Properties

Label 784.6.f.b.783.8
Level $784$
Weight $6$
Character 784.783
Analytic conductor $125.741$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,6,Mod(783,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.783"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 784.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(125.740914733\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 293 x^{10} + 336 x^{9} + 60118 x^{8} + 67616 x^{7} + 5772748 x^{6} + \cdots + 37147165696 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{2}\cdot 7^{8} \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 783.8
Root \(-5.11675 - 8.86248i\) of defining polynomial
Character \(\chi\) \(=\) 784.783
Dual form 784.6.f.b.783.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.48156 q^{3} +52.4558i q^{5} -153.100 q^{9} +24.4437i q^{11} +58.8178i q^{13} +497.363i q^{15} -385.677i q^{17} -584.926 q^{19} -3247.23i q^{23} +373.386 q^{25} -3755.65 q^{27} -6058.46 q^{29} +9511.10 q^{31} +231.764i q^{33} -5788.62 q^{37} +557.684i q^{39} -8858.89i q^{41} +7390.78i q^{43} -8030.99i q^{45} +2631.31 q^{47} -3656.82i q^{51} +12151.5 q^{53} -1282.21 q^{55} -5546.01 q^{57} +14535.5 q^{59} -20993.4i q^{61} -3085.33 q^{65} -42258.8i q^{67} -30788.8i q^{69} -75175.4i q^{71} +9622.47i q^{73} +3540.28 q^{75} +82968.7i q^{79} +1593.91 q^{81} +81002.0 q^{83} +20231.0 q^{85} -57443.6 q^{87} -30966.3i q^{89} +90180.1 q^{93} -30682.8i q^{95} +131483. i q^{97} -3742.33i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 1088 q^{9} + 4920 q^{25} + 22512 q^{29} + 15876 q^{37} - 45708 q^{53} - 25900 q^{57} + 124440 q^{65} + 186164 q^{81} + 70116 q^{85} + 546364 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 9.48156 0.608242 0.304121 0.952633i \(-0.401637\pi\)
0.304121 + 0.952633i \(0.401637\pi\)
\(4\) 0 0
\(5\) 52.4558i 0.938358i 0.883103 + 0.469179i \(0.155450\pi\)
−0.883103 + 0.469179i \(0.844550\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −153.100 −0.630041
\(10\) 0 0
\(11\) 24.4437i 0.0609095i 0.999536 + 0.0304547i \(0.00969554\pi\)
−0.999536 + 0.0304547i \(0.990304\pi\)
\(12\) 0 0
\(13\) 58.8178i 0.0965273i 0.998835 + 0.0482636i \(0.0153688\pi\)
−0.998835 + 0.0482636i \(0.984631\pi\)
\(14\) 0 0
\(15\) 497.363i 0.570749i
\(16\) 0 0
\(17\) − 385.677i − 0.323669i −0.986818 0.161835i \(-0.948259\pi\)
0.986818 0.161835i \(-0.0517411\pi\)
\(18\) 0 0
\(19\) −584.926 −0.371721 −0.185860 0.982576i \(-0.559507\pi\)
−0.185860 + 0.982576i \(0.559507\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 3247.23i − 1.27995i −0.768395 0.639976i \(-0.778944\pi\)
0.768395 0.639976i \(-0.221056\pi\)
\(24\) 0 0
\(25\) 373.386 0.119484
\(26\) 0 0
\(27\) −3755.65 −0.991460
\(28\) 0 0
\(29\) −6058.46 −1.33773 −0.668863 0.743386i \(-0.733219\pi\)
−0.668863 + 0.743386i \(0.733219\pi\)
\(30\) 0 0
\(31\) 9511.10 1.77757 0.888785 0.458325i \(-0.151551\pi\)
0.888785 + 0.458325i \(0.151551\pi\)
\(32\) 0 0
\(33\) 231.764i 0.0370477i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5788.62 −0.695138 −0.347569 0.937654i \(-0.612993\pi\)
−0.347569 + 0.937654i \(0.612993\pi\)
\(38\) 0 0
\(39\) 557.684i 0.0587120i
\(40\) 0 0
\(41\) − 8858.89i − 0.823037i −0.911401 0.411519i \(-0.864999\pi\)
0.911401 0.411519i \(-0.135001\pi\)
\(42\) 0 0
\(43\) 7390.78i 0.609563i 0.952422 + 0.304782i \(0.0985835\pi\)
−0.952422 + 0.304782i \(0.901416\pi\)
\(44\) 0 0
\(45\) − 8030.99i − 0.591204i
\(46\) 0 0
\(47\) 2631.31 0.173751 0.0868755 0.996219i \(-0.472312\pi\)
0.0868755 + 0.996219i \(0.472312\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) − 3656.82i − 0.196869i
\(52\) 0 0
\(53\) 12151.5 0.594208 0.297104 0.954845i \(-0.403979\pi\)
0.297104 + 0.954845i \(0.403979\pi\)
\(54\) 0 0
\(55\) −1282.21 −0.0571549
\(56\) 0 0
\(57\) −5546.01 −0.226096
\(58\) 0 0
\(59\) 14535.5 0.543626 0.271813 0.962350i \(-0.412377\pi\)
0.271813 + 0.962350i \(0.412377\pi\)
\(60\) 0 0
\(61\) − 20993.4i − 0.722368i −0.932495 0.361184i \(-0.882373\pi\)
0.932495 0.361184i \(-0.117627\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3085.33 −0.0905772
\(66\) 0 0
\(67\) − 42258.8i − 1.15008i −0.818124 0.575042i \(-0.804986\pi\)
0.818124 0.575042i \(-0.195014\pi\)
\(68\) 0 0
\(69\) − 30788.8i − 0.778521i
\(70\) 0 0
\(71\) − 75175.4i − 1.76982i −0.465760 0.884911i \(-0.654219\pi\)
