Properties

Label 112.6.p.a.31.3
Level $112$
Weight $6$
Character 112.31
Analytic conductor $17.963$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,6,Mod(31,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.31"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 112.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.9629878191\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 293 x^{10} + 336 x^{9} + 60118 x^{8} + 67616 x^{7} + 5772748 x^{6} + \cdots + 37147165696 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{16}\cdot 3^{2}\cdot 7^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.3
Root \(-5.11675 + 8.86248i\) of defining polynomial
Character \(\chi\) \(=\) 112.31
Dual form 112.6.p.a.47.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.74078 + 8.21127i) q^{3} +(45.4281 - 26.2279i) q^{5} +(-128.021 + 20.4331i) q^{7} +(76.5500 + 132.588i) q^{9} +(-21.1688 - 12.2218i) q^{11} +58.8178i q^{13} +497.363i q^{15} +(334.006 + 192.839i) q^{17} +(292.463 + 506.560i) q^{19} +(439.140 - 1148.09i) q^{21} +(-2812.19 + 1623.62i) q^{23} +(-186.693 + 323.362i) q^{25} -3755.65 q^{27} -6058.46 q^{29} +(-4755.55 + 8236.85i) q^{31} +(200.714 - 115.882i) q^{33} +(-5279.85 + 4285.97i) q^{35} +(2894.31 + 5013.10i) q^{37} +(-482.969 - 278.842i) q^{39} -8858.89i q^{41} +7390.78i q^{43} +(6955.04 + 4015.49i) q^{45} +(-1315.66 - 2278.78i) q^{47} +(15972.0 - 5231.75i) q^{49} +(-3166.90 + 1828.41i) q^{51} +(-6075.73 + 10523.5i) q^{53} -1282.21 q^{55} -5546.01 q^{57} +(-7267.76 + 12588.1i) q^{59} +(-18180.8 + 10496.7i) q^{61} +(-12509.2 - 15410.0i) q^{63} +(1542.67 + 2671.98i) q^{65} +(36597.2 + 21129.4i) q^{67} -30788.8i q^{69} -75175.4i q^{71} +(-8333.30 - 4811.23i) q^{73} +(-1770.14 - 3065.98i) q^{75} +(2959.80 + 1132.11i) q^{77} +(71853.0 - 41484.4i) q^{79} +(-796.954 + 1380.36i) q^{81} +81002.0 q^{83} +20231.0 q^{85} +(28721.8 - 49747.7i) q^{87} +(-26817.6 + 15483.2i) q^{89} +(-1201.83 - 7529.93i) q^{91} +(-45090.0 - 78098.2i) q^{93} +(26572.0 + 15341.4i) q^{95} +131483. i q^{97} -3742.33i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 66 q^{5} - 544 q^{9} - 1602 q^{17} + 2674 q^{21} - 2460 q^{25} + 22512 q^{29} - 15582 q^{33} - 7938 q^{37} + 3072 q^{45} - 23772 q^{49} + 22854 q^{53} - 25900 q^{57} - 12870 q^{61} - 62220 q^{65}+ \cdots - 273182 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.74078 + 8.21127i −0.304121 + 0.526753i −0.977065 0.212940i \(-0.931696\pi\)
0.672944 + 0.739693i \(0.265029\pi\)
\(4\) 0 0
\(5\) 45.4281 26.2279i 0.812642 0.469179i −0.0352304 0.999379i \(-0.511217\pi\)
0.847873 + 0.530200i \(0.177883\pi\)
\(6\) 0 0
\(7\) −128.021 + 20.4331i −0.987501 + 0.157612i
\(8\) 0 0
\(9\) 76.5500 + 132.588i 0.315021 + 0.545632i
\(10\) 0 0
\(11\) −21.1688 12.2218i −0.0527492 0.0304547i 0.473393 0.880851i \(-0.343029\pi\)
−0.526143 + 0.850396i \(0.676362\pi\)
\(12\) 0 0
\(13\) 58.8178i 0.0965273i 0.998835 + 0.0482636i \(0.0153688\pi\)
−0.998835 + 0.0482636i \(0.984631\pi\)
\(14\) 0 0
\(15\) 497.363i 0.570749i
\(16\) 0 0
\(17\) 334.006 + 192.839i 0.280306 + 0.161835i 0.633562 0.773692i \(-0.281592\pi\)
−0.353256 + 0.935527i \(0.614926\pi\)
\(18\) 0 0
\(19\) 292.463 + 506.560i 0.185860 + 0.321919i 0.943866 0.330328i \(-0.107159\pi\)
−0.758006 + 0.652248i \(0.773826\pi\)
\(20\) 0 0
\(21\) 439.140 1148.09i 0.217297 0.568103i
\(22\) 0 0
\(23\) −2812.19 + 1623.62i −1.10847 + 0.639976i −0.938433 0.345461i \(-0.887722\pi\)
−0.170038 + 0.985437i \(0.554389\pi\)
\(24\) 0 0
\(25\) −186.693 + 323.362i −0.0597418 + 0.103476i
\(26\) 0 0
\(27\) −3755.65 −0.991460
\(28\) 0 0
\(29\) −6058.46 −1.33773 −0.668863 0.743386i \(-0.733219\pi\)
−0.668863 + 0.743386i \(0.733219\pi\)
\(30\) 0 0
\(31\) −4755.55 + 8236.85i −0.888785 + 1.53942i −0.0474710 + 0.998873i \(0.515116\pi\)
−0.841314 + 0.540547i \(0.818217\pi\)
\(32\) 0 0
\(33\) 200.714 115.882i 0.0320843 0.0185239i
\(34\) 0 0
\(35\) −5279.85 + 4285.97i −0.728537 + 0.591397i
\(36\) 0 0
\(37\) 2894.31 + 5013.10i 0.347569 + 0.602007i 0.985817 0.167824i \(-0.0536739\pi\)
−0.638248 + 0.769831i \(0.720341\pi\)
\(38\) 0 0
\(39\) −482.969 278.842i −0.0508461 0.0293560i
\(40\) 0 0
\(41\) 8858.89i 0.823037i −0.911401 0.411519i \(-0.864999\pi\)
0.911401 0.411519i \(-0.135001\pi\)
\(42\) 0 0
\(43\) 7390.78i 0.609563i 0.952422 + 0.304782i \(0.0985835\pi\)
−0.952422 + 0.304782i \(0.901416\pi\)
\(44\) 0 0
\(45\) 6955.04 + 4015.49i 0.511998 + 0.295602i
\(46\) 0 0
\(47\) −1315.66 2278.78i −0.0868755 0.150473i 0.819313 0.573346i \(-0.194355\pi\)
−0.906189 + 0.422873i \(0.861022\pi\)
\(48\) 0 0
\(49\) 15972.0 5231.75i 0.950317 0.311284i
\(50\) 0 0
\(51\) −3166.90 + 1828.41i −0.170494 + 0.0984347i
\(52\) 0 0
\(53\) −6075.73 + 10523.5i −0.297104 + 0.514599i −0.975472 0.220123i \(-0.929354\pi\)
0.678368 + 0.734722i \(0.262687\pi\)
\(54\) 0 0
\(55\) −1282.21 −0.0571549
\(56\) 0 0
\(57\) −5546.01 −0.226096
\(58\) 0 0
\(59\) −7267.76 + 12588.1i −0.271813 + 0.470794i −0.969326 0.245778i \(-0.920957\pi\)
0.697513 + 0.716572i \(0.254290\pi\)
\(60\) 0 0
\(61\) −18180.8 + 10496.7i −0.625589 + 0.361184i −0.779042 0.626972i \(-0.784294\pi\)
0.153453 + 0.988156i \(0.450961\pi\)
\(62\) 0 0
\(63\) −12509.2 15410.0i −0.397081 0.489161i
\(64\) 0 0
\(65\) 1542.67 + 2671.98i 0.0452886 + 0.0784422i
\(66\) 0 0
\(67\) 36597.2 + 21129.4i 0.996003 + 0.575042i 0.907063 0.420995i \(-0.138319\pi\)
0.0889396 + 0.996037i \(0.471652\pi\)
