L(s) = 1 | + (1.35 + 0.780i)3-s + (−1.42 + 1.72i)5-s + (−1.73 − 2i)7-s + (−0.280 − 0.486i)9-s + (−0.588 + 1.01i)11-s + 5.36i·13-s + (−3.27 + 1.21i)15-s + (−3.62 − 2.09i)17-s + (0.588 + 1.01i)19-s + (−0.780 − 4.05i)21-s + (−3.57 + 2.06i)23-s + (−0.943 − 4.91i)25-s − 5.56i·27-s − 4·29-s + (−2.09 + 3.62i)31-s + ⋯ |
L(s) = 1 | + (0.780 + 0.450i)3-s + (−0.636 + 0.770i)5-s + (−0.654 − 0.755i)7-s + (−0.0935 − 0.162i)9-s + (−0.177 + 0.307i)11-s + 1.48i·13-s + (−0.844 + 0.314i)15-s + (−0.880 − 0.508i)17-s + (0.134 + 0.233i)19-s + (−0.170 − 0.885i)21-s + (−0.744 + 0.429i)23-s + (−0.188 − 0.982i)25-s − 1.07i·27-s − 0.742·29-s + (−0.376 + 0.651i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0401i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 - 0.0401i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5155541539\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5155541539\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (1.42 - 1.72i)T \) |
| 7 | \( 1 + (1.73 + 2i)T \) |
good | 3 | \( 1 + (-1.35 - 0.780i)T + (1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (0.588 - 1.01i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 5.36iT - 13T^{2} \) |
| 17 | \( 1 + (3.62 + 2.09i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.588 - 1.01i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.57 - 2.06i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 4T + 29T^{2} \) |
| 31 | \( 1 + (2.09 - 3.62i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (8.27 - 4.77i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 2.56T + 41T^{2} \) |
| 43 | \( 1 - 8.24iT - 43T^{2} \) |
| 47 | \( 1 + (-3.57 + 2.06i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (8.27 + 4.77i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-7.46 + 12.9i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.34 + 2.32i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.379 - 0.219i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 10.7T + 71T^{2} \) |
| 73 | \( 1 + (5.66 + 3.27i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.09 + 3.62i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 16.2iT - 83T^{2} \) |
| 89 | \( 1 + (-0.657 - 1.13i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 13.0iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.993770317285456743695811417260, −9.537408429608406578488530297977, −8.675678826236238855744208061801, −7.75113394311402240600073974266, −6.86890857647127881480283321387, −6.42864073897488226200904411377, −4.75508838396850999587256636651, −3.83219774676867301437442213823, −3.34500347161778254163031755806, −2.10282727401371529579350172672,
0.18824782465728289373148855834, 2.00950235632776213024858267428, 3.01443936267466505413503785222, 3.92500788183735382968449788176, 5.27258174743438195419808995697, 5.87980558482808447301458749888, 7.21392926617639882186090374434, 7.910612694799667767185707493952, 8.698563924748305682710937453606, 8.972532130394755356917762781796