L(s) = 1 | + (2.21 − 1.28i)3-s + (−2.22 + 0.192i)5-s + (1.73 − 2i)7-s + (1.78 − 3.08i)9-s + (−3.26 − 5.65i)11-s + 2.86i·13-s + (−4.69 + 3.28i)15-s + (−3.17 + 1.83i)17-s + (3.26 − 5.65i)19-s + (1.28 − 6.65i)21-s + (−3.57 − 2.06i)23-s + (4.92 − 0.858i)25-s − 1.43i·27-s − 4·29-s + (1.83 + 3.17i)31-s + ⋯ |
L(s) = 1 | + (1.28 − 0.739i)3-s + (−0.996 + 0.0861i)5-s + (0.654 − 0.755i)7-s + (0.593 − 1.02i)9-s + (−0.984 − 1.70i)11-s + 0.793i·13-s + (−1.21 + 0.847i)15-s + (−0.769 + 0.444i)17-s + (0.748 − 1.29i)19-s + (0.279 − 1.45i)21-s + (−0.744 − 0.429i)23-s + (0.985 − 0.171i)25-s − 0.276i·27-s − 0.742·29-s + (0.329 + 0.570i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.534 + 0.845i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.534 + 0.845i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.802740622\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.802740622\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (2.22 - 0.192i)T \) |
| 7 | \( 1 + (-1.73 + 2i)T \) |
good | 3 | \( 1 + (-2.21 + 1.28i)T + (1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (3.26 + 5.65i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 2.86iT - 13T^{2} \) |
| 17 | \( 1 + (3.17 - 1.83i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.26 + 5.65i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.57 + 2.06i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 4T + 29T^{2} \) |
| 31 | \( 1 + (-1.83 - 3.17i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.695 + 0.401i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 1.56T + 41T^{2} \) |
| 43 | \( 1 + 8.24iT - 43T^{2} \) |
| 47 | \( 1 + (-3.57 - 2.06i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.695 - 0.401i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.02 - 1.78i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.84 + 8.38i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.95 - 2.28i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 5.72T + 71T^{2} \) |
| 73 | \( 1 + (-8.13 + 4.69i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-1.83 + 3.17i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 0.246iT - 83T^{2} \) |
| 89 | \( 1 + (-6.84 + 11.8i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 18.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.105868391795326482906612452975, −8.548862501837235481603697676114, −7.952834806694765701964469088409, −7.34537960041076429892179620459, −6.56062356532347740095367500094, −5.09665928681366324984954205806, −3.99209706593556475377179652117, −3.21632884492739267239648913244, −2.19095357112049990579527375330, −0.65966080473665998450645072004,
2.03770674961983949942712967257, 2.90763565029322141733629795216, 3.97912362524072295731687417579, 4.69899159240809157269605395766, 5.56508721344521932357286336392, 7.26796872700155470318123803445, 7.967716203123789690043720028489, 8.223374084392790920601895477679, 9.372473645119536051083144703197, 9.854874465783253823650596670576