0.465760 0.884911i \(-0.345781\pi\)
\(72\) 0 0
\(73\) 9622.47i 0.211339i 0.994401 + 0.105669i \(0.0336985\pi\)
−0.994401 + 0.105669i \(0.966301\pi\)
\(74\) 0 0
\(75\) 3540.28 0.0726750
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 82968.7i 1.49571i 0.663864 + 0.747854i \(0.268916\pi\)
−0.663864 + 0.747854i \(0.731084\pi\)
\(80\) 0 0
\(81\) 1593.91 0.0269930
\(82\) 0 0
\(83\) 81002.0 1.29063 0.645313 0.763918i \(-0.276727\pi\)
0.645313 + 0.763918i \(0.276727\pi\)
\(84\) 0 0
\(85\) 20231.0 0.303718
\(86\) 0 0
\(87\) −57443.6 −0.813662
\(88\) 0 0
\(89\) − 30966.3i − 0.414395i −0.978299 0.207197i \(-0.933566\pi\)
0.978299 0.207197i \(-0.0664343\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 90180.1 1.08119
\(94\) 0 0
\(95\) − 30682.8i − 0.348807i
\(96\) 0 0
\(97\) 131483.i 1.41886i 0.704775 + 0.709431i \(0.251048\pi\)
−0.704775 + 0.709431i \(0.748952\pi\)
\(98\) 0 0
\(99\) − 3742.33i − 0.0383755i
\(100\) 0 0
\(101\) − 113527.i − 1.10738i −0.832722 0.553691i \(-0.813219\pi\)
0.832722 0.553691i \(-0.186781\pi\)
\(102\) 0 0
\(103\) 105833. 0.982939 0.491469 0.870895i \(-0.336460\pi\)
0.491469 + 0.870895i \(0.336460\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 33838.6i 0.285728i 0.989742 + 0.142864i \(0.0456312\pi\)
−0.989742 + 0.142864i \(0.954369\pi\)
\(108\) 0 0
\(109\) −57043.0 −0.459871 −0.229935 0.973206i \(-0.573852\pi\)
−0.229935 + 0.973206i \(0.573852\pi\)
\(110\) 0 0
\(111\) −54885.2 −0.422812
\(112\) 0 0
\(113\) 118518. 0.873148 0.436574 0.899668i \(-0.356192\pi\)
0.436574 + 0.899668i \(0.356192\pi\)
\(114\) 0 0
\(115\) 170336. 1.20105
\(116\) 0 0
\(117\) − 9005.00i − 0.0608162i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 160454. 0.996290
\(122\) 0 0
\(123\) − 83996.1i − 0.500606i
\(124\) 0 0
\(125\) 183511.i 1.05048i
\(126\) 0 0
\(127\) − 47301.9i − 0.260237i −0.991498 0.130119i \(-0.958464\pi\)
0.991498 0.130119i \(-0.0415358\pi\)
\(128\) 0 0
\(129\) 70076.1i 0.370762i
\(130\) 0 0
\(131\) −237006. −1.20665 −0.603325 0.797495i \(-0.706158\pi\)
−0.603325 + 0.797495i \(0.706158\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) − 197006.i − 0.930345i
\(136\) 0 0
\(137\) 89347.1 0.406704 0.203352 0.979106i \(-0.434816\pi\)
0.203352 + 0.979106i \(0.434816\pi\)
\(138\) 0 0
\(139\) −146398. −0.642685 −0.321342 0.946963i \(-0.604134\pi\)
−0.321342 + 0.946963i \(0.604134\pi\)
\(140\) 0 0
\(141\) 24948.9 0.105683
\(142\) 0 0
\(143\) −1437.72 −0.00587943
\(144\) 0 0
\(145\) − 317801.i − 1.25527i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 417634. 1.54110 0.770548 0.637381i \(-0.219982\pi\)
0.770548 + 0.637381i \(0.219982\pi\)
\(150\) 0 0
\(151\) 427747.i 1.52667i 0.646004 + 0.763334i \(0.276439\pi\)
−0.646004 + 0.763334i \(0.723561\pi\)
\(152\) 0 0
\(153\) 59047.2i 0.203925i
\(154\) 0 0
\(155\) 498913.i 1.66800i
\(156\) 0 0
\(157\) − 477093.i − 1.54473i −0.635176 0.772367i \(-0.719073\pi\)
0.635176 0.772367i \(-0.280927\pi\)
\(158\) 0 0
\(159\) 115215. 0.361423
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 457804.i − 1.34962i −0.737993 0.674808i \(-0.764226\pi\)
0.737993 0.674808i \(-0.235774\pi\)
\(164\) 0 0
\(165\) −12157.4 −0.0347640
\(166\) 0 0
\(167\) 1763.27 0.00489247 0.00244623 0.999997i \(-0.499221\pi\)
0.00244623 + 0.999997i \(0.499221\pi\)
\(168\) 0 0
\(169\) 367833. 0.990682
\(170\) 0 0
\(171\) 89552.1 0.234199
\(172\) 0 0
\(173\) − 607348.i − 1.54285i −0.636323 0.771423i \(-0.719545\pi\)
0.636323 0.771423i \(-0.280455\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 137819. 0.330656
\(178\) 0 0
\(179\) − 267379.i − 0.623726i −0.950127 0.311863i \(-0.899047\pi\)
0.950127 0.311863i \(-0.100953\pi\)
\(180\) 0 0
\(181\) − 170105.i − 0.385941i −0.981205 0.192971i \(-0.938188\pi\)
0.981205 0.192971i \(-0.0618122\pi\)
\(182\) 0 0
\(183\) − 199050.i − 0.439375i
\(184\) 0 0
\(185\) − 303647.i − 0.652289i
\(186\) 0 0
\(187\) 9427.37 0.0197145
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 728033.i 1.44400i 0.691893 + 0.722000i \(0.256777\pi\)
−0.691893 + 0.722000i \(0.743223\pi\)
\(192\) 0 0
\(193\) 475505. 0.918887 0.459443 0.888207i \(-0.348049\pi\)
0.459443 + 0.888207i \(0.348049\pi\)
\(194\) 0 0
\(195\) −29253.8 −0.0550929
\(196\) 0 0
\(197\) −411672. −0.755763 −0.377881 0.925854i \(-0.623347\pi\)