\(68\) 0 0
\(69\) 30788.8i 0.778521i
\(70\) 0 0
\(71\) 75175.4i 1.76982i −0.465760 0.884911i \(-0.654219\pi\)
0.465760 0.884911i \(-0.345781\pi\)
\(72\) 0 0
\(73\) −8333.30 4811.23i −0.183025 0.105669i 0.405688 0.914012i \(-0.367032\pi\)
−0.588713 + 0.808342i \(0.700365\pi\)
\(74\) 0 0
\(75\) −1770.14 3065.98i −0.0363375 0.0629384i
\(76\) 0 0
\(77\) 2959.80 + 1132.11i 0.0568899 + 0.0217602i
\(78\) 0 0
\(79\) 71853.0 41484.4i 1.29532 0.747854i 0.315729 0.948850i \(-0.397751\pi\)
0.979592 + 0.200996i \(0.0644178\pi\)
\(80\) 0 0
\(81\) −796.954 + 1380.36i −0.0134965 + 0.0233766i
\(82\) 0 0
\(83\) 81002.0 1.29063 0.645313 0.763918i \(-0.276727\pi\)
0.645313 + 0.763918i \(0.276727\pi\)
\(84\) 0 0
\(85\) 20231.0 0.303718
\(86\) 0 0
\(87\) 28721.8 49747.7i 0.406831 0.704652i
\(88\) 0 0
\(89\) −26817.6 + 15483.2i −0.358877 + 0.207197i −0.668588 0.743633i \(-0.733101\pi\)
0.309711 + 0.950831i \(0.399768\pi\)
\(90\) 0 0
\(91\) −1201.83 7529.93i −0.0152139 0.0953208i
\(92\) 0 0
\(93\) −45090.0 78098.2i −0.540596 0.936341i
\(94\) 0 0
\(95\) 26572.0 + 15341.4i 0.302076 + 0.174404i
\(96\) 0 0
\(97\) 131483.i 1.41886i 0.704775 + 0.709431i \(0.251048\pi\)
−0.704775 + 0.709431i \(0.748952\pi\)
\(98\) 0 0
\(99\) 3742.33i 0.0383755i
\(100\) 0 0
\(101\) 98317.7 + 56763.7i 0.959021 + 0.553691i 0.895872 0.444313i \(-0.146552\pi\)
0.0631495 + 0.998004i \(0.479886\pi\)
\(102\) 0 0
\(103\) −52916.3 91653.7i −0.491469 0.851250i 0.508482 0.861072i \(-0.330207\pi\)
−0.999952 + 0.00982251i \(0.996873\pi\)
\(104\) 0 0
\(105\) −10162.7 63673.1i −0.0899570 0.563616i
\(106\) 0 0
\(107\) 29305.1 16919.3i 0.247448 0.142864i −0.371147 0.928574i \(-0.621035\pi\)
0.618595 + 0.785710i \(0.287702\pi\)
\(108\) 0 0
\(109\) 28521.5 49400.7i 0.229935 0.398260i −0.727853 0.685733i \(-0.759482\pi\)
0.957789 + 0.287473i \(0.0928152\pi\)
\(110\) 0 0
\(111\) −54885.2 −0.422812
\(112\) 0 0
\(113\) 118518. 0.873148 0.436574 0.899668i \(-0.356192\pi\)
0.436574 + 0.899668i \(0.356192\pi\)
\(114\) 0 0
\(115\) −85168.1 + 147515.i −0.600527 + 1.04014i
\(116\) 0 0
\(117\) −7798.56 + 4502.50i −0.0526683 + 0.0304081i
\(118\) 0 0
\(119\) −46700.2 17862.7i −0.302309 0.115632i
\(120\) 0 0
\(121\) −80226.8 138957.i −0.498145 0.862812i
\(122\) 0 0
\(123\) 72742.7 + 41998.0i 0.433538 + 0.250303i
\(124\) 0 0
\(125\) 183511.i 1.05048i
\(126\) 0 0
\(127\) 47301.9i 0.260237i −0.991498 0.130119i \(-0.958464\pi\)
0.991498 0.130119i \(-0.0415358\pi\)
\(128\) 0 0
\(129\) −60687.7 35038.0i −0.321090 0.185381i
\(130\) 0 0
\(131\) 118503. + 205253.i 0.603325 + 1.04499i 0.992314 + 0.123747i \(0.0394912\pi\)
−0.388989 + 0.921243i \(0.627175\pi\)
\(132\) 0 0
\(133\) −47792.1 58874.7i −0.234276 0.288602i
\(134\) 0 0
\(135\) −170612. + 98502.8i −0.805702 + 0.465172i
\(136\) 0 0
\(137\) −44673.5 + 77376.8i −0.203352 + 0.352216i −0.949606 0.313445i \(-0.898517\pi\)
0.746254 + 0.665661i \(0.231850\pi\)
\(138\) 0 0
\(139\) −146398. −0.642685 −0.321342 0.946963i \(-0.604134\pi\)
−0.321342 + 0.946963i \(0.604134\pi\)
\(140\) 0 0
\(141\) 24948.9 0.105683
\(142\) 0 0
\(143\) 718.861 1245.10i 0.00293971 0.00509173i
\(144\) 0 0
\(145\) −275224. + 158901.i −1.08709 + 0.627633i
\(146\) 0 0
\(147\) −32760.3 + 155953.i −0.125042 + 0.595251i
\(148\) 0 0
\(149\) −208817. 361681.i −0.770548 1.33463i −0.937263 0.348624i \(-0.886649\pi\)
0.166714 0.986005i \(-0.446684\pi\)
\(150\) 0 0
\(151\) −370440. 213874.i −1.32213 0.763334i −0.338065 0.941123i \(-0.609772\pi\)
−0.984069 + 0.177789i \(0.943106\pi\)
\(152\) 0 0
\(153\) 59047.2i 0.203925i
\(154\) 0 0
\(155\) 498913.i 1.66800i
\(156\) 0 0
\(157\) 413174. + 238546.i 1.33778 + 0.772367i 0.986478 0.163895i \(-0.0524060\pi\)
0.351301 + 0.936262i \(0.385739\pi\)
\(158\) 0 0
\(159\) −57607.4 99778.9i −0.180711 0.313001i
\(160\) 0 0
\(161\) 326844. 265319.i 0.993748 0.806685i
\(162\) 0 0
\(163\) −396470. + 228902.i −1.16880 + 0.674808i −0.953398 0.301717i \(-0.902440\pi\)
−0.215404 + 0.976525i \(0.569107\pi\)
\(164\) 0 0
\(165\) 6078.69 10528.6i 0.0173820 0.0301065i
\(166\) 0 0
\(167\) 1763.27 0.00489247 0.00244623 0.999997i \(-0.499221\pi\)
0.00244623 + 0.999997i \(0.499221\pi\)
\(168\) 0 0
\(169\) 367833. 0.990682
\(170\) 0 0
\(171\) −44776.0 + 77554.4i −0.117100 + 0.202822i
\(172\) 0 0
\(173\) −525979. + 303674.i −1.33614 + 0.771423i −0.986233 0.165360i \(-0.947121\pi\)
−0.349911 + 0.936783i \(0.613788\pi\)
\(174\) 0 0
\(175\) 17293.4 45212.0i 0.0426861 0.111599i
\(176\) 0 0
\(177\) −68909.7 119355.i −0.165328 0.286357i
\(178\) 0 0
\(179\) 231557. + 133689.i 0.540163 + 0.311863i 0.745145 0.666903i \(-0.232380\pi\)
−0.204982 + 0.978766i \(0.565714\pi\)
\(180\) 0 0
\(181\) 170105.i 0.385941i −0.981205 0.192971i \(-0.938188\pi\)
0.981205 0.192971i \(-0.0618122\pi\)
\(182\) 0 0
\(183\) 199050.i 0.439375i
\(184\) 0 0
\(185\) 262966. + 151824.i 0.564898 + 0.326144i
\(186\) 0 0
\(187\) −4713.68 8164.34i −0.00985727 0.0170733i
\(188\) 0 0
\(189\) 480803. 76739.6i 0.979068 0.156266i
\(190\) 0 0
\(191\) 630495. 364016.i 1.25054 0.722000i 0.279324 0.960197i \(-0.409890\pi\)
0.971217 + 0.238196i \(0.0765562\pi\)
\(192\) 0 0
\(193\) −237753. + 411800.i −0.459443 + 0.795779i −0.998932 0.0462138i \(-0.985284\pi\)
0.539488 + 0.841993i \(0.318618\pi\)
\(194\) 0 0
\(195\) −29253.8 −0.0550929
\(196\) 0 0
\(197\) −411672. −0.755763 −0.377881 0.925854i \(-0.623347\pi\)
−0.377881 + 0.925854i \(0.623347\pi\)
\(198\) 0 0
