Properties

Label 1125.2.b
Level $1125$
Weight $2$
Character orbit 1125.b
Rep. character $\chi_{1125}(874,\cdot)$
Character field $\Q$
Dimension $40$
Newform subspaces $8$
Sturm bound $300$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1125 = 3^{2} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1125.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(300\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(2\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1125, [\chi])\).

Total New Old
Modular forms 170 40 130
Cusp forms 130 40 90
Eisenstein series 40 0 40

Trace form

\( 40 q - 42 q^{4} + 4 q^{14} + 42 q^{16} + 14 q^{19} + 2 q^{26} - 6 q^{29} - 10 q^{31} + 2 q^{34} - 2 q^{41} - 54 q^{44} + 42 q^{46} - 14 q^{49} + 50 q^{56} + 58 q^{59} - 12 q^{61} - 100 q^{64} - 8 q^{71}+ \cdots + 50 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1125, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1125.2.b.a 1125.b 5.b $4$ $8.983$ 4.0.4400.1 None 125.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{2}+(-1-2\beta _{2})q^{4}+(\beta _{1}-\beta _{3})q^{7}+\cdots\)
1125.2.b.b 1125.b 5.b $4$ $8.983$ \(\Q(i, \sqrt{5})\) None 375.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}-\beta _{3})q^{2}+3\beta _{2}q^{4}+(\beta _{1}+3\beta _{3})q^{7}+\cdots\)
1125.2.b.c 1125.b 5.b $4$ $8.983$ \(\Q(\zeta_{10})\) None 1125.2.a.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{3} q^{2}+\beta_{2} q^{4}+(-\beta_{3}+2\beta_1)q^{7}+\cdots\)
1125.2.b.d 1125.b 5.b $4$ $8.983$ \(\Q(\zeta_{10})\) None 1125.2.a.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{3} q^{2}+\beta_{2} q^{4}+(\beta_{3}-2\beta_1)q^{7}+\cdots\)
1125.2.b.e 1125.b 5.b $4$ $8.983$ \(\Q(i, \sqrt{5})\) None 375.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}-\beta _{1}q^{7}+(2\beta _{1}+\cdots)q^{8}+\cdots\)
1125.2.b.f 1125.b 5.b $4$ $8.983$ \(\Q(i, \sqrt{5})\) None 125.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+3\beta _{3}q^{7}+(2\beta _{1}+\cdots)q^{8}+\cdots\)
1125.2.b.g 1125.b 5.b $8$ $8.983$ 8.0.1632160000.5 None 375.2.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{4}+\beta _{7})q^{2}+(-1+\beta _{2}+\beta _{5}+\beta _{6}+\cdots)q^{4}+\cdots\)
1125.2.b.h 1125.b 5.b $8$ $8.983$ 8.0.324000000.1 \(\Q(\sqrt{-15}) \) 1125.2.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{1}q^{2}+(-2+\beta _{2})q^{4}+(2\beta _{1}+\beta _{7})q^{8}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1125, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1125, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(125, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(375, [\chi])\)\(^{\oplus 2}\)