−0.377881 + 0.925854i \(0.623347\pi\)
\(198\) 0 0
\(199\) −727439. −1.30216 −0.651079 0.759010i \(-0.725683\pi\)
−0.651079 + 0.759010i \(0.725683\pi\)
\(200\) 0 0
\(201\) − 400679.i − 0.699530i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 464700. 0.772304
\(206\) 0 0
\(207\) 497151.i 0.806422i
\(208\) 0 0
\(209\) − 14297.7i − 0.0226413i
\(210\) 0 0
\(211\) − 88502.1i − 0.136851i −0.997656 0.0684254i \(-0.978202\pi\)
0.997656 0.0684254i \(-0.0217975\pi\)
\(212\) 0 0
\(213\) − 712780.i − 1.07648i
\(214\) 0 0
\(215\) −387689. −0.571989
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 91236.0i 0.128545i
\(220\) 0 0
\(221\) 22684.7 0.0312429
\(222\) 0 0
\(223\) 145641. 0.196120 0.0980602 0.995180i \(-0.468736\pi\)
0.0980602 + 0.995180i \(0.468736\pi\)
\(224\) 0 0
\(225\) −57165.4 −0.0752796
\(226\) 0 0
\(227\) −970345. −1.24986 −0.624930 0.780680i \(-0.714873\pi\)
−0.624930 + 0.780680i \(0.714873\pi\)
\(228\) 0 0
\(229\) − 1.30878e6i − 1.64922i −0.565703 0.824609i \(-0.691395\pi\)
0.565703 0.824609i \(-0.308605\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.09583e6 1.32237 0.661183 0.750225i \(-0.270055\pi\)
0.661183 + 0.750225i \(0.270055\pi\)
\(234\) 0 0
\(235\) 138028.i 0.163041i
\(236\) 0 0
\(237\) 786673.i 0.909753i
\(238\) 0 0
\(239\) − 48553.5i − 0.0549826i −0.999622 0.0274913i \(-0.991248\pi\)
0.999622 0.0274913i \(-0.00875186\pi\)
\(240\) 0 0
\(241\) − 842646.i − 0.934550i −0.884112 0.467275i \(-0.845236\pi\)
0.884112 0.467275i \(-0.154764\pi\)
\(242\) 0 0
\(243\) 927735. 1.00788
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 34404.0i − 0.0358812i
\(248\) 0 0
\(249\) 768025. 0.785014
\(250\) 0 0
\(251\) 1.42770e6 1.43039 0.715193 0.698927i \(-0.246339\pi\)
0.715193 + 0.698927i \(0.246339\pi\)
\(252\) 0 0
\(253\) 79374.3 0.0779612
\(254\) 0 0
\(255\) 191822. 0.184734
\(256\) 0 0
\(257\) − 460344.i − 0.434760i −0.976087 0.217380i \(-0.930249\pi\)
0.976087 0.217380i \(-0.0697510\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 927550. 0.842822
\(262\) 0 0
\(263\) − 1.11184e6i − 0.991179i −0.868557 0.495590i \(-0.834952\pi\)
0.868557 0.495590i \(-0.165048\pi\)
\(264\) 0 0
\(265\) 637414.i 0.557580i
\(266\) 0 0
\(267\) − 293609.i − 0.252053i
\(268\) 0 0
\(269\) − 1.28022e6i − 1.07871i −0.842079 0.539354i \(-0.818668\pi\)
0.842079 0.539354i \(-0.181332\pi\)
\(270\) 0 0
\(271\) −975526. −0.806892 −0.403446 0.915003i \(-0.632188\pi\)
−0.403446 + 0.915003i \(0.632188\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 9126.93i 0.00727768i
\(276\) 0 0
\(277\) −1.47590e6 −1.15573 −0.577866 0.816132i \(-0.696114\pi\)
−0.577866 + 0.816132i \(0.696114\pi\)
\(278\) 0 0
\(279\) −1.45615e6 −1.11994
\(280\) 0 0
\(281\) 1.59868e6 1.20780 0.603902 0.797058i \(-0.293612\pi\)
0.603902 + 0.797058i \(0.293612\pi\)
\(282\) 0 0
\(283\) 1.10947e6 0.823475 0.411738 0.911302i \(-0.364922\pi\)
0.411738 + 0.911302i \(0.364922\pi\)
\(284\) 0 0
\(285\) − 290920.i − 0.212159i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.27111e6 0.895238
\(290\) 0 0
\(291\) 1.24666e6i 0.863012i
\(292\) 0 0
\(293\) 1.42205e6i 0.967710i 0.875148 + 0.483855i \(0.160764\pi\)
−0.875148 + 0.483855i \(0.839236\pi\)
\(294\) 0 0
\(295\) 762472.i 0.510116i
\(296\) 0 0
\(297\) − 91801.8i − 0.0603893i
\(298\) 0 0
\(299\) 190995. 0.123550
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) − 1.07642e6i − 0.673557i
\(304\) 0 0
\(305\) 1.10123e6 0.677840
\(306\) 0 0
\(307\) −2.54564e6 −1.54153 −0.770764 0.637121i \(-0.780125\pi\)
−0.770764 + 0.637121i \(0.780125\pi\)
\(308\) 0 0
\(309\) 1.00346e6 0.597865
\(310\) 0 0
\(311\) 2.41831e6 1.41779 0.708895 0.705314i \(-0.249194\pi\)
0.708895 + 0.705314i \(0.249194\pi\)
\(312\) 0 0
\(313\) − 3.45818e6i − 1.99520i −0.0692201 0.997601i \(-0.522051\pi\)
0.0692201 0.997601i \(-0.477949\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.12234e6 1.74514 0.872572 0.488485i \(-0.162450\pi\)
0.872572 + 0.488485i \(0.162450\pi\)
\(318\) 0 0
\(319\) − 148091.i − 0.0814802i
\(320\) 0 0
\(321\) 320843.i 0.173792i
\(322\) 0 0
\(323\) 225592.i 0.120315i
\(324\) 0 0
\(325\) 21961.7i 0.0115334i
\(326\) 0 0
\(327\) −540857. −0.279713
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 869474.i − 0.436201i −0.975926 0.218100i \(-0.930014\pi\)
0.975926 0.218100i \(-0.0699860\pi\)
\(332\) 0 0