\(199\) 363719. 629981.i 0.651079 1.12770i −0.331782 0.943356i \(-0.607650\pi\)
0.982861 0.184346i \(-0.0590168\pi\)
\(200\) 0 0
\(201\) −346998. + 200340.i −0.605811 + 0.349765i
\(202\) 0 0
\(203\) 775613. 123793.i 1.32101 0.210842i
\(204\) 0 0
\(205\) −232350. 402442.i −0.386152 0.668835i
\(206\) 0 0
\(207\) −430546. 248576.i −0.698382 0.403211i
\(208\) 0 0
\(209\) 14297.7i 0.0226413i
\(210\) 0 0
\(211\) 88502.1i 0.136851i −0.997656 0.0684254i \(-0.978202\pi\)
0.997656 0.0684254i \(-0.0217975\pi\)
\(212\) 0 0
\(213\) 617285. + 356390.i 0.932260 + 0.538241i
\(214\) 0 0
\(215\) 193845. + 335749.i 0.285994 + 0.495357i
\(216\) 0 0
\(217\) 440508. 1.15166e6i 0.635045 1.66026i
\(218\) 0 0
\(219\) 79012.7 45618.0i 0.111323 0.0642726i
\(220\) 0 0
\(221\) −11342.3 + 19645.5i −0.0156215 + 0.0270572i
\(222\) 0 0
\(223\) 145641. 0.196120 0.0980602 0.995180i \(-0.468736\pi\)
0.0980602 + 0.995180i \(0.468736\pi\)
\(224\) 0 0
\(225\) −57165.4 −0.0752796
\(226\) 0 0
\(227\) 485173. 840344.i 0.624930 1.08241i −0.363624 0.931546i \(-0.618461\pi\)
0.988554 0.150865i \(-0.0482060\pi\)
\(228\) 0 0
\(229\) −1.13344e6 + 654390.i −1.42827 + 0.824609i −0.996984 0.0776082i \(-0.975272\pi\)
−0.431281 + 0.902218i \(0.641938\pi\)
\(230\) 0 0
\(231\) −23327.8 + 18936.6i −0.0287637 + 0.0233492i
\(232\) 0 0
\(233\) −547913. 949012.i −0.661183 1.14520i −0.980305 0.197489i \(-0.936721\pi\)
0.319123 0.947713i \(-0.396612\pi\)
\(234\) 0 0
\(235\) −119535. 69013.8i −0.141197 0.0815204i
\(236\) 0 0
\(237\) 786673.i 0.909753i
\(238\) 0 0
\(239\) 48553.5i 0.0549826i −0.999622 0.0274913i \(-0.991248\pi\)
0.999622 0.0274913i \(-0.00875186\pi\)
\(240\) 0 0
\(241\) 729752. + 421323.i 0.809344 + 0.467275i 0.846728 0.532026i \(-0.178569\pi\)
−0.0373842 + 0.999301i \(0.511903\pi\)
\(242\) 0 0
\(243\) −463867. 803442.i −0.503939 0.872848i
\(244\) 0 0
\(245\) 588358. 656580.i 0.626220 0.698832i
\(246\) 0 0
\(247\) −29794.7 + 17202.0i −0.0310740 + 0.0179406i
\(248\) 0 0
\(249\) −384013. + 665130.i −0.392507 + 0.679842i
\(250\) 0 0
\(251\) 1.42770e6 1.43039 0.715193 0.698927i \(-0.246339\pi\)
0.715193 + 0.698927i \(0.246339\pi\)
\(252\) 0 0
\(253\) 79374.3 0.0779612
\(254\) 0 0
\(255\) −95910.8 + 166122.i −0.0923670 + 0.159984i
\(256\) 0 0
\(257\) −398669. + 230172.i −0.376513 + 0.217380i −0.676300 0.736626i \(-0.736418\pi\)
0.299787 + 0.954006i \(0.403084\pi\)
\(258\) 0 0
\(259\) −472967. 582644.i −0.438108 0.539702i
\(260\) 0 0
\(261\) −463775. 803282.i −0.421411 0.729906i
\(262\) 0 0
\(263\) 962880. + 555919.i 0.858387 + 0.495590i 0.863472 0.504397i \(-0.168285\pi\)
−0.00508508 + 0.999987i \(0.501619\pi\)
\(264\) 0 0
\(265\) 637414.i 0.557580i
\(266\) 0 0
\(267\) 293609.i 0.252053i
\(268\) 0 0
\(269\) 1.10870e6 + 640110.i 0.934189 + 0.539354i 0.888134 0.459585i \(-0.152002\pi\)
0.0460552 + 0.998939i \(0.485335\pi\)
\(270\) 0 0
\(271\) 487763. + 844830.i 0.403446 + 0.698789i 0.994139 0.108107i \(-0.0344790\pi\)
−0.590693 + 0.806896i \(0.701146\pi\)
\(272\) 0 0
\(273\) 67528.0 + 25829.2i 0.0548374 + 0.0209751i
\(274\) 0 0
\(275\) 7904.16 4563.47i 0.00630266 0.00363884i
\(276\) 0 0
\(277\) 737950. 1.27817e6i 0.577866 1.00089i −0.417858 0.908513i \(-0.637219\pi\)
0.995724 0.0923809i \(-0.0294478\pi\)
\(278\) 0 0
\(279\) −1.45615e6 −1.11994
\(280\) 0 0
\(281\) 1.59868e6 1.20780 0.603902 0.797058i \(-0.293612\pi\)
0.603902 + 0.797058i \(0.293612\pi\)
\(282\) 0 0
\(283\) −554736. + 960832.i −0.411738 + 0.713150i −0.995080 0.0990760i \(-0.968411\pi\)
0.583342 + 0.812226i \(0.301745\pi\)
\(284\) 0 0
\(285\) −251944. + 145460.i −0.183735 + 0.106080i
\(286\) 0 0
\(287\) 181015. + 1.13413e6i 0.129721 + 0.812750i
\(288\) 0 0
\(289\) −635555. 1.10081e6i −0.447619 0.775299i
\(290\) 0 0
\(291\) −1.07964e6 623332.i −0.747390 0.431506i
\(292\) 0 0
\(293\) 1.42205e6i 0.967710i 0.875148 + 0.483855i \(0.160764\pi\)
−0.875148 + 0.483855i \(0.839236\pi\)
\(294\) 0 0
\(295\) 762472.i 0.510116i
\(296\) 0 0
\(297\) 79502.7 + 45900.9i 0.0522987 + 0.0301947i
\(298\) 0 0
\(299\) −95497.5 165406.i −0.0617752 0.106998i
\(300\) 0 0
\(301\) −151017. 946178.i −0.0960745 0.601945i
\(302\) 0 0
\(303\) −932205. + 538209.i −0.583317 + 0.336778i
\(304\) 0 0
\(305\) −550613. + 953690.i −0.338920 + 0.587027i
\(306\) 0 0
\(307\) −2.54564e6 −1.54153 −0.770764 0.637121i \(-0.780125\pi\)
−0.770764 + 0.637121i \(0.780125\pi\)
\(308\) 0 0
\(309\) 1.00346e6 0.597865
\(310\) 0 0
\(311\) −1.20916e6 + 2.09432e6i −0.708895 + 1.22784i 0.256373 + 0.966578i \(0.417472\pi\)
−0.965268 + 0.261263i \(0.915861\pi\)
\(312\) 0 0
\(313\) −2.99487e6 + 1.72909e6i −1.72790 + 0.997601i −0.829338 + 0.558747i \(0.811282\pi\)
−0.898558 + 0.438854i \(0.855384\pi\)
\(314\) 0 0
\(315\) −972443. 371956.i −0.552189 0.211210i
\(316\) 0 0
\(317\) −1.56117e6 2.70402e6i −0.872572 1.51134i −0.859327 0.511427i \(-0.829117\pi\)
−0.0132455 0.999912i \(-0.504216\pi\)
\(318\) 0 0
\(319\) 128251. + 74045.5i 0.0705639 + 0.0407401i
\(320\) 0 0
\(321\) 320843.i 0.173792i
\(322\) 0 0
\(323\) 225592.i 0.120315i
\(324\) 0 0
\(325\) −19019.4 10980.9i −0.00998824 0.00576671i
\(326\) 0 0
\(327\) 270428. + 468395.i 0.139857 + 0.242239i
\(328\) 0 0
\(329\) 214995. + 264850.i 0.109506 + 0.134899i
\(330\) 0 0
\(331\) −752986. + 434737.i −0.377761 + 0.218100i −0.676844 0.736127i \(-0.736653\pi\)
0.299083 + 0.954227i \(0.403319\pi\)
\(332\) 0 0
\(333\) −443119. + 767505.i −0.218983 + 0.379289i
