i
\(918\) 15.3262i 0.505841i
\(919\) 7.43769 22.8909i 0.245347 0.755100i −0.750232 0.661174i \(-0.770058\pi\)
0.995579 0.0939258i \(-0.0299416\pi\)
\(920\) 0 0
\(921\) −0.740133 2.27790i −0.0243882 0.0750592i
\(922\) 55.8146 18.1353i 1.83816 0.597253i
\(923\) −8.55951 + 11.7812i −0.281740 + 0.387781i
\(924\) 2.12461 0.0698946
\(925\) 0 0
\(926\) 22.8541 0.751032
\(927\) −21.3193 + 29.3435i −0.700217 + 0.963766i
\(928\) 21.5765 7.01064i 0.708285 0.230136i
\(929\) −11.3435 34.9116i −0.372167 1.14541i −0.945370 0.325999i \(-0.894300\pi\)
0.573203 0.819413i \(-0.305700\pi\)
\(930\) 0 0
\(931\) −2.23607 + 6.88191i −0.0732842 + 0.225545i
\(932\) 16.6180i 0.544342i
\(933\) 7.72696 + 2.51064i 0.252969 + 0.0821948i
\(934\) −51.3607 + 37.3157i −1.68057 + 1.22101i
\(935\) 0 0
\(936\) −25.0623 18.2088i −0.819187 0.595174i
\(937\) −5.54734 7.63525i −0.181224 0.249433i 0.708734 0.705475i \(-0.249266\pi\)
−0.889958 + 0.456043i \(0.849266\pi\)
\(938\) −39.5281 54.4058i −1.29064 1.77641i
\(939\) −6.00000 4.35926i −0.195803 0.142259i
\(940\) 0 0
\(941\) 22.0623 16.0292i 0.719211 0.522537i −0.166921 0.985970i \(-0.553383\pi\)
0.886132 + 0.463433i \(0.153383\pi\)
\(942\) −7.21242 2.34346i −0.234993 0.0763540i
\(943\) 3.70820i 0.120756i
\(944\) 6.21885 19.1396i 0.202406 0.622942i
\(945\) 0 0
\(946\) −13.5000 41.5487i −0.438923 1.35087i
\(947\) 21.4908 6.98278i 0.698357 0.226910i 0.0617423 0.998092i \(-0.480334\pi\)
0.636614 + 0.771182i \(0.280334\pi\)
\(948\) 0.0732450 0.100813i 0.00237889 0.00327426i
\(949\) 9.00000 0.292152
\(950\) 0 0
\(951\) 10.2918 0.333734
\(952\) −16.7027 + 22.9894i −0.541339 + 0.745089i
\(953\) 12.5150 4.06637i 0.405401 0.131723i −0.0992165 0.995066i \(-0.531634\pi\)
0.504617 + 0.863343i \(0.331634\pi\)
\(954\) −6.59017 20.2825i −0.213365 0.656669i
\(955\) 0 0
\(956\) 4.93769 15.1967i 0.159696 0.491495i
\(957\) 7.68692i 0.248483i
\(958\) −50.1082 16.2812i −1.61892 0.526020i
\(959\) −13.6353 + 9.90659i −0.440305 + 0.319901i
\(960\) 0 0
\(961\) 4.11803 + 2.99193i 0.132840 + 0.0965138i
\(962\) −17.1190 23.5623i −0.551939 0.759679i
\(963\) −0.151269 0.208204i −0.00487458 0.00670928i
\(964\) −9.59017 6.96767i −0.308879 0.224413i
\(965\) 0 0
\(966\) −1.85410 + 1.34708i −0.0596548 + 0.0433417i
\(967\) 15.3557 + 4.98936i 0.493805 + 0.160447i 0.545324 0.838225i \(-0.316406\pi\)
−0.0515196 + 0.998672i \(0.516406\pi\)
\(968\) 4.47214i 0.143740i
\(969\) −1.80902 + 5.56758i −0.0581140 + 0.178856i
\(970\) 0 0
\(971\) −15.9271 49.0184i −0.511123 1.57308i −0.790226 0.612815i \(-0.790037\pi\)
0.279103 0.960261i \(-0.409963\pi\)
\(972\) 5.67358 1.84346i 0.181980 0.0591290i
\(973\) −21.5765 + 29.6976i −0.691712 + 0.952060i
\(974\) 6.00000 0.192252
\(975\) 0 0
\(976\) 29.5623 0.946266
\(977\) 13.7436 18.9164i 0.439696 0.605190i −0.530449 0.847717i \(-0.677976\pi\)
0.970145 + 0.242528i \(0.0779765\pi\)
\(978\) −11.6699 + 3.79180i −0.373164 + 0.121248i
\(979\) −12.4377 38.2793i −0.397510 1.22341i
\(980\) 0 0
\(981\) −4.69756 + 14.4576i −0.149982 + 0.461596i
\(982\) 58.6869i 1.87277i
\(983\) 5.00004 + 1.62461i 0.159477 + 0.0518171i 0.387667 0.921799i \(-0.373281\pi\)