\(333\) 886238. 0.437966
\(334\) 0 0
\(335\) 2.21672e6 1.07919
\(336\) 0 0
\(337\) 1.87504e6 0.899365 0.449682 0.893188i \(-0.351537\pi\)
0.449682 + 0.893188i \(0.351537\pi\)
\(338\) 0 0
\(339\) 1.12373e6 0.531085
\(340\) 0 0
\(341\) 232486.i 0.108271i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 1.61505e6 0.730532
\(346\) 0 0
\(347\) − 3.64180e6i − 1.62365i −0.583900 0.811826i \(-0.698474\pi\)
0.583900 0.811826i \(-0.301526\pi\)
\(348\) 0 0
\(349\) 665541.i 0.292490i 0.989248 + 0.146245i \(0.0467188\pi\)
−0.989248 + 0.146245i \(0.953281\pi\)
\(350\) 0 0
\(351\) − 220899.i − 0.0957030i
\(352\) 0 0
\(353\) − 434756.i − 0.185699i −0.995680 0.0928493i \(-0.970403\pi\)
0.995680 0.0928493i \(-0.0295975\pi\)
\(354\) 0 0
\(355\) 3.94339e6 1.66073
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.11762e6i 0.867186i 0.901109 + 0.433593i \(0.142754\pi\)
−0.901109 + 0.433593i \(0.857246\pi\)
\(360\) 0 0
\(361\) −2.13396e6 −0.861824
\(362\) 0 0
\(363\) 1.52135e6 0.605986
\(364\) 0 0
\(365\) −504754. −0.198312
\(366\) 0 0
\(367\) 245671. 0.0952114 0.0476057 0.998866i \(-0.484841\pi\)
0.0476057 + 0.998866i \(0.484841\pi\)
\(368\) 0 0
\(369\) 1.35630e6i 0.518547i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −3.48375e6 −1.29651 −0.648254 0.761424i \(-0.724501\pi\)
−0.648254 + 0.761424i \(0.724501\pi\)
\(374\) 0 0
\(375\) 1.73997e6i 0.638945i
\(376\) 0 0
\(377\) − 356345.i − 0.129127i
\(378\) 0 0
\(379\) − 3.07711e6i − 1.10039i −0.835037 0.550194i \(-0.814554\pi\)
0.835037 0.550194i \(-0.185446\pi\)
\(380\) 0 0
\(381\) − 448496.i − 0.158287i
\(382\) 0 0
\(383\) −4.83959e6 −1.68582 −0.842912 0.538052i \(-0.819160\pi\)
−0.842912 + 0.538052i \(0.819160\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 1.13153e6i − 0.384050i
\(388\) 0 0
\(389\) 2.17484e6 0.728707 0.364354 0.931261i \(-0.381290\pi\)
0.364354 + 0.931261i \(0.381290\pi\)
\(390\) 0 0
\(391\) −1.25238e6 −0.414281
\(392\) 0 0
\(393\) −2.24719e6 −0.733936
\(394\) 0 0
\(395\) −4.35219e6 −1.40351
\(396\) 0 0
\(397\) − 430287.i − 0.137020i −0.997650 0.0685098i \(-0.978176\pi\)
0.997650 0.0685098i \(-0.0218244\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −89985.2 −0.0279454 −0.0139727 0.999902i \(-0.504448\pi\)
−0.0139727 + 0.999902i \(0.504448\pi\)
\(402\) 0 0
\(403\) 559422.i 0.171584i
\(404\) 0 0
\(405\) 83609.7i 0.0253291i
\(406\) 0 0
\(407\) − 141495.i − 0.0423405i
\(408\) 0 0
\(409\) − 2.38113e6i − 0.703843i −0.936030 0.351921i \(-0.885528\pi\)
0.936030 0.351921i \(-0.114472\pi\)
\(410\) 0 0
\(411\) 847150. 0.247375
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 4.24903e6i 1.21107i
\(416\) 0 0
\(417\) −1.38808e6 −0.390908
\(418\) 0 0
\(419\) 943020. 0.262413 0.131207 0.991355i \(-0.458115\pi\)
0.131207 + 0.991355i \(0.458115\pi\)
\(420\) 0 0
\(421\) −2.41477e6 −0.664005 −0.332002 0.943279i \(-0.607724\pi\)
−0.332002 + 0.943279i \(0.607724\pi\)
\(422\) 0 0
\(423\) −402854. −0.109470
\(424\) 0 0
\(425\) − 144007.i − 0.0386732i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −13631.9 −0.00357612
\(430\) 0 0
\(431\) − 4.05254e6i − 1.05083i −0.850845 0.525417i \(-0.823910\pi\)
0.850845 0.525417i \(-0.176090\pi\)
\(432\) 0 0
\(433\) − 4.08792e6i − 1.04781i −0.851777 0.523905i \(-0.824475\pi\)
0.851777 0.523905i \(-0.175525\pi\)
\(434\) 0 0
\(435\) − 3.01325e6i − 0.763506i
\(436\) 0 0
\(437\) 1.89939e6i 0.475784i
\(438\) 0 0
\(439\) 4.08271e6 1.01108 0.505541 0.862802i \(-0.331293\pi\)
0.505541 + 0.862802i \(0.331293\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.20981e6i 1.01919i 0.860416 + 0.509593i \(0.170204\pi\)
−0.860416 + 0.509593i \(0.829796\pi\)
\(444\) 0 0
\(445\) 1.62436e6 0.388851
\(446\) 0 0
\(447\) 3.95982e6 0.937361
\(448\) 0 0
\(449\) −3.96898e6 −0.929102 −0.464551 0.885546i \(-0.653784\pi\)
−0.464551 + 0.885546i \(0.653784\pi\)
\(450\) 0 0
\(451\) 216544. 0.0501308
\(452\) 0 0
\(453\) 4.05571e6i 0.928584i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6.80157e6 −1.52342 −0.761708 0.647920i \(-0.775639\pi\)
−0.761708 + 0.647920i \(0.775639\pi\)
\(458\) 0 0
\(459\) 1.44847e6i 0.320905i
\(460\) 0 0
\(461\) − 1.05680e6i − 0.231601i −0.993272 0.115801i \(-0.963057\pi\)
0.993272 0.115801i \(-0.0369433\pi\)
\(462\) 0 0
\(463\) 3.32704e6i 0.721283i 0.932704 + 0.360642i \(0.117442\pi\)