\(334\) 0 0
\(335\) 2.21672e6 1.07919
\(336\) 0 0
\(337\) 1.87504e6 0.899365 0.449682 0.893188i \(-0.351537\pi\)
0.449682 + 0.893188i \(0.351537\pi\)
\(338\) 0 0
\(339\) −561867. + 973182.i −0.265543 + 0.459934i
\(340\) 0 0
\(341\) 201339. 116243.i 0.0937653 0.0541354i
\(342\) 0 0
\(343\) −1.93785e6 + 996134.i −0.889377 + 0.457175i
\(344\) 0 0
\(345\) −807527. 1.39868e6i −0.365266 0.632659i
\(346\) 0 0
\(347\) 3.15389e6 + 1.82090e6i 1.40612 + 0.811826i 0.995012 0.0997590i \(-0.0318072\pi\)
0.411112 + 0.911585i \(0.365141\pi\)
\(348\) 0 0
\(349\) 665541.i 0.292490i 0.989248 + 0.146245i \(0.0467188\pi\)
−0.989248 + 0.146245i \(0.953281\pi\)
\(350\) 0 0
\(351\) 220899.i 0.0957030i
\(352\) 0 0
\(353\) 376510. + 217378.i 0.160820 + 0.0928493i 0.578250 0.815860i \(-0.303736\pi\)
−0.417430 + 0.908709i \(0.637069\pi\)
\(354\) 0 0
\(355\) −1.97169e6 3.41507e6i −0.830364 1.43823i
\(356\) 0 0
\(357\) 368071. 298785.i 0.152848 0.124076i
\(358\) 0 0
\(359\) 1.83391e6 1.05881e6i 0.751005 0.433593i −0.0750521 0.997180i \(-0.523912\pi\)
0.826057 + 0.563587i \(0.190579\pi\)
\(360\) 0 0
\(361\) 1.06698e6 1.84806e6i 0.430912 0.746361i
\(362\) 0 0
\(363\) 1.52135e6 0.605986
\(364\) 0 0
\(365\) −504754. −0.198312
\(366\) 0 0
\(367\) −122836. + 212757.i −0.0476057 + 0.0824555i −0.888846 0.458205i \(-0.848492\pi\)
0.841241 + 0.540661i \(0.181826\pi\)
\(368\) 0 0
\(369\) 1.17459e6 678148.i 0.449075 0.259274i
\(370\) 0 0
\(371\) 562796. 1.47138e6i 0.212283 0.554994i
\(372\) 0 0
\(373\) 1.74188e6 + 3.01702e6i 0.648254 + 1.12281i 0.983540 + 0.180692i \(0.0578339\pi\)
−0.335286 + 0.942117i \(0.608833\pi\)
\(374\) 0 0
\(375\) −1.50686e6 869984.i −0.553342 0.319472i
\(376\) 0 0
\(377\) 356345.i 0.129127i
\(378\) 0 0
\(379\) 3.07711e6i 1.10039i −0.835037 0.550194i \(-0.814554\pi\)
0.835037 0.550194i \(-0.185446\pi\)
\(380\) 0 0
\(381\) 388409. + 224248.i 0.137081 + 0.0791436i
\(382\) 0 0
\(383\) 2.41980e6 + 4.19121e6i 0.842912 + 1.45997i 0.887423 + 0.460957i \(0.152494\pi\)
−0.0445109 + 0.999009i \(0.514173\pi\)
\(384\) 0 0
\(385\) 164151. 26199.6i 0.0564405 0.00900831i
\(386\) 0 0
\(387\) −979932. + 565764.i −0.332597 + 0.192025i
\(388\) 0 0
\(389\) −1.08742e6 + 1.88347e6i −0.364354 + 0.631079i −0.988672 0.150091i \(-0.952043\pi\)
0.624319 + 0.781170i \(0.285377\pi\)
\(390\) 0 0
\(391\) −1.25238e6 −0.414281
\(392\) 0 0
\(393\) −2.24719e6 −0.733936
\(394\) 0 0
\(395\) 2.17610e6 3.76911e6i 0.701755 1.21547i
\(396\) 0 0
\(397\) −372640. + 215144.i −0.118662 + 0.0685098i −0.558156 0.829736i \(-0.688491\pi\)
0.439494 + 0.898246i \(0.355158\pi\)
\(398\) 0 0
\(399\) 710008. 113322.i 0.223270 0.0356355i
\(400\) 0 0
\(401\) 44992.6 + 77929.5i 0.0139727 + 0.0242014i 0.872927 0.487850i \(-0.162219\pi\)
−0.858955 + 0.512052i \(0.828886\pi\)
\(402\) 0 0
\(403\) −484473. 279711.i −0.148596 0.0857920i
\(404\) 0 0
\(405\) 83609.7i 0.0253291i
\(406\) 0 0
\(407\) 141495.i 0.0423405i
\(408\) 0 0
\(409\) 2.06212e6 + 1.19057e6i 0.609546 + 0.351921i 0.772788 0.634665i \(-0.218862\pi\)
−0.163242 + 0.986586i \(0.552195\pi\)
\(410\) 0 0
\(411\) −423575. 733653.i −0.123687 0.214233i
\(412\) 0 0
\(413\) 673214. 1.76005e6i 0.194213 0.507751i
\(414\) 0 0
\(415\) 3.67977e6 2.12451e6i 1.04882 0.605535i
\(416\) 0 0
\(417\) 694041. 1.20211e6i 0.195454 0.338536i
\(418\) 0 0
\(419\) 943020. 0.262413 0.131207 0.991355i \(-0.458115\pi\)
0.131207 + 0.991355i \(0.458115\pi\)
\(420\) 0 0
\(421\) −2.41477e6 −0.664005 −0.332002 0.943279i \(-0.607724\pi\)
−0.332002 + 0.943279i \(0.607724\pi\)
\(422\) 0 0
\(423\) 201427. 348881.i 0.0547351 0.0948041i
\(424\) 0 0
\(425\) −124713. + 72003.3i −0.0334920 + 0.0193366i
\(426\) 0 0
\(427\) 2.11306e6 1.71529e6i 0.560843 0.455270i
\(428\) 0 0
\(429\) 6815.93 + 11805.5i 0.00178806 + 0.00309701i
\(430\) 0 0
\(431\) 3.50960e6 + 2.02627e6i 0.910048 + 0.525417i 0.880447 0.474145i \(-0.157243\pi\)
0.0296015 + 0.999562i \(0.490576\pi\)
\(432\) 0 0
\(433\) 4.08792e6i 1.04781i −0.851777 0.523905i \(-0.824475\pi\)
0.851777 0.523905i \(-0.175525\pi\)
\(434\) 0 0
\(435\) 3.01325e6i 0.763506i
\(436\) 0 0
\(437\) −1.64492e6 949694.i −0.412041 0.237892i
\(438\) 0 0
\(439\) −2.04135e6 3.53573e6i −0.505541 0.875623i −0.999979 0.00641057i \(-0.997959\pi\)
0.494438 0.869213i \(-0.335374\pi\)
\(440\) 0 0
\(441\) 1.91632e6 + 1.71721e6i 0.469216 + 0.420462i
\(442\) 0 0
\(443\) 3.64580e6 2.10491e6i 0.882641 0.509593i 0.0111124 0.999938i \(-0.496463\pi\)
0.871528 + 0.490345i \(0.163129\pi\)
\(444\) 0 0
\(445\) −812182. + 1.40674e6i −0.194425 + 0.336755i
\(446\) 0 0
\(447\) 3.95982e6 0.937361
\(448\) 0 0
\(449\) −3.96898e6 −0.929102 −0.464551 0.885546i \(-0.653784\pi\)
−0.464551 + 0.885546i \(0.653784\pi\)
\(450\) 0 0
\(451\) −108272. + 187532.i −0.0250654 + 0.0434145i
\(452\) 0 0
\(453\) 3.51235e6 2.02785e6i 0.804178 0.464292i
\(454\) 0 0
\(455\) −252091. 310549.i −0.0570860 0.0703237i
\(456\) 0 0
\(457\) 3.40079e6 + 5.89033e6i 0.761708 + 1.31932i 0.941969 + 0.335699i \(0.108972\pi\)
−0.180261 + 0.983619i \(0.557694\pi\)
\(458\) 0 0
\(459\) −1.25441e6 724233.i −0.277912 0.160453i
\(460\) 0 0
\(461\) 1.05680e6i 0.231601i −0.993272 0.115801i \(-0.963057\pi\)
0.993272 0.115801i \(-0.0369433\pi\)
\(462\) 0 0
\(463\) 3.32704e6i 0.721283i 0.932704 + 0.360642i \(0.117442\pi\)
−0.932704 + 0.360642i \(0.882558\pi\)
\(464\) 0 0
\(465\) −4.09671e6 2.36524e6i −0.878623 0.507273i
\(466\) 0 0
