Properties

Label 32-1120e16-1.1-c1e16-0-1
Degree $32$
Conductor $6.130\times 10^{48}$
Sign $1$
Analytic cond. $1.67464\times 10^{15}$
Root an. cond. $2.99052$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 6·9-s + 13·25-s − 64·29-s − 8·41-s + 12·45-s − 8·49-s + 28·61-s + 41·81-s + 60·89-s + 60·101-s − 76·109-s − 26·125-s + 127-s + 131-s + 137-s + 139-s + 128·145-s + 149-s + 151-s + 157-s + 163-s + 167-s + 60·169-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 0.894·5-s − 2·9-s + 13/5·25-s − 11.8·29-s − 1.24·41-s + 1.78·45-s − 8/7·49-s + 3.58·61-s + 41/9·81-s + 6.35·89-s + 5.97·101-s − 7.27·109-s − 2.32·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 10.6·145-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 4.61·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{80} \cdot 5^{16} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{16} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{80} \cdot 5^{16} \cdot 7^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{16} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(32\)
Conductor: \(2^{80} \cdot 5^{16} \cdot 7^{16}\)
Sign: $1$
Analytic conductor: \(1.67464\times 10^{15}\)
Root analytic conductor: \(2.99052\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((32,\ 2^{80} \cdot 5^{16} \cdot 7^{16} ,\ ( \ : [1/2]^{16} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.1560135437\)
\(L(\frac12)\) \(\approx\) \(0.1560135437\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( ( 1 + T - p T^{2} - 4 T^{3} + 6 T^{4} - 4 p T^{5} - p^{3} T^{6} + p^{3} T^{7} + p^{4} T^{8} )^{2} \)
7 \( ( 1 + 2 T^{2} + p^{2} T^{4} )^{4} \)
good3 \( ( 1 + p T^{2} - 7 T^{4} - 2 p T^{6} + 94 T^{8} - 2 p^{3} T^{10} - 7 p^{4} T^{12} + p^{7} T^{14} + p^{8} T^{16} )^{2} \)
11 \( ( 1 + 183 T^{4} + 18848 T^{8} + 183 p^{4} T^{12} + p^{8} T^{16} )^{2} \)
13 \( ( 1 - 15 T^{2} + 288 T^{4} - 15 p^{2} T^{6} + p^{4} T^{8} )^{4} \)
17 \( ( 1 + 37 T^{2} + 453 T^{4} + 12506 T^{6} + 359894 T^{8} + 12506 p^{2} T^{10} + 453 p^{4} T^{12} + 37 p^{6} T^{14} + p^{8} T^{16} )^{2} \)
19 \( ( 1 - 32 T^{2} + 471 T^{4} + 5408 T^{6} - 194176 T^{8} + 5408 p^{2} T^{10} + 471 p^{4} T^{12} - 32 p^{6} T^{14} + p^{8} T^{16} )^{2} \)
23 \( ( 1 + 29 T^{2} + 312 T^{4} + 29 p^{2} T^{6} + p^{4} T^{8} )^{4} \)
29 \( ( 1 + 4 T + p T^{2} )^{16} \)
31 \( ( 1 - 3 p T^{2} + 4569 T^{4} - 6474 p T^{6} + 7411190 T^{8} - 6474 p^{3} T^{10} + 4569 p^{4} T^{12} - 3 p^{7} T^{14} + p^{8} T^{16} )^{2} \)
37 \( ( 1 + 56 T^{2} + 1671 T^{4} - 71288 T^{6} - 4021120 T^{8} - 71288 p^{2} T^{10} + 1671 p^{4} T^{12} + 56 p^{6} T^{14} + p^{8} T^{16} )^{2} \)
41 \( ( 1 + T + 78 T^{2} + p T^{3} + p^{2} T^{4} )^{8} \)
43 \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{8} \)
47 \( ( 1 + 77 T^{2} + 3720 T^{4} + 77 p^{2} T^{6} + p^{4} T^{8} )^{4} \)
53 \( ( 1 + 120 T^{2} + 7239 T^{4} + 185160 T^{6} + 2939840 T^{8} + 185160 p^{2} T^{10} + 7239 p^{4} T^{12} + 120 p^{6} T^{14} + p^{8} T^{16} )^{2} \)