−0.932704 + 0.360642i \(0.882558\pi\)
\(464\) 0 0
\(465\) 4.73047e6i 1.01455i
\(466\) 0 0
\(467\) −592810. −0.125783 −0.0628917 0.998020i \(-0.520032\pi\)
−0.0628917 + 0.998020i \(0.520032\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) − 4.52358e6i − 0.939573i
\(472\) 0 0
\(473\) −180658. −0.0371282
\(474\) 0 0
\(475\) −218403. −0.0444145
\(476\) 0 0
\(477\) −1.86039e6 −0.374375
\(478\) 0 0
\(479\) −3.56256e6 −0.709453 −0.354726 0.934970i \(-0.615426\pi\)
−0.354726 + 0.934970i \(0.615426\pi\)
\(480\) 0 0
\(481\) − 340474.i − 0.0670998i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.89704e6 −1.33140
\(486\) 0 0
\(487\) 6.19970e6i 1.18454i 0.805741 + 0.592268i \(0.201767\pi\)
−0.805741 + 0.592268i \(0.798233\pi\)
\(488\) 0 0
\(489\) − 4.34069e6i − 0.820894i
\(490\) 0 0
\(491\) 8.52991e6i 1.59676i 0.602152 + 0.798382i \(0.294310\pi\)
−0.602152 + 0.798382i \(0.705690\pi\)
\(492\) 0 0
\(493\) 2.33661e6i 0.432981i
\(494\) 0 0
\(495\) 196307. 0.0360100
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) − 6.69510e6i − 1.20367i −0.798622 0.601833i \(-0.794437\pi\)
0.798622 0.601833i \(-0.205563\pi\)
\(500\) 0 0
\(501\) 16718.6 0.00297581
\(502\) 0 0
\(503\) −8.34500e6 −1.47064 −0.735320 0.677720i \(-0.762968\pi\)
−0.735320 + 0.677720i \(0.762968\pi\)
\(504\) 0 0
\(505\) 5.95518e6 1.03912
\(506\) 0 0
\(507\) 3.48764e6 0.602575
\(508\) 0 0
\(509\) 1.07136e7i 1.83291i 0.400142 + 0.916453i \(0.368961\pi\)
−0.400142 + 0.916453i \(0.631039\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 2.19677e6 0.368546
\(514\) 0 0
\(515\) 5.55154e6i 0.922349i
\(516\) 0 0
\(517\) 64318.9i 0.0105831i
\(518\) 0 0
\(519\) − 5.75861e6i − 0.938425i
\(520\) 0 0
\(521\) 2.23971e6i 0.361491i 0.983530 + 0.180745i \(0.0578510\pi\)
−0.983530 + 0.180745i \(0.942149\pi\)
\(522\) 0 0
\(523\) −1.20123e7 −1.92031 −0.960156 0.279466i \(-0.909843\pi\)
−0.960156 + 0.279466i \(0.909843\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 3.66821e6i − 0.575345i
\(528\) 0 0
\(529\) −4.10817e6 −0.638277
\(530\) 0 0
\(531\) −2.22539e6 −0.342507
\(532\) 0 0
\(533\) 521060. 0.0794456
\(534\) 0 0
\(535\) −1.77503e6 −0.268116
\(536\) 0 0
\(537\) − 2.53517e6i − 0.379377i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −4.72006e6 −0.693353 −0.346677 0.937985i \(-0.612690\pi\)
−0.346677 + 0.937985i \(0.612690\pi\)
\(542\) 0 0
\(543\) − 1.61286e6i − 0.234746i
\(544\) 0 0
\(545\) − 2.99224e6i − 0.431524i
\(546\) 0 0
\(547\) 8.42384e6i 1.20377i 0.798584 + 0.601883i \(0.205583\pi\)
−0.798584 + 0.601883i \(0.794417\pi\)
\(548\) 0 0
\(549\) 3.21409e6i 0.455122i
\(550\) 0 0
\(551\) 3.54375e6 0.497260
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) − 2.87905e6i − 0.396750i
\(556\) 0 0
\(557\) −1.19369e6 −0.163025 −0.0815125 0.996672i \(-0.525975\pi\)
−0.0815125 + 0.996672i \(0.525975\pi\)
\(558\) 0 0
\(559\) −434709. −0.0588395
\(560\) 0 0
\(561\) 89386.2 0.0119912
\(562\) 0 0
\(563\) 7.45802e6 0.991637 0.495818 0.868426i \(-0.334868\pi\)
0.495818 + 0.868426i \(0.334868\pi\)
\(564\) 0 0
\(565\) 6.21695e6i 0.819325i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.74821e6 −0.226366 −0.113183 0.993574i \(-0.536105\pi\)
−0.113183 + 0.993574i \(0.536105\pi\)
\(570\) 0 0
\(571\) − 9.44843e6i − 1.21274i −0.795181 0.606372i \(-0.792624\pi\)
0.795181 0.606372i \(-0.207376\pi\)
\(572\) 0 0
\(573\) 6.90289e6i 0.878303i
\(574\) 0 0
\(575\) − 1.21247e6i − 0.152933i
\(576\) 0 0
\(577\) 1.17492e7i 1.46916i 0.678524 + 0.734578i \(0.262620\pi\)
−0.678524 + 0.734578i \(0.737380\pi\)
\(578\) 0 0
\(579\) 4.50853e6 0.558906
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 297026.i 0.0361929i
\(584\) 0 0
\(585\) 472365. 0.0570674
\(586\) 0 0
\(587\) −137068. −0.0164188 −0.00820941 0.999966i \(-0.502613\pi\)
−0.00820941 + 0.999966i \(0.502613\pi\)
\(588\) 0 0
\(589\) −5.56328e6 −0.660759
\(590\) 0 0
\(591\) −3.90329e6 −0.459687
\(592\) 0 0
\(593\) 1.21101e7i 1.41419i 0.707116 + 0.707097i \(0.249996\pi\)
−0.707116 + 0.707097i \(0.750004\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −6.89726e6 −0.792028
\(598\) 0 0
\(599\) 1.57170e7i 1.78979i 0.446280 + 0.894893i \(0.352749\pi\)
−0.446280 + 0.894893i \(0.647251\pi\)
\(600\) 0 0
\(601\) − 4.02817e6i − 0.454906i −0.973789 0.227453i \(-0.926960\pi\)
0.973789 0.227453i \(-0.0730398\pi\)
\(602\) 0 0