−0.228191 + 0.973616i \(0.573281\pi\)
\(984\) 2.07295 1.50609i 0.0660832 0.0480123i
\(985\) 0 0
\(986\) 37.1976 + 27.0256i 1.18461 + 0.860671i
\(987\) 5.60807 + 7.71885i 0.178507 + 0.245694i
\(988\) 6.37988 + 8.78115i 0.202971 + 0.279366i
\(989\) 9.00000 + 6.53888i 0.286183 + 0.207924i
\(990\) 0 0
\(991\) 21.6976 15.7642i 0.689246 0.500766i −0.187166 0.982328i \(-0.559930\pi\)
0.876412 + 0.481562i \(0.159930\pi\)
\(992\) 16.3722 + 5.31966i 0.519819 + 0.168899i
\(993\) 8.05573i 0.255641i
\(994\) 4.50000 13.8496i 0.142731 0.439282i
\(995\) 0 0
\(996\) −0.0344419 0.106001i −0.00109133 0.00335877i
\(997\) −50.2672 + 16.3328i −1.59198 + 0.517265i −0.965107 0.261856i \(-0.915665\pi\)
−0.626873 + 0.779122i \(0.715665\pi\)
\(998\) 40.2874 55.4508i 1.27528 1.75527i
\(999\) −8.29180 −0.262341
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 625.2.e.d.249.1 8
5.2 odd 4 625.2.d.a.376.1 4
5.3 odd 4 625.2.d.j.376.1 4
5.4 even 2 inner 625.2.e.d.249.2 8
25.2 odd 20 625.2.d.a.251.1 4
25.3 odd 20 625.2.d.d.126.1 4
25.4 even 10 625.2.e.g.499.1 8
25.6 even 5 125.2.b.b.124.1 4
25.8 odd 20 125.2.a.a.1.1 2
25.9 even 10 625.2.e.g.124.2 8
25.11 even 5 inner 625.2.e.d.374.2 8
25.12 odd 20 625.2.d.g.501.1 4
25.13 odd 20 625.2.d.d.501.1 4
25.14 even 10 inner 625.2.e.d.374.1 8
25.16 even 5 625.2.e.g.124.1 8
25.17 odd 20 125.2.a.b.1.2 yes 2
25.19 even 10 125.2.b.b.124.4 4
25.21 even 5 625.2.e.g.499.2 8
25.22 odd 20 625.2.d.g.126.1 4
25.23 odd 20 625.2.d.j.251.1 4
75.8 even 20 1125.2.a.d.1.2 2
75.17 even 20 1125.2.a.c.1.1 2
75.44 odd 10 1125.2.b.f.874.1 4
75.56 odd 10 1125.2.b.f.874.4 4
100.19 odd 10 2000.2.c.e.1249.3 4
100.31 odd 10 2000.2.c.e.1249.2 4
100.67 even 20 2000.2.a.a.1.2 2
100.83 even 20 2000.2.a.l.1.1 2
175.83 even 20 6125.2.a.d.1.1 2
175.167 even 20 6125.2.a.g.1.2 2
200.67 even 20 8000.2.a.u.1.1 2
200.83 even 20 8000.2.a.c.1.2 2
200.117 odd 20 8000.2.a.d.1.2 2
200.133 odd 20 8000.2.a.v.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
125.2.a.a.1.1 2 25.8 odd 20
125.2.a.b.1.2 yes 2 25.17 odd 20
125.2.b.b.124.1 4 25.6 even 5
125.2.b.b.124.4 4 25.19 even 10
625.2.d.a.251.1 4 25.2 odd 20
625.2.d.a.376.1 4 5.2 odd 4
625.2.d.d.126.1 4 25.3 odd 20
625.2.d.d.501.1 4 25.13 odd 20
625.2.d.g.126.1 4 25.22 odd 20
625.2.d.g.501.1 4 25.12 odd 20
625.2.d.j.251.1 4 25.23 odd 20
625.2.d.j.376.1 4 5.3 odd 4
625.2.e.d.249.1 8 1.1 even 1 trivial
625.2.e.d.249.2 8 5.4 even 2 inner
625.2.e.d.374.1 8 25.14 even 10 inner
625.2.e.d.374.2 8 25.11 even 5 inner
625.2.e.g.124.1 8 25.16 even 5
625.2.e.g.124.2 8 25.9 even 10
625.2.e.g.499.1 8 25.4 even 10
625.2.e.g.499.2 8 25.21 even 5
1125.2.a.c.1.1 2 75.17 even 20
1125.2.a.d.1.2 2 75.8 even 20
1125.2.b.f.874.1 4 75.44 odd 10
1125.2.b.f.874.4 4 75.56 odd 10
2000.2.a.a.1.2 2 100.67 even 20
2000.2.a.l.1.1 2 100.83 even 20
2000.2.c.e.1249.2 4 100.31 odd 10
2000.2.c.e.1249.3 4 100.19 odd 10
6125.2.a.d.1.1 2 175.83 even 20
6125.2.a.g.1.2 2 175.167 even 20
8000.2.a.c.1.2 2 200.83 even 20
8000.2.a.d.1.2 2 200.117 odd 20
8000.2.a.u.1.1 2 200.67 even 20
8000.2.a.v.1.1 2 200.133 odd 20