59 \( ( 1 - 9 T^{2} + 5037 T^{4} + 1818 p T^{6} + 3494 p^{2} T^{8} + 1818 p^{3} T^{10} + 5037 p^{4} T^{12} - 9 p^{6} T^{14} + p^{8} T^{16} )^{2} \)
61 \( ( 1 - 7 T - 47 T^{2} + 182 T^{3} + 2506 T^{4} + 182 p T^{5} - 47 p^{2} T^{6} - 7 p^{3} T^{7} + p^{4} T^{8} )^{4} \)
67 \( ( 1 + 247 T^{2} + 36885 T^{4} + 3741062 T^{6} + 287946854 T^{8} + 3741062 p^{2} T^{10} + 36885 p^{4} T^{12} + 247 p^{6} T^{14} + p^{8} T^{16} )^{2} \)
71 \( ( 1 + 136 T^{2} + 13006 T^{4} + 136 p^{2} T^{6} + p^{4} T^{8} )^{4} \)
73 \( ( 1 + 161 T^{2} + 9297 T^{4} + 960526 T^{6} + 109826126 T^{8} + 960526 p^{2} T^{10} + 9297 p^{4} T^{12} + 161 p^{6} T^{14} + p^{8} T^{16} )^{2} \)
79 \( ( 1 - 285 T^{2} + 48441 T^{4} - 5786070 T^{6} + 528915350 T^{8} - 5786070 p^{2} T^{10} + 48441 p^{4} T^{12} - 285 p^{6} T^{14} + p^{8} T^{16} )^{2} \)
83 \( ( 1 - 68 T^{2} - 2474 T^{4} - 68 p^{2} T^{6} + p^{4} T^{8} )^{4} \)
89 \( ( 1 - 15 T + 29 T^{2} - 270 T^{3} + 10470 T^{4} - 270 p T^{5} + 29 p^{2} T^{6} - 15 p^{3} T^{7} + p^{4} T^{8} )^{4} \)
97 \( ( 1 + 136 T^{2} + 15214 T^{4} + 136 p^{2} T^{6} + p^{4} T^{8} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{32} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−2.50685214820394272324347522606, −2.42640989578955970950168890089, −2.20984586785649966844126826484, −2.19095357112049990579527375330, −2.12801637801832336576218148057, −2.10282727401371529579350172672, −2.05538961045584195353850867068, −2.03770674961983949942712967257, −2.00950235632776213024858267428, −1.92419218000235509369755738243, −1.77001703904941313915324965430, −1.76118878734489633192573334032, −1.61204821292400320678490386824, −1.51107595039857662948371182285, −1.44183811041855788038249279015, −1.21762132714631305428746132504, −1.02072589901698363566682598388, −0.933595795321384845423954972821, −0.930625353432519867469525866282, −0.885194683654648203740178728066, −0.65966080473665998450645072004, −0.48335965112478449492035893526, −0.26894743170501134367608652632, −0.18824782465728289373148855834, −0.07012630786327674855700622277, 0.07012630786327674855700622277, 0.18824782465728289373148855834, 0.26894743170501134367608652632, 0.48335965112478449492035893526, 0.65966080473665998450645072004, 0.885194683654648203740178728066, 0.930625353432519867469525866282, 0.933595795321384845423954972821, 1.02072589901698363566682598388, 1.21762132714631305428746132504, 1.44183811041855788038249279015, 1.51107595039857662948371182285, 1.61204821292400320678490386824, 1.76118878734489633192573334032, 1.77001703904941313915324965430, 1.92419218000235509369755738243, 2.00950235632776213024858267428, 2.03770674961983949942712967257, 2.05538961045584195353850867068, 2.10282727401371529579350172672, 2.12801637801832336576218148057, 2.19095357112049990579527375330, 2.20984586785649966844126826484, 2.42640989578955970950168890089, 2.50685214820394272324347522606

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.