\(603\) 6.46982e6i 0.724601i
\(604\) 0 0
\(605\) 8.41672e6i 0.934877i
\(606\) 0 0
\(607\) 441862. 0.0486760 0.0243380 0.999704i \(-0.492252\pi\)
0.0243380 + 0.999704i \(0.492252\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 154768.i 0.0167717i
\(612\) 0 0
\(613\) −1.29752e7 −1.39464 −0.697321 0.716759i \(-0.745625\pi\)
−0.697321 + 0.716759i \(0.745625\pi\)
\(614\) 0 0
\(615\) 4.40608e6 0.469748
\(616\) 0 0
\(617\) 2.98260e6 0.315415 0.157707 0.987486i \(-0.449590\pi\)
0.157707 + 0.987486i \(0.449590\pi\)
\(618\) 0 0
\(619\) −8.56365e6 −0.898323 −0.449161 0.893451i \(-0.648277\pi\)
−0.449161 + 0.893451i \(0.648277\pi\)
\(620\) 0 0
\(621\) 1.21955e7i 1.26902i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −8.45938e6 −0.866240
\(626\) 0 0
\(627\) − 135565.i − 0.0137714i
\(628\) 0 0
\(629\) 2.23254e6i 0.224995i
\(630\) 0 0
\(631\) − 3.19204e6i − 0.319150i −0.987186 0.159575i \(-0.948988\pi\)
0.987186 0.159575i \(-0.0510124\pi\)
\(632\) 0 0
\(633\) − 839138.i − 0.0832385i
\(634\) 0 0
\(635\) 2.48126e6 0.244196
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.15093e7i 1.11506i
\(640\) 0 0
\(641\) 6.80979e6 0.654619 0.327310 0.944917i \(-0.393858\pi\)
0.327310 + 0.944917i \(0.393858\pi\)
\(642\) 0 0
\(643\) 5.81654e6 0.554801 0.277401 0.960754i \(-0.410527\pi\)
0.277401 + 0.960754i \(0.410527\pi\)
\(644\) 0 0
\(645\) −3.67590e6 −0.347908
\(646\) 0 0
\(647\) 892444. 0.0838147 0.0419074 0.999122i \(-0.486657\pi\)
0.0419074 + 0.999122i \(0.486657\pi\)
\(648\) 0 0
\(649\) 355301.i 0.0331120i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.78892e6 −0.255949 −0.127974 0.991777i \(-0.540848\pi\)
−0.127974 + 0.991777i \(0.540848\pi\)
\(654\) 0 0
\(655\) − 1.24324e7i − 1.13227i
\(656\) 0 0
\(657\) − 1.47320e6i − 0.133152i
\(658\) 0 0
\(659\) − 2.06628e7i − 1.85342i −0.375771 0.926712i \(-0.622622\pi\)
0.375771 0.926712i \(-0.377378\pi\)
\(660\) 0 0
\(661\) 972662.i 0.0865881i 0.999062 + 0.0432941i \(0.0137852\pi\)
−0.999062 + 0.0432941i \(0.986215\pi\)
\(662\) 0 0
\(663\) 215086. 0.0190033
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.96732e7i 1.71223i
\(668\) 0 0
\(669\) 1.38091e6 0.119289
\(670\) 0 0
\(671\) 513156. 0.0439991
\(672\) 0 0
\(673\) 4.79868e6 0.408399 0.204199 0.978929i \(-0.434541\pi\)
0.204199 + 0.978929i \(0.434541\pi\)
\(674\) 0 0
\(675\) −1.40231e6 −0.118463
\(676\) 0 0
\(677\) 5.14787e6i 0.431674i 0.976429 + 0.215837i \(0.0692480\pi\)
−0.976429 + 0.215837i \(0.930752\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −9.20039e6 −0.760218
\(682\) 0 0
\(683\) − 9.85451e6i − 0.808320i −0.914688 0.404160i \(-0.867564\pi\)
0.914688 0.404160i \(-0.132436\pi\)
\(684\) 0 0
\(685\) 4.68677e6i 0.381634i
\(686\) 0 0
\(687\) − 1.24093e7i − 1.00312i
\(688\) 0 0
\(689\) 714721.i 0.0573573i
\(690\) 0 0
\(691\) −7.61201e6 −0.606463 −0.303231 0.952917i \(-0.598065\pi\)
−0.303231 + 0.952917i \(0.598065\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 7.67943e6i − 0.603069i
\(696\) 0 0
\(697\) −3.41667e6 −0.266392
\(698\) 0 0
\(699\) 1.03901e7 0.804319
\(700\) 0 0
\(701\) −2.19372e7 −1.68611 −0.843055 0.537827i \(-0.819245\pi\)
−0.843055 + 0.537827i \(0.819245\pi\)
\(702\) 0 0
\(703\) 3.38591e6 0.258397
\(704\) 0 0
\(705\) 1.30872e6i 0.0991683i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.13575e7 −0.848528 −0.424264 0.905538i \(-0.639467\pi\)
−0.424264 + 0.905538i \(0.639467\pi\)
\(710\) 0 0
\(711\) − 1.27025e7i − 0.942357i
\(712\) 0 0
\(713\) − 3.08847e7i − 2.27520i
\(714\) 0 0
\(715\) − 75416.9i − 0.00551701i
\(716\) 0 0
\(717\) − 460363.i − 0.0334428i
\(718\) 0 0
\(719\) 1.95915e7 1.41334 0.706669 0.707545i \(-0.250197\pi\)
0.706669 + 0.707545i \(0.250197\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) − 7.98960e6i − 0.568433i
\(724\) 0 0
\(725\) −2.26214e6 −0.159836
\(726\) 0 0
\(727\) −386859. −0.0271467 −0.0135733 0.999908i \(-0.504321\pi\)
−0.0135733 + 0.999908i \(0.504321\pi\)
\(728\) 0 0
\(729\) 8.40905e6 0.586041
\(730\) 0 0
\(731\) 2.85045e6 0.197297
\(732\) 0 0
\(733\) 8.30026e6i 0.570600i 0.958438 + 0.285300i \(0.0920932\pi\)
−0.958438 + 0.285300i \(0.907907\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.03296e6 0.0700511
\(738\) 0 0
\(739\) 1.33460e7i 0.898957i 0.893291 + 0.449478i \(0.148390\pi\)
−0.893291 + 0.449478i \(0.851610\pi\)
