Properties

Label 1120.2.bw.g
Level $1120$
Weight $2$
Character orbit 1120.bw
Analytic conductor $8.943$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1120,2,Mod(289,1120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1120.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1120.bw (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,-2,0,0,0,12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.94324502638\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 11x^{14} + 45x^{12} + 286x^{10} + 2126x^{8} + 7150x^{6} + 28125x^{4} + 171875x^{2} + 390625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{13} - \beta_{2}) q^{3} + ( - \beta_{11} + \beta_{9} - \beta_{4} - 1) q^{5} + ( - \beta_{12} - 2 \beta_{2}) q^{7} + (\beta_{11} - 2 \beta_{9} + 2) q^{9} + ( - \beta_{15} + \beta_{13} + \cdots + \beta_1) q^{11}+ \cdots + ( - 3 \beta_{15} + 5 \beta_{13} + \cdots + 5 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{5} + 12 q^{9} + 4 q^{21} + 22 q^{25} - 64 q^{29} - 8 q^{41} + 20 q^{45} - 16 q^{49} + 28 q^{61} - 24 q^{65} - 136 q^{69} + 56 q^{81} + 124 q^{85} + 60 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 11x^{14} + 45x^{12} + 286x^{10} + 2126x^{8} + 7150x^{6} + 28125x^{4} + 171875x^{2} + 390625 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 361 \nu^{15} - 6571 \nu^{13} - 4845 \nu^{11} - 77121 \nu^{9} - 320461 \nu^{7} + \cdots - 27281250 \nu ) / 165625000 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 361 \nu^{14} + 6571 \nu^{12} + 4845 \nu^{10} + 77121 \nu^{8} + 320461 \nu^{6} + 653125 \nu^{4} + \cdots + 27281250 ) / 33125000 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 104 \nu^{14} + 456 \nu^{12} + 1045 \nu^{10} + 17881 \nu^{8} + 77121 \nu^{6} + 121125 \nu^{4} + \cdots + 5640625 ) / 6625000 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{15} - 11\nu^{13} - 45\nu^{11} - 286\nu^{9} - 2126\nu^{7} - 7150\nu^{5} - 28125\nu^{3} - 171875\nu ) / 78125 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 936 \nu^{14} - 4104 \nu^{12} - 9405 \nu^{10} + 170321 \nu^{8} - 694089 \nu^{6} - 1090125 \nu^{4} + \cdots - 50765625 ) / 16562500 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 2249 \nu^{14} - 10014 \nu^{12} - 51105 \nu^{10} - 445589 \nu^{8} - 1635649 \nu^{6} + \cdots - 95921875 ) / 33125000 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 3539 \nu^{15} + 22704 \nu^{13} + 52030 \nu^{11} + 925154 \nu^{9} + 3839814 \nu^{7} + \cdots + 280843750 \nu ) / 165625000 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 4059 \nu^{14} - 20424 \nu^{12} - 46805 \nu^{10} - 835749 \nu^{8} - 3454209 \nu^{6} + \cdots - 219515625 ) / 33125000 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 7603 \nu^{15} + 80308 \nu^{13} + 63685 \nu^{11} + 2129833 \nu^{9} + 15453653 \nu^{7} + \cdots + 1241140625 \nu ) / 165625000 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 3123 \nu^{14} + 24528 \nu^{12} + 56210 \nu^{10} + 665428 \nu^{8} + 4148298 \nu^{6} + \cdots + 303406250 ) / 16562500 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 1957 \nu^{15} - 14352 \nu^{13} - 32890 \nu^{11} - 451202 \nu^{9} - 2427282 \nu^{7} + \cdots - 177531250 \nu ) / 33125000 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 3306 \nu^{15} + 16591 \nu^{13} + 44370 \nu^{11} + 706266 \nu^{9} + 2760406 \nu^{7} + \cdots + 176484375 \nu ) / 33125000 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 14297 \nu^{14} - 84592 \nu^{12} - 235815 \nu^{10} - 3113567 \nu^{8} - 14869747 \nu^{6} + \cdots - 1022921875 ) / 33125000 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 