\(467\) 296405. + 513388.i 0.0628917 + 0.108932i 0.895757 0.444544i \(-0.146634\pi\)
−0.832865 + 0.553476i \(0.813301\pi\)
\(468\) 0 0
\(469\) −5.11696e6 1.95722e6i −1.07419 0.410873i
\(470\) 0 0
\(471\) −3.91754e6 + 2.26179e6i −0.813694 + 0.469786i
\(472\) 0 0
\(473\) 90328.9 156454.i 0.0185641 0.0321540i
\(474\) 0 0
\(475\) −218403. −0.0444145
\(476\) 0 0
\(477\) −1.86039e6 −0.374375
\(478\) 0 0
\(479\) 1.78128e6 3.08527e6i 0.354726 0.614404i −0.632345 0.774687i \(-0.717907\pi\)
0.987071 + 0.160283i \(0.0512407\pi\)
\(480\) 0 0
\(481\) −294859. + 170237.i −0.0581101 + 0.0335499i
\(482\) 0 0
\(483\) 629112. + 3.94163e6i 0.122704 + 0.768790i
\(484\) 0 0
\(485\) 3.44852e6 + 5.97302e6i 0.665700 + 1.15303i
\(486\) 0 0
\(487\) −5.36910e6 3.09985e6i −1.02584 0.592268i −0.110049 0.993926i \(-0.535101\pi\)
−0.915790 + 0.401658i \(0.868434\pi\)
\(488\) 0 0
\(489\) 4.34069e6i 0.820894i
\(490\) 0 0
\(491\) 8.52991e6i 1.59676i 0.602152 + 0.798382i \(0.294310\pi\)
−0.602152 + 0.798382i \(0.705690\pi\)
\(492\) 0 0
\(493\) −2.02356e6 1.16830e6i −0.374972 0.216490i
\(494\) 0 0
\(495\) −98153.4 170007.i −0.0180050 0.0311855i
\(496\) 0 0
\(497\) 1.53607e6 + 9.62406e6i 0.278945 + 1.74770i
\(498\) 0 0
\(499\) −5.79813e6 + 3.34755e6i −1.04241 + 0.601833i −0.920514 0.390710i \(-0.872229\pi\)
−0.121892 + 0.992543i \(0.538896\pi\)
\(500\) 0 0
\(501\) −8359.28 + 14478.7i −0.00148790 + 0.00257712i
\(502\) 0 0
\(503\) −8.34500e6 −1.47064 −0.735320 0.677720i \(-0.762968\pi\)
−0.735320 + 0.677720i \(0.762968\pi\)
\(504\) 0 0
\(505\) 5.95518e6 1.03912
\(506\) 0 0
\(507\) −1.74382e6 + 3.02038e6i −0.301288 + 0.521845i
\(508\) 0 0
\(509\) 9.27824e6 5.35679e6i 1.58734 0.916453i 0.593601 0.804760i \(-0.297706\pi\)
0.993743 0.111694i \(-0.0356276\pi\)
\(510\) 0 0
\(511\) 1.16515e6 + 445666.i 0.197392 + 0.0755017i
\(512\) 0 0
\(513\) −1.09839e6 1.90246e6i −0.184273 0.319170i
\(514\) 0 0
\(515\) −4.80777e6 2.77577e6i −0.798777 0.461174i
\(516\) 0 0
\(517\) 64318.9i 0.0105831i
\(518\) 0 0
\(519\) 5.75861e6i 0.938425i
\(520\) 0 0
\(521\) −1.93965e6 1.11985e6i −0.313060 0.180745i 0.335235 0.942135i \(-0.391184\pi\)
−0.648295 + 0.761389i \(0.724518\pi\)
\(522\) 0 0
\(523\) 6.00615e6 + 1.04030e7i 0.960156 + 1.66304i 0.722102 + 0.691786i \(0.243176\pi\)
0.238054 + 0.971252i \(0.423491\pi\)
\(524\) 0 0
\(525\) 289264. + 356341.i 0.0458032 + 0.0564245i
\(526\) 0 0
\(527\) −3.17677e6 + 1.83411e6i −0.498263 + 0.287672i
\(528\) 0 0
\(529\) 2.05409e6 3.55778e6i 0.319139 0.552764i
\(530\) 0 0
\(531\) −2.22539e6 −0.342507
\(532\) 0 0
\(533\) 521060. 0.0794456
\(534\) 0 0
\(535\) 887516. 1.53722e6i 0.134058 0.232195i
\(536\) 0 0
\(537\) −2.19552e6 + 1.26758e6i −0.328550 + 0.189688i
\(538\) 0 0
\(539\) −402050. 84456.8i −0.0596085 0.0125217i
\(540\) 0 0
\(541\) 2.36003e6 + 4.08769e6i 0.346677 + 0.600461i 0.985657 0.168762i \(-0.0539768\pi\)
−0.638980 + 0.769223i \(0.720643\pi\)
\(542\) 0 0
\(543\) 1.39678e6 + 806432.i 0.203296 + 0.117373i
\(544\) 0 0
\(545\) 2.99224e6i 0.431524i
\(546\) 0 0
\(547\) 8.42384e6i 1.20377i 0.798584 + 0.601883i \(0.205583\pi\)
−0.798584 + 0.601883i \(0.794417\pi\)
\(548\) 0 0
\(549\) −2.78348e6 1.60705e6i −0.394147 0.227561i
\(550\) 0 0
\(551\) −1.77187e6 3.06897e6i −0.248630 0.430640i
\(552\) 0 0
\(553\) −8.35107e6 + 6.77907e6i −1.16126 + 0.942665i
\(554\) 0 0
\(555\) −2.49333e6 + 1.43952e6i −0.343595 + 0.198375i
\(556\) 0 0
\(557\) 596846. 1.03377e6i 0.0815125 0.141184i −0.822387 0.568928i \(-0.807358\pi\)
0.903900 + 0.427744i \(0.140692\pi\)
\(558\) 0 0
\(559\) −434709. −0.0588395
\(560\) 0 0
\(561\) 89386.2 0.0119912
\(562\) 0 0
\(563\) −3.72901e6 + 6.45884e6i −0.495818 + 0.858783i −0.999988 0.00482184i \(-0.998465\pi\)
0.504170 + 0.863604i \(0.331798\pi\)
\(564\) 0 0
\(565\) 5.38404e6 3.10848e6i 0.709557 0.409663i
\(566\) 0 0
\(567\) 73822.0 193000.i 0.00964336 0.0252116i
\(568\) 0 0
\(569\) 874103. + 1.51399e6i 0.113183 + 0.196039i 0.917052 0.398768i \(-0.130562\pi\)
−0.803869 + 0.594807i \(0.797229\pi\)
\(570\) 0 0
\(571\) 8.18258e6 + 4.72422e6i 1.05027 + 0.606372i 0.922724 0.385461i \(-0.125957\pi\)
0.127544 + 0.991833i \(0.459291\pi\)
\(572\) 0 0
\(573\) 6.90289e6i 0.878303i
\(574\) 0 0
\(575\) 1.21247e6i 0.152933i
\(576\) 0 0
\(577\) −1.01751e7 5.87459e6i −1.27233 0.734578i −0.296901 0.954908i \(-0.595953\pi\)
−0.975425 + 0.220330i \(0.929287\pi\)
\(578\) 0 0
\(579\) −2.25427e6 3.90450e6i −0.279453 0.484027i
\(580\) 0 0
\(581\) −1.03700e7 + 1.65512e6i −1.27449 + 0.203418i
\(582\) 0 0
\(583\) 257232. 148513.i 0.0313440 0.0180965i
\(584\) 0 0
\(585\) −236182. + 409080.i −0.0285337 + 0.0494218i
\(586\) 0 0
\(587\) −137068. −0.0164188 −0.00820941 0.999966i \(-0.502613\pi\)
−0.00820941 + 0.999966i \(0.502613\pi\)
\(588\) 0 0
\(589\) −5.56328e6 −0.660759
\(590\) 0 0
\(591\) 1.95165e6 3.38035e6i 0.229844 0.398101i
\(592\) 0 0
\(593\) 1.04876e7 6.05503e6i 1.22473 0.707097i 0.258806 0.965929i \(-0.416671\pi\)
0.965922 + 0.258832i \(0.0833376\pi\)
\(594\) 0 0
\(595\) −2.59000e6 + 413383.i −0.299922 + 0.0478696i
\(596\) 0 0
\(597\) 3.44863e6 + 5.97320e6i 0.396014 + 0.685916i
\(598\) 0 0
\(599\) −1.36113e7 7.85848e6i −1.55000 0.894893i −0.998140 0.0609570i \(-0.980585\pi\)
−0.551860 0.833936i \(-0.686082\pi\)
\(600\) 0 0
\(601\) 4.02817e6i 0.454906i −0.973789 0.227453i \(-0.926960\pi\)
0.973789 0.227453i \(-0.0730398\pi\)
\(602\) 0 0
\(603\) 6.46982e6i 0.724601i
\(604\) 0 0