\(740\) 0 0
\(741\) − 326204.i − 0.0218245i
\(742\) 0 0
\(743\) 2.31448e7i 1.53809i 0.639196 + 0.769044i \(0.279267\pi\)
−0.639196 + 0.769044i \(0.720733\pi\)
\(744\) 0 0
\(745\) 2.19073e7i 1.44610i
\(746\) 0 0
\(747\) −1.24014e7 −0.813148
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) − 944678.i − 0.0611201i −0.999533 0.0305600i \(-0.990271\pi\)
0.999533 0.0305600i \(-0.00972908\pi\)
\(752\) 0 0
\(753\) 1.35368e7 0.870022
\(754\) 0 0
\(755\) −2.24378e7 −1.43256
\(756\) 0 0
\(757\) −2.40741e7 −1.52690 −0.763448 0.645869i \(-0.776495\pi\)
−0.763448 + 0.645869i \(0.776495\pi\)
\(758\) 0 0
\(759\) 752592. 0.0474193
\(760\) 0 0
\(761\) − 1.60564e7i − 1.00504i −0.864564 0.502522i \(-0.832406\pi\)
0.864564 0.502522i \(-0.167594\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −3.09737e6 −0.191355
\(766\) 0 0
\(767\) 854946.i 0.0524748i
\(768\) 0 0
\(769\) − 1.52779e7i − 0.931641i −0.884879 0.465820i \(-0.845759\pi\)
0.884879 0.465820i \(-0.154241\pi\)
\(770\) 0 0
\(771\) − 4.36478e6i − 0.264439i
\(772\) 0 0
\(773\) − 1.87480e7i − 1.12851i −0.825599 0.564257i \(-0.809163\pi\)
0.825599 0.564257i \(-0.190837\pi\)
\(774\) 0 0
\(775\) 3.55131e6 0.212390
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.18179e6i 0.305940i
\(780\) 0 0
\(781\) 1.83756e6 0.107799
\(782\) 0 0
\(783\) 2.27534e7 1.32630
\(784\) 0 0
\(785\) 2.50263e7 1.44951
\(786\) 0 0
\(787\) 1.49465e7 0.860208 0.430104 0.902779i \(-0.358477\pi\)
0.430104 + 0.902779i \(0.358477\pi\)
\(788\) 0 0
\(789\) − 1.05420e7i − 0.602877i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.23479e6 0.0697282
\(794\) 0 0
\(795\) 6.04368e6i 0.339144i
\(796\) 0 0
\(797\) 1.23503e7i 0.688702i 0.938841 + 0.344351i \(0.111901\pi\)
−0.938841 + 0.344351i \(0.888099\pi\)
\(798\) 0 0
\(799\) − 1.01484e6i − 0.0562379i
\(800\) 0 0
\(801\) 4.74094e6i 0.261086i
\(802\) 0 0
\(803\) −235209. −0.0128725
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 1.21385e7i − 0.656116i
\(808\) 0 0
\(809\) 1.04876e7 0.563383 0.281691 0.959505i \(-0.409105\pi\)
0.281691 + 0.959505i \(0.409105\pi\)
\(810\) 0 0
\(811\) −1.19421e7 −0.637570 −0.318785 0.947827i \(-0.603275\pi\)
−0.318785 + 0.947827i \(0.603275\pi\)
\(812\) 0 0
\(813\) −9.24951e6 −0.490786
\(814\) 0 0
\(815\) 2.40145e7 1.26642
\(816\) 0 0
\(817\) − 4.32305e6i − 0.226587i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 398785. 0.0206481 0.0103241 0.999947i \(-0.496714\pi\)
0.0103241 + 0.999947i \(0.496714\pi\)
\(822\) 0 0
\(823\) − 2.49256e7i − 1.28276i −0.767223 0.641380i \(-0.778362\pi\)
0.767223 0.641380i \(-0.221638\pi\)
\(824\) 0 0
\(825\) 86537.6i 0.00442660i
\(826\) 0 0
\(827\) − 4.53496e6i − 0.230573i −0.993332 0.115287i \(-0.963221\pi\)
0.993332 0.115287i \(-0.0367787\pi\)
\(828\) 0 0
\(829\) − 2.70574e7i − 1.36742i −0.729756 0.683708i \(-0.760366\pi\)
0.729756 0.683708i \(-0.239634\pi\)
\(830\) 0 0
\(831\) −1.39938e7 −0.702965
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 92493.8i 0.00459089i
\(836\) 0 0
\(837\) −3.57203e7 −1.76239
\(838\) 0 0
\(839\) −3.66855e7 −1.79924 −0.899620 0.436673i \(-0.856157\pi\)
−0.899620 + 0.436673i \(0.856157\pi\)
\(840\) 0 0
\(841\) 1.61938e7 0.789511
\(842\) 0 0
\(843\) 1.51580e7 0.734638
\(844\) 0 0
\(845\) 1.92950e7i 0.929615i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.05195e7 0.500873
\(850\) 0 0
\(851\) 1.87970e7i 0.889743i
\(852\) 0 0
\(853\) 2.04043e7i 0.960174i 0.877221 + 0.480087i \(0.159395\pi\)
−0.877221 + 0.480087i \(0.840605\pi\)
\(854\) 0 0
\(855\) 4.69753e6i 0.219763i
\(856\) 0 0
\(857\) − 2.43127e6i − 0.113079i −0.998400 0.0565395i \(-0.981993\pi\)
0.998400 0.0565395i \(-0.0180067\pi\)
\(858\) 0 0
\(859\) 1.66357e7 0.769234 0.384617 0.923076i \(-0.374334\pi\)
0.384617 + 0.923076i \(0.374334\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 3.03760e7i − 1.38837i −0.719799 0.694183i \(-0.755766\pi\)
0.719799 0.694183i \(-0.244234\pi\)
\(864\) 0 0
\(865\) 3.18590e7 1.44774
\(866\) 0 0
\(867\) 1.20521e7 0.544522
\(868\) 0 0
\(869\) −2.02806e6 −0.0911028
\(870\) 0 0
\(871\) 2.48557e6 0.111015
\(872\) 0 0
\(873\) − 2.01300e7i − 0.893941i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3.01722e7 1.32467 0.662336 0.749207i \(-0.269565\pi\)
0.662336 + 0.749207i \(0.269565\pi\)
\(878\) 0 0
\(879\) 1.34832e7i 0.588602i
\(880\) 0 0