25709 \nu^{15} - 154824 \nu^{13} - 354805 \nu^{11} - 4990149 \nu^{9} - 26184609 \nu^{7} + \cdots - 1915140625 \nu ) / 165625000 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{11} + 2\beta_{9} + \beta_{6} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{15} - \beta_{13} + 3\beta_{12} + 5\beta_{8} - \beta_{5} - \beta_{2} - \beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -5\beta_{14} - 4\beta_{11} + 9\beta_{9} + 6\beta_{7} - 4\beta_{4} + 4\beta_{3} - 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 10\beta_{13} + 22\beta_{12} + 6\beta_{10} - 10\beta_{8} - 15\beta_{5} - 22\beta_{2} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 4\beta_{14} + 10\beta_{11} - 10\beta_{9} + 10\beta_{7} - 4\beta_{6} - 44\beta_{3} - 73 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -10\beta_{15} - 20\beta_{13} - 10\beta_{12} + 10\beta_{10} - 10\beta_{8} + 180\beta_{2} - 91\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( -111\beta_{11} - 222\beta_{9} - 61\beta_{6} + 180\beta_{4} + 222 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 291\beta_{15} + 211\beta_{13} - 543\beta_{12} - 225\beta_{8} + 211\beta_{5} + 211\beta_{2} + 211\beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 225\beta_{14} + 264\beta_{11} + 341\beta_{9} - 1416\beta_{7} + 264\beta_{4} - 264\beta_{3} + 264 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( -1280\beta_{13} - 2872\beta_{12} - 1416\beta_{10} + 1280\beta_{8} - 155\beta_{5} + 2872\beta_{2} \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 136\beta_{14} - 40\beta_{11} + 40\beta_{9} - 40\beta_{7} - 136\beta_{6} + 6984\beta_{3} - 1087 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 40\beta_{15} - 680\beta_{13} + 40\beta_{12} - 40\beta_{10} + 40\beta_{8} - 35520\beta_{2} - 1319\beta_1 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( -479\beta_{11} - 4758\beta_{9} - 679\beta_{6} - 34760\beta_{4} + 4758 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( -34281\beta_{15} + 3879\beta_{13} + 63683\beta_{12} - 41555\beta_{8} + 3879\beta_{5} + 3879\beta_{2} + 3879\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1120\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(421\) \(801\) \(897\)
\(\chi(n)\) \(1\) \(1\) \(-1 + \beta_{9}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
−0.192723 + 2.22775i
−2.02565 0.946971i
−1.72383 1.42422i
0.371490 + 2.20499i
1.72383 + 1.42422i
−0.371490 2.20499i
0.192723 2.22775i
2.02565 + 0.946971i
−0.192723 2.22775i
−2.02565 + 0.946971i
−1.72383 + 1.42422i
0.371490 2.20499i
1.72383 1.42422i
−0.371490 + 2.20499i
0.192723 + 2.22775i
2.02565 0.946971i
0 −2.21837 + 1.28078i 0 −2.22775 + 0.192723i 0 −1.73205 + 2.00000i 0 1.78078 3.08440i 0
289.2 0 −2.21837 + 1.28078i 0 0.946971 + 2.02565i 0 −1.73205 + 2.00000i 0 1.78078 3.08440i 0
289.3 0 −1.35234 + 0.780776i 0 −1.42422 1.72383i 0 1.73205 2.00000i 0 −0.280776 + 0.486319i 0
289.4 0 −1.35234 + 0.780776i 0 2.20499 + 0.371490i 0 1.73205 2.00000i 0 −0.280776 + 0.486319i 0
289.5 0 1.35234 0.780776i 0 −1.42422 1.72383i 0 −1.73205 + 2.00000i 0 −0.280776 + 0.486319i 0
289.6 0 1.35234 0.780776i 0 2.20499 + 0.371490i 0 −1.73205 + 2.00000i 0 −0.280776 + 0.486319i 0
289.7 0 2.21837 1.28078i 0 −2.22775 + 0.192723i 0 1.73205 2.00000i 0 1.78078 3.08440i 0
289.8 0 2.21837 1.28078i 0 0.946971 + 2.02565i 0 1.73205 2.00000i 0 1.78078 3.08440i 0
1089.1 0 −2.21837 1.28078i 0 −2.22775 0.192723i 0 −1.73205 2.00000i 0 1.78078 + 3.08440i 0
1089.2 0 −2.21837 1.28078i 0 0.946971 2.02565i 0 −1.73205 2.00000i 0 1.78078 + 3.08440i 0