\(605\) −7.28909e6 4.20836e6i −0.809627 0.467439i
\(606\) 0 0
\(607\) −220931. 382664.i −0.0243380 0.0421546i 0.853600 0.520929i \(-0.174414\pi\)
−0.877938 + 0.478775i \(0.841081\pi\)
\(608\) 0 0
\(609\) −2.66051e6 + 6.95564e6i −0.290684 + 0.759966i
\(610\) 0 0
\(611\) 134033. 77383.9i 0.0145247 0.00838586i
\(612\) 0 0
\(613\) 6.48760e6 1.12369e7i 0.697321 1.20780i −0.272071 0.962277i \(-0.587709\pi\)
0.969392 0.245518i \(-0.0789582\pi\)
\(614\) 0 0
\(615\) 4.40608e6 0.469748
\(616\) 0 0
\(617\) 2.98260e6 0.315415 0.157707 0.987486i \(-0.449590\pi\)
0.157707 + 0.987486i \(0.449590\pi\)
\(618\) 0 0
\(619\) 4.28183e6 7.41634e6i 0.449161 0.777971i −0.549170 0.835711i \(-0.685056\pi\)
0.998332 + 0.0577400i \(0.0183894\pi\)
\(620\) 0 0
\(621\) 1.05616e7 6.09773e6i 1.09900 0.634511i
\(622\) 0 0
\(623\) 3.11686e6 2.53014e6i 0.321734 0.261171i
\(624\) 0 0
\(625\) 4.22969e6 + 7.32603e6i 0.433120 + 0.750186i
\(626\) 0 0
\(627\) 117403. + 67782.4i 0.0119264 + 0.00688570i
\(628\) 0 0
\(629\) 2.23254e6i 0.224995i
\(630\) 0 0
\(631\) 3.19204e6i 0.319150i −0.987186 0.159575i \(-0.948988\pi\)
0.987186 0.159575i \(-0.0510124\pi\)
\(632\) 0 0
\(633\) 726715. + 419569.i 0.0720866 + 0.0416192i
\(634\) 0 0
\(635\) −1.24063e6 2.14883e6i −0.122098 0.211480i
\(636\) 0 0
\(637\) 307720. + 939436.i 0.0300474 + 0.0917315i
\(638\) 0 0
\(639\) 9.96739e6 5.75467e6i 0.965671 0.557530i
\(640\) 0 0
\(641\) −3.40490e6 + 5.89745e6i −0.327310 + 0.566917i −0.981977 0.189000i \(-0.939475\pi\)
0.654667 + 0.755917i \(0.272809\pi\)
\(642\) 0 0
\(643\) 5.81654e6 0.554801 0.277401 0.960754i \(-0.410527\pi\)
0.277401 + 0.960754i \(0.410527\pi\)
\(644\) 0 0
\(645\) −3.67590e6 −0.347908
\(646\) 0 0
\(647\) −446222. + 772879.i −0.0419074 + 0.0725857i −0.886218 0.463268i \(-0.846677\pi\)
0.844311 + 0.535854i \(0.180010\pi\)
\(648\) 0 0
\(649\) 307700. 177651.i 0.0286758 0.0165560i
\(650\) 0 0
\(651\) 7.36828e6 + 9.07692e6i 0.681418 + 0.839433i
\(652\) 0 0
\(653\) 1.39446e6 + 2.41528e6i 0.127974 + 0.221658i 0.922892 0.385060i \(-0.125819\pi\)
−0.794917 + 0.606718i \(0.792486\pi\)
\(654\) 0 0
\(655\) 1.07667e7 + 6.21618e6i 0.980575 + 0.566135i
\(656\) 0 0
\(657\) 1.47320e6i 0.133152i
\(658\) 0 0
\(659\) 2.06628e7i 1.85342i −0.375771 0.926712i \(-0.622622\pi\)
0.375771 0.926712i \(-0.377378\pi\)
\(660\) 0 0
\(661\) −842350. 486331.i −0.0749875 0.0432941i 0.462037 0.886860i \(-0.347119\pi\)
−0.537025 + 0.843566i \(0.680452\pi\)
\(662\) 0 0
\(663\) −107543. 186270.i −0.00950164 0.0164573i
\(664\) 0 0
\(665\) −3.71526e6 1.42108e6i −0.325788 0.124613i
\(666\) 0 0
\(667\) 1.70375e7 9.83661e6i 1.48283 0.856113i
\(668\) 0 0
\(669\) −690454. + 1.19590e6i −0.0596443 + 0.103307i
\(670\) 0 0
\(671\) 513156. 0.0439991
\(672\) 0 0
\(673\) 4.79868e6 0.408399 0.204199 0.978929i \(-0.434541\pi\)
0.204199 + 0.978929i \(0.434541\pi\)
\(674\) 0 0
\(675\) 701153. 1.21443e6i 0.0592316 0.102592i
\(676\) 0 0
\(677\) 4.45819e6 2.57394e6i 0.373841 0.215837i −0.301294 0.953531i \(-0.597419\pi\)
0.675135 + 0.737694i \(0.264085\pi\)
\(678\) 0 0
\(679\) −2.68661e6 1.68326e7i −0.223630 1.40113i
\(680\) 0 0
\(681\) 4.60019e6 + 7.96777e6i 0.380109 + 0.658368i
\(682\) 0 0
\(683\) 8.53426e6 + 4.92726e6i 0.700026 + 0.404160i 0.807357 0.590063i \(-0.200897\pi\)
−0.107331 + 0.994223i \(0.534231\pi\)
\(684\) 0 0
\(685\) 4.68677e6i 0.381634i
\(686\) 0 0
\(687\) 1.24093e7i 1.00312i
\(688\) 0 0
\(689\) −618967. 357361.i −0.0496729 0.0286786i
\(690\) 0 0
\(691\) 3.80600e6 + 6.59219e6i 0.303231 + 0.525212i 0.976866 0.213853i \(-0.0686012\pi\)
−0.673635 + 0.739064i \(0.735268\pi\)
\(692\) 0 0
\(693\) 76467.4 + 479098.i 0.00604844 + 0.0378958i
\(694\) 0 0
\(695\) −6.65058e6 + 3.83971e6i −0.522273 + 0.301534i
\(696\) 0 0
\(697\) 1.70833e6 2.95892e6i 0.133196 0.230702i
\(698\) 0 0
\(699\) 1.03901e7 0.804319
\(700\) 0 0
\(701\) −2.19372e7 −1.68611 −0.843055 0.537827i \(-0.819245\pi\)
−0.843055 + 0.537827i \(0.819245\pi\)
\(702\) 0 0
\(703\) −1.69296e6 + 2.93229e6i −0.129199 + 0.223778i
\(704\) 0 0
\(705\) 1.13338e6 654358.i 0.0858823 0.0495841i
\(706\) 0 0
\(707\) −1.37466e7 5.25804e6i −1.03430 0.395617i
\(708\) 0 0
\(709\) 5.67874e6 + 9.83586e6i 0.424264 + 0.734847i 0.996351 0.0853458i \(-0.0271995\pi\)
−0.572087 + 0.820193i \(0.693866\pi\)
\(710\) 0 0
\(711\) 1.10007e7 + 6.35126e6i 0.816105 + 0.471179i
\(712\) 0 0
\(713\) 3.08847e7i 2.27520i
\(714\) 0 0
\(715\) 75416.9i 0.00551701i
\(716\) 0 0
\(717\) 398686. + 230181.i 0.0289623 + 0.0167214i
\(718\) 0 0
\(719\) −9.79576e6 1.69667e7i −0.706669 1.22399i −0.966086 0.258221i \(-0.916864\pi\)
0.259417 0.965765i \(-0.416469\pi\)
\(720\) 0 0
\(721\) 8.64719e6 + 1.06524e7i 0.619494 + 0.763149i
\(722\) 0 0
\(723\) −6.91919e6 + 3.99480e6i −0.492277 + 0.284216i
\(724\) 0 0
\(725\) 1.13107e6 1.95908e6i 0.0799182 0.138422i
\(726\) 0 0
\(727\) −386859. −0.0271467 −0.0135733 0.999908i \(-0.504321\pi\)
−0.0135733 + 0.999908i \(0.504321\pi\)
\(728\) 0 0
\(729\) 8.40905e6 0.586041
\(730\) 0 0
\(731\) −1.42523e6 + 2.46856e6i −0.0986485 + 0.170864i
\(732\) 0 0
\(733\) 7.18824e6 4.15013e6i 0.494154 0.285300i −0.232142 0.972682i \(-0.574573\pi\)
0.726296 + 0.687382i \(0.241240\pi\)
\(734\) 0 0
\(735\) 2.60208e6 + 7.94387e6i 0.177665 + 0.542393i
\(736\) 0 0
\(737\) −516480. 894570.i −0.0350255 0.0606660i
\(738\) 0 0
\(739\) −1.15579e7 6.67298e6i −0.778520 0.449478i 0.0573858 0.998352i \(-0.481723\pi\)
−0.835905 + 0.548874i \(0.815057\pi\)