\(881\) 1.00893e7i 0.437947i 0.975731 + 0.218973i \(0.0702708\pi\)
−0.975731 + 0.218973i \(0.929729\pi\)
\(882\) 0 0
\(883\) 1.36170e7i 0.587733i 0.955846 + 0.293867i \(0.0949422\pi\)
−0.955846 + 0.293867i \(0.905058\pi\)
\(884\) 0 0
\(885\) 7.22943e6i 0.310274i
\(886\) 0 0
\(887\) −1.01937e7 −0.435035 −0.217518 0.976056i \(-0.569796\pi\)
−0.217518 + 0.976056i \(0.569796\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 38961.0i 0.00164413i
\(892\) 0 0
\(893\) −1.53912e6 −0.0645868
\(894\) 0 0
\(895\) 1.40256e7 0.585279
\(896\) 0 0
\(897\) 1.81093e6 0.0751485
\(898\) 0 0
\(899\) −5.76226e7 −2.37790
\(900\) 0 0
\(901\) − 4.68654e6i − 0.192327i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 8.92301e6 0.362151
\(906\) 0 0
\(907\) 4.58587e6i 0.185099i 0.995708 + 0.0925495i \(0.0295016\pi\)
−0.995708 + 0.0925495i \(0.970498\pi\)
\(908\) 0 0
\(909\) 1.73811e7i 0.697696i
\(910\) 0 0
\(911\) 2.52740e7i 1.00897i 0.863421 + 0.504484i \(0.168317\pi\)
−0.863421 + 0.504484i \(0.831683\pi\)
\(912\) 0 0
\(913\) 1.97999e6i 0.0786114i
\(914\) 0 0
\(915\) 1.04414e7 0.412291
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 2.84356e7i 1.11064i 0.831637 + 0.555320i \(0.187404\pi\)
−0.831637 + 0.555320i \(0.812596\pi\)
\(920\) 0 0
\(921\) −2.41367e7 −0.937623
\(922\) 0 0
\(923\) 4.42165e6 0.170836
\(924\) 0 0
\(925\) −2.16139e6 −0.0830576
\(926\) 0 0
\(927\) −1.62030e7 −0.619292
\(928\) 0 0
\(929\) − 3.73348e7i − 1.41930i −0.704554 0.709650i \(-0.748853\pi\)
0.704554 0.709650i \(-0.251147\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 2.29294e7 0.862360
\(934\) 0 0
\(935\) 494520.i 0.0184993i
\(936\) 0 0
\(937\) 2.42023e7i 0.900548i 0.892890 + 0.450274i \(0.148674\pi\)
−0.892890 + 0.450274i \(0.851326\pi\)
\(938\) 0 0
\(939\) − 3.27890e7i − 1.21357i
\(940\) 0 0
\(941\) − 4.46206e7i − 1.64271i −0.570415 0.821356i \(-0.693218\pi\)
0.570415 0.821356i \(-0.306782\pi\)
\(942\) 0 0
\(943\) −2.87669e7 −1.05345
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.64895e7i 0.959840i 0.877312 + 0.479920i \(0.159334\pi\)
−0.877312 + 0.479920i \(0.840666\pi\)
\(948\) 0 0
\(949\) −565972. −0.0204000
\(950\) 0 0
\(951\) 2.96046e7 1.06147
\(952\) 0 0
\(953\) 3.59018e7 1.28051 0.640257 0.768161i \(-0.278828\pi\)
0.640257 + 0.768161i \(0.278828\pi\)
\(954\) 0 0
\(955\) −3.81896e7 −1.35499
\(956\) 0 0
\(957\) − 1.40413e6i − 0.0495597i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 6.18319e7 2.15975
\(962\) 0 0
\(963\) − 5.18069e6i − 0.180021i
\(964\) 0 0
\(965\) 2.49430e7i 0.862245i
\(966\) 0 0
\(967\) 5.76157e6i 0.198141i 0.995080 + 0.0990705i \(0.0315869\pi\)
−0.995080 + 0.0990705i \(0.968413\pi\)
\(968\) 0 0
\(969\) 2.13897e6i 0.0731804i
\(970\) 0 0
\(971\) 9.22567e6 0.314015 0.157007 0.987597i \(-0.449815\pi\)
0.157007 + 0.987597i \(0.449815\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 208232.i 0.00701512i
\(976\) 0 0
\(977\) 1.19440e7 0.400327 0.200163 0.979763i \(-0.435853\pi\)
0.200163 + 0.979763i \(0.435853\pi\)
\(978\) 0 0
\(979\) 756931. 0.0252406
\(980\) 0 0
\(981\) 8.73328e6 0.289738
\(982\) 0 0
\(983\) 6.26881e6 0.206919 0.103460 0.994634i \(-0.467009\pi\)
0.103460 + 0.994634i \(0.467009\pi\)
\(984\) 0 0
\(985\) − 2.15946e7i − 0.709176i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.39996e7 0.780212
\(990\) 0 0
\(991\) − 5.21735e6i − 0.168758i −0.996434 0.0843792i \(-0.973109\pi\)
0.996434 0.0843792i \(-0.0268907\pi\)
\(992\) 0 0
\(993\) − 8.24397e6i − 0.265316i
\(994\) 0 0
\(995\) − 3.81584e7i − 1.22189i
\(996\) 0 0
\(997\) − 3.05016e7i − 0.971816i −0.874010 0.485908i \(-0.838489\pi\)
0.874010 0.485908i \(-0.161511\pi\)
\(998\) 0 0
\(999\) 2.17400e7 0.689202
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.6.f.b.783.8 12
4.3 odd 2 inner 784.6.f.b.783.6 12
7.2 even 3 112.6.p.a.31.3 12
7.3 odd 6 112.6.p.a.47.4 yes 12
7.6 odd 2 inner 784.6.f.b.783.5 12
28.3 even 6 112.6.p.a.47.3 yes 12
28.23 odd 6 112.6.p.a.31.4 yes 12
28.27 even 2 inner 784.6.f.b.783.7 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.6.p.a.31.3 12 7.2 even 3
112.6.p.a.31.4 yes 12 28.23 odd 6
112.6.p.a.47.3 yes 12 28.3 even 6
112.6.p.a.47.4 yes 12 7.3 odd 6
784.6.f.b.783.5 12 7.6 odd 2 inner
784.6.f.b.783.6 12 4.3 odd 2 inner
784.6.f.b.783.7 12 28.27 even 2 inner
784.6.f.b.783.8 12 1.1 even 1 trivial