1089.3 0 −1.35234 0.780776i 0 −1.42422 + 1.72383i 0 1.73205 + 2.00000i 0 −0.280776 0.486319i 0
1089.4 0 −1.35234 0.780776i 0 2.20499 0.371490i 0 1.73205 + 2.00000i 0 −0.280776 0.486319i 0
1089.5 0 1.35234 + 0.780776i 0 −1.42422 + 1.72383i 0 −1.73205 2.00000i 0 −0.280776 0.486319i 0
1089.6 0 1.35234 + 0.780776i 0 2.20499 0.371490i 0 −1.73205 2.00000i 0 −0.280776 0.486319i 0
1089.7 0 2.21837 + 1.28078i 0 −2.22775 0.192723i 0 1.73205 + 2.00000i 0 1.78078 + 3.08440i 0
1089.8 0 2.21837 + 1.28078i 0 0.946971 2.02565i 0 1.73205 + 2.00000i 0 1.78078 + 3.08440i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 289.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
5.b even 2 1 inner
7.c even 3 1 inner
20.d odd 2 1 inner
28.g odd 6 1 inner
35.j even 6 1 inner
140.p odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1120.2.bw.g 16
4.b odd 2 1 inner 1120.2.bw.g 16
5.b even 2 1 inner 1120.2.bw.g 16
7.c even 3 1 inner 1120.2.bw.g 16
20.d odd 2 1 inner 1120.2.bw.g 16
28.g odd 6 1 inner 1120.2.bw.g 16
35.j even 6 1 inner 1120.2.bw.g 16
140.p odd 6 1 inner 1120.2.bw.g 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1120.2.bw.g 16 1.a even 1 1 trivial
1120.2.bw.g 16 4.b odd 2 1 inner
1120.2.bw.g 16 5.b even 2 1 inner
1120.2.bw.g 16 7.c even 3 1 inner
1120.2.bw.g 16 20.d odd 2 1 inner
1120.2.bw.g 16 28.g odd 6 1 inner
1120.2.bw.g 16 35.j even 6 1 inner
1120.2.bw.g 16 140.p odd 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1120, [\chi])\):

\( T_{3}^{8} - 9T_{3}^{6} + 65T_{3}^{4} - 144T_{3}^{2} + 256 \) Copy content Toggle raw display
\( T_{11}^{8} + 44T_{11}^{6} + 1877T_{11}^{4} + 2596T_{11}^{2} + 3481 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( (T^{8} - 9 T^{6} + \cdots + 256)^{2} \) Copy content Toggle raw display
$5$ \( (T^{8} + T^{7} - 5 T^{6} + \cdots + 625)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 2 T^{2} + 49)^{4} \) Copy content Toggle raw display
$11$ \( (T^{8} + 44 T^{6} + \cdots + 3481)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 37 T^{2} + 236)^{4} \) Copy content Toggle raw display
$17$ \( (T^{8} - 31 T^{6} + \cdots + 55696)^{2} \) Copy content Toggle raw display
$19$ \( (T^{8} + 44 T^{6} + \cdots + 3481)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} - 17 T^{2} + 289)^{4} \) Copy content Toggle raw display
$29$ \( (T + 4)^{16} \) Copy content Toggle raw display
$31$ \( (T^{8} + 31 T^{6} + \cdots + 55696)^{2} \) Copy content Toggle raw display
$37$ \( (T^{8} - 92 T^{6} + \cdots + 3481)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + T - 4)^{8} \) Copy content Toggle raw display
$43$ \( (T^{2} + 68)^{8} \) Copy content Toggle raw display
$47$ \( (T^{4} - 17 T^{2} + 289)^{4} \) Copy content Toggle raw display
$53$ \( (T^{8} - 92 T^{6} + \cdots + 3481)^{2} \) Copy content Toggle raw display
$59$ \( (T^{8} + 227 T^{6} + \cdots + 891136)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} - 7 T^{3} + \cdots + 676)^{4} \) Copy content Toggle raw display
$67$ \( (T^{8} - 21 T^{6} + \cdots + 16)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} - 148 T^{2} + 3776)^{4} \) Copy content Toggle raw display
$73$ \( (T^{8} - 131 T^{6} + \cdots + 14258176)^{2} \) Copy content Toggle raw display
$79$ \( (T^{8} + 31 T^{6} + \cdots + 55696)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + 264 T^{2} + 16)^{4} \) Copy content Toggle raw display
$89$ \( (T^{4} - 15 T^{3} + \cdots + 324)^{4} \) Copy content Toggle raw display
$97$ \( (T^{4} + 524 T^{2} + 60416)^{4} \) Copy content Toggle raw display
show more
show less