\(740\) 0 0
\(741\) 326204.i 0.0218245i
\(742\) 0 0
\(743\) 2.31448e7i 1.53809i 0.639196 + 0.769044i \(0.279267\pi\)
−0.639196 + 0.769044i \(0.720733\pi\)
\(744\) 0 0
\(745\) −1.89723e7 1.09537e7i −1.25236 0.723051i
\(746\) 0 0
\(747\) 6.20070e6 + 1.07399e7i 0.406574 + 0.704207i
\(748\) 0 0
\(749\) −3.40597e6 + 2.76483e6i −0.221838 + 0.180079i
\(750\) 0 0
\(751\) −818115. + 472339.i −0.0529315 + 0.0305600i −0.526232 0.850341i \(-0.676396\pi\)
0.473301 + 0.880901i \(0.343062\pi\)
\(752\) 0 0
\(753\) −6.76842e6 + 1.17233e7i −0.435011 + 0.753461i
\(754\) 0 0
\(755\) −2.24378e7 −1.43256
\(756\) 0 0
\(757\) −2.40741e7 −1.52690 −0.763448 0.645869i \(-0.776495\pi\)
−0.763448 + 0.645869i \(0.776495\pi\)
\(758\) 0 0
\(759\) −376296. + 651764.i −0.0237097 + 0.0410663i
\(760\) 0 0
\(761\) −1.39052e7 + 8.02818e6i −0.870394 + 0.502522i −0.867479 0.497474i \(-0.834261\pi\)
−0.00291487 + 0.999996i \(0.500928\pi\)
\(762\) 0 0
\(763\) −2.64195e6 + 6.90713e6i −0.164291 + 0.429523i
\(764\) 0 0
\(765\) 1.54868e6 + 2.68240e6i 0.0956774 + 0.165718i
\(766\) 0 0
\(767\) −740405. 427473.i −0.0454445 0.0262374i
\(768\) 0 0
\(769\) 1.52779e7i 0.931641i −0.884879 0.465820i \(-0.845759\pi\)
0.884879 0.465820i \(-0.154241\pi\)
\(770\) 0 0
\(771\) 4.36478e6i 0.264439i
\(772\) 0 0
\(773\) 1.62363e7 + 9.37402e6i 0.977322 + 0.564257i 0.901461 0.432861i \(-0.142496\pi\)
0.0758615 + 0.997118i \(0.475829\pi\)
\(774\) 0 0
\(775\) −1.77566e6 3.07553e6i −0.106195 0.183935i
\(776\) 0 0
\(777\) 7.02648e6 1.12148e6i 0.417528 0.0666403i
\(778\) 0 0
\(779\) 4.48756e6 2.59089e6i 0.264952 0.152970i
\(780\) 0 0
\(781\) −918781. + 1.59138e6i −0.0538995 + 0.0933566i
\(782\) 0 0
\(783\) 2.27534e7 1.32630
\(784\) 0 0
\(785\) 2.50263e7 1.44951
\(786\) 0 0
\(787\) −7.47326e6 + 1.29441e7i −0.430104 + 0.744962i −0.996882 0.0789087i \(-0.974856\pi\)
0.566778 + 0.823871i \(0.308190\pi\)
\(788\) 0 0
\(789\) −9.12961e6 + 5.27098e6i −0.522107 + 0.301439i
\(790\) 0 0
\(791\) −1.51728e7 + 2.42169e6i −0.862234 + 0.137619i
\(792\) 0 0
\(793\) −617393. 1.06936e6i −0.0348641 0.0603864i
\(794\) 0 0
\(795\) −5.23398e6 3.02184e6i −0.293707 0.169572i
\(796\) 0 0
\(797\) 1.23503e7i 0.688702i 0.938841 + 0.344351i \(0.111901\pi\)
−0.938841 + 0.344351i \(0.888099\pi\)
\(798\) 0 0
\(799\) 1.01484e6i 0.0562379i
\(800\) 0 0
\(801\) −4.10578e6 2.37047e6i −0.226107 0.130543i
\(802\) 0 0
\(803\) 117604. + 203697.i 0.00643627 + 0.0111479i
\(804\) 0 0
\(805\) 7.88914e6 2.06254e7i 0.429082 1.12179i
\(806\) 0 0
\(807\) −1.05122e7 + 6.06925e6i −0.568214 + 0.328058i
\(808\) 0 0
\(809\) −5.24379e6 + 9.08250e6i −0.281691 + 0.487904i −0.971801 0.235801i \(-0.924229\pi\)
0.690110 + 0.723704i \(0.257562\pi\)
\(810\) 0 0
\(811\) −1.19421e7 −0.637570 −0.318785 0.947827i \(-0.603275\pi\)
−0.318785 + 0.947827i \(0.603275\pi\)
\(812\) 0 0
\(813\) −9.24951e6 −0.490786
\(814\) 0 0
\(815\) −1.20072e7 + 2.07971e7i −0.633212 + 1.09675i
\(816\) 0 0
\(817\) −3.74387e6 + 2.16153e6i −0.196230 + 0.113294i
\(818\) 0 0
\(819\) 906383. 735765.i 0.0472174 0.0383292i
\(820\) 0 0
\(821\) −199392. 345358.i −0.0103241 0.0178818i 0.860817 0.508914i \(-0.169953\pi\)
−0.871141 + 0.491032i \(0.836620\pi\)
\(822\) 0 0
\(823\) 2.15862e7 + 1.24628e7i 1.11090 + 0.641380i 0.939063 0.343745i \(-0.111696\pi\)
0.171840 + 0.985125i \(0.445029\pi\)
\(824\) 0 0
\(825\) 86537.6i 0.00442660i
\(826\) 0 0
\(827\) 4.53496e6i 0.230573i −0.993332 0.115287i \(-0.963221\pi\)
0.993332 0.115287i \(-0.0367787\pi\)
\(828\) 0 0
\(829\) 2.34324e7 + 1.35287e7i 1.18422 + 0.683708i 0.956986 0.290133i \(-0.0936996\pi\)
0.227230 + 0.973841i \(0.427033\pi\)
\(830\) 0 0
\(831\) 6.99691e6 + 1.21190e7i 0.351483 + 0.608786i
\(832\) 0 0
\(833\) 6.34362e6 + 1.33257e6i 0.316756 + 0.0665394i
\(834\) 0 0
\(835\) 80102.0 46246.9i 0.00397582 0.00229544i
\(836\) 0 0
\(837\) 1.78602e7 3.09347e7i 0.881194 1.52627i
\(838\) 0 0
\(839\) −3.66855e7 −1.79924 −0.899620 0.436673i \(-0.856157\pi\)
−0.899620 + 0.436673i \(0.856157\pi\)
\(840\) 0 0
\(841\) 1.61938e7 0.789511
\(842\) 0 0
\(843\) −7.57901e6 + 1.31272e7i −0.367319 + 0.636215i
\(844\) 0 0
\(845\) 1.67100e7 9.64750e6i 0.805070 0.464808i
\(846\) 0 0
\(847\) 1.31101e7 + 1.61502e7i 0.627908 + 0.773515i
\(848\) 0 0
\(849\) −5.25977e6 9.11018e6i −0.250436 0.433768i
\(850\) 0 0
\(851\) −1.62787e7 9.39850e6i −0.770540 0.444872i
\(852\) 0 0
\(853\) 2.04043e7i 0.960174i 0.877221 + 0.480087i \(0.159395\pi\)
−0.877221 + 0.480087i \(0.840605\pi\)
\(854\) 0 0
\(855\) 4.69753e6i 0.219763i
\(856\) 0 0
\(857\) 2.10554e6 + 1.21564e6i 0.0979292 + 0.0565395i 0.548165 0.836370i \(-0.315327\pi\)
−0.450236 + 0.892910i \(0.648660\pi\)
\(858\) 0 0
\(859\) −8.31785e6 1.44069e7i −0.384617 0.666176i 0.607099 0.794626i \(-0.292333\pi\)
−0.991716 + 0.128450i \(0.959000\pi\)
\(860\) 0 0
\(861\) −1.01708e7 3.89029e6i −0.467570 0.178844i
\(862\) 0 0
\(863\) −2.63064e7 + 1.51880e7i −1.20236 + 0.694183i −0.961079 0.276273i \(-0.910901\pi\)
−0.241280 + 0.970455i \(0.577567\pi\)
\(864\) 0 0
\(865\) −1.59295e7 + 2.75907e7i −0.723871 + 1.25378i
\(866\) 0 0
\(867\) 1.20521e7 0.544522
\(868\) 0 0
\(869\) −2.02806e6 −0.0911028
\(870\) 0 0
\(871\) −1.24278e6 + 2.15256e6i −0.0555073 + 0.0961415i
\(872\) 0 0
\(873\) −1.74331e7 + 1.00650e7i −0.774176 + 0.446970i
\(874\) 0 0
\(875\) −3.74970e6 2.34933e7i −0.165568 1.03735i
\(876\) 0 0
\(877\) −1.50861e7 2.61299e7i −0.662336 1.14720i −0.980000 0.198997i \(-0.936232\pi\)
0.317664 0.948203i \(-0.397102\pi\)
\(878\) 0 0
\(879\) −1.16768e7 6.74162e6i −0.509744 0.294301i
\(880\) 0 0
\(881\) 1.00893e7i 0.437947i 0.975731 + 0.218973i \(0.0702708\pi\)
−0.975731 + 0.218973i \(0.929729\pi\)
\(882\) 0 0
\(883\) 1.36170e7i 0.587733i 0.955846 + 0.293867i \(0.0949422\pi\)
−0.955846 + 0.293867i \(0.905058\pi\)
\(884\) 0 0
\(885\) −6.26087e6 3.61471e6i −0.268705 0.155137i
\(886\) 0 0
\(887\) 5.09687e6 + 8.82804e6i 0.217518 + 0.376752i 0.954048 0.299652i \(-0.0968707\pi\)
−0.736531 + 0.676404i \(0.763537\pi\)
\(888\) 0 0
\(889\) 966525. + 6.05566e6i 0.0410165 + 0.256984i
\(890\) 0 0
\(891\) 33741.2 19480.5i 0.00142386 0.000822064i
\(892\) 0 0
\(893\) 769560. 1.33292e6i 0.0322934 0.0559338i
\(894\) 0 0
\(895\) 1.40256e7 0.585279
\(896\) 0 0
\(897\) 1.81093e6 0.0751485
\(898\) 0 0
\(899\) 2.88113e7 4.99026e7i 1.18895 2.05932i
\(900\) 0 0
\(901\) −4.05866e6 + 2.34327e6i −0.166560 + 0.0961634i
\(902\) 0 0
\(903\) 8.48526e6 + 3.24558e6i 0.346295 + 0.132457i
\(904\) 0 0
\(905\) −4.46151e6 7.72756e6i −0.181076 0.313632i
\(906\) 0 0
\(907\) −3.97148e6 2.29294e6i −0.160300 0.0925495i 0.417704 0.908583i \(-0.362835\pi\)
−0.578004 + 0.816034i \(0.696168\pi\)
\(908\) 0 0
\(909\) 1.73811e7i 0.697696i
\(910\) 0 0
\(911\) 2.52740e7i 1.00897i 0.863421 + 0.504484i \(0.168317\pi\)
−0.863421 + 0.504484i \(0.831683\pi\)
\(912\) 0 0
\(913\) −1.71472e6 989994.i −0.0680795 0.0393057i
\(914\) 0 0
\(915\) −5.22068e6 9.04247e6i −0.206146 0.357055i
\(916\) 0 0
\(917\) −1.93649e7 2.38554e7i −0.760487 0.936837i
\(918\) 0 0
\(919\) 2.46259e7 1.42178e7i 0.961842 0.555320i 0.0651028 0.997879i \(-0.479262\pi\)
0.896740 + 0.442559i \(0.145929\pi\)
\(920\) 0 0
\(921\) 1.20683e7 2.09030e7i 0.468811 0.812005i
\(922\) 0 0
\(923\) 4.42165e6 0.170836
\(924\) 0 0
\(925\) −2.16139e6 −0.0830576
\(926\) 0 0
\(927\) 8.10149e6 1.40322e7i 0.309646 0.536322i
\(928\) 0 0
\(929\) −3.23329e7 + 1.86674e7i −1.22915 + 0.709650i −0.966852 0.255337i \(-0.917814\pi\)
−0.262298 + 0.964987i \(0.584480\pi\)
\(930\) 0 0
\(931\) 7.32141e6 + 6.56068e6i 0.276835 + 0.248070i
\(932\) 0 0
\(933\) −1.14647e7 1.98574e7i −0.431180 0.746825i
\(934\) 0 0
\(935\) −428267. 247260.i −0.0160209 0.00924965i
\(936\) 0 0
\(937\) 2.42023e7i 0.900548i 0.892890 + 0.450274i \(0.148674\pi\)
−0.892890 + 0.450274i \(0.851326\pi\)
\(938\) 0 0
\(939\) 3.27890e7i 1.21357i
\(940\) 0 0
\(941\) 3.86426e7 + 2.23103e7i 1.42263 + 0.821356i 0.996523 0.0833160i \(-0.0265511\pi\)
0.426108 + 0.904672i \(0.359884\pi\)
\(942\) 0 0
\(943\) 1.43834e7 + 2.49128e7i 0.526724 + 0.912313i
\(944\) 0 0
\(945\) 1.98292e7 1.60966e7i 0.722315 0.586347i
\(946\) 0 0
\(947\) 2.29406e7 1.32447e7i 0.831246 0.479920i −0.0230333 0.999735i \(-0.507332\pi\)
0.854279 + 0.519815i \(0.173999\pi\)
\(948\) 0 0
\(949\) 282986. 490146.i 0.0102000 0.0176669i
\(950\) 0 0
\(951\) 2.96046e7 1.06147
\(952\) 0 0
\(953\) 3.59018e7 1.28051 0.640257 0.768161i \(-0.278828\pi\)
0.640257 + 0.768161i \(0.278828\pi\)
\(954\) 0 0
\(955\) 1.90948e7 3.30731e7i 0.677495 1.17346i
\(956\) 0 0
\(957\) −1.21602e6 + 702067.i −0.0429200 + 0.0247799i
\(958\) 0 0
\(959\) 4.13812e6 1.08187e7i 0.145297 0.379865i
\(960\) 0 0
\(961\) −3.09159e7 5.35480e7i −1.07988 1.87040i
\(962\) 0 0
\(963\) 4.48661e6 + 2.59035e6i 0.155902 + 0.0900103i
\(964\) 0 0
\(965\) 2.49430e7i 0.862245i
\(966\) 0 0
\(967\) 5.76157e6i 0.198141i 0.995080 + 0.0990705i \(0.0315869\pi\)
−0.995080 + 0.0990705i \(0.968413\pi\)
\(968\) 0 0
\(969\) −1.85240e6 1.06948e6i −0.0633761 0.0365902i
\(970\) 0 0
\(971\) −4.61284e6 7.98967e6i −0.157007 0.271945i 0.776781 0.629771i \(-0.216851\pi\)
−0.933788 + 0.357826i \(0.883518\pi\)
\(972\) 0 0
\(973\) 1.87421e7 2.99137e6i 0.634652 0.101295i
\(974\) 0 0
\(975\) 180334. 104116.i 0.00607527 0.00350756i
\(976\) 0 0
\(977\) −5.97202e6 + 1.03438e7i −0.200163 + 0.346693i −0.948581 0.316535i \(-0.897481\pi\)
0.748418 + 0.663228i \(0.230814\pi\)
\(978\) 0 0
\(979\) 756931. 0.0252406
\(980\) 0 0
\(981\) 8.73328e6 0.289738
\(982\) 0 0
\(983\) −3.13440e6 + 5.42895e6i −0.103460 + 0.179197i −0.913108 0.407718i \(-0.866325\pi\)
0.809648 + 0.586916i \(0.199658\pi\)
\(984\) 0 0
\(985\) −1.87015e7 + 1.07973e7i −0.614165 + 0.354588i
\(986\) 0 0
\(987\) −3.19400e6 + 509784.i −0.104362 + 0.0166569i
\(988\) 0 0
\(989\) −1.19998e7 2.07842e7i −0.390106 0.675683i
\(990\) 0 0
\(991\) 4.51836e6 + 2.60867e6i 0.146149 + 0.0843792i 0.571291 0.820747i \(-0.306443\pi\)
−0.425142 + 0.905127i \(0.639776\pi\)
\(992\) 0 0
\(993\) 8.24397e6i 0.265316i
\(994\) 0 0
\(995\) 3.81584e7i 1.22189i
\(996\) 0 0
\(997\) 2.64151e7 + 1.52508e7i 0.841617 + 0.485908i 0.857814 0.513961i \(-0.171822\pi\)
−0.0161963 + 0.999869i \(0.505156\pi\)
\(998\) 0 0
\(999\) −1.08700e7 1.88274e7i −0.344601 0.596866i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.6.p.a.31.3 12
4.3 odd 2 inner 112.6.p.a.31.4 yes 12
7.3 odd 6 784.6.f.b.783.5 12
7.4 even 3 784.6.f.b.783.8 12
7.5 odd 6 inner 112.6.p.a.47.4 yes 12
28.3 even 6 784.6.f.b.783.7 12
28.11 odd 6 784.6.f.b.783.6 12
28.19 even 6 inner 112.6.p.a.47.3 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.6.p.a.31.3 12 1.1 even 1 trivial
112.6.p.a.31.4 yes 12 4.3 odd 2 inner
112.6.p.a.47.3 yes 12 28.19 even 6 inner
112.6.p.a.47.4 yes 12 7.5 odd 6 inner
784.6.f.b.783.5 12 7.3 odd 6
784.6.f.b.783.6 12 28.11 odd 6
784.6.f.b.783.7 12 28.3 even 6
784.6.f.b.783.8 12 7.4 even 3