Properties

Label 112.3.l.b.69.24
Level $112$
Weight $3$
Character 112.69
Analytic conductor $3.052$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,3,Mod(13,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.13"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 112.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.05177896084\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 69.24
Character \(\chi\) \(=\) 112.69
Dual form 112.3.l.b.13.24

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.52993 + 1.28814i) q^{2} +(1.11083 + 1.11083i) q^{3} +(0.681387 + 3.94154i) q^{4} +(5.47687 - 5.47687i) q^{5} +(0.268590 + 3.13041i) q^{6} +(-3.11774 + 6.26735i) q^{7} +(-4.03478 + 6.90801i) q^{8} -6.53210i q^{9} +(15.4342 - 1.32426i) q^{10} +(2.57334 + 2.57334i) q^{11} +(-3.62148 + 5.13530i) q^{12} +(-11.1543 - 11.1543i) q^{13} +(-12.8432 + 5.57253i) q^{14} +12.1678 q^{15} +(-15.0714 + 5.37142i) q^{16} +24.6360i q^{17} +(8.41426 - 9.99367i) q^{18} +(-10.9902 - 10.9902i) q^{19} +(25.3191 + 17.8554i) q^{20} +(-10.4253 + 3.49869i) q^{21} +(0.622213 + 7.25186i) q^{22} -10.3758i q^{23} +(-12.1556 + 3.19168i) q^{24} -34.9921i q^{25} +(-2.69701 - 31.4335i) q^{26} +(17.2536 - 17.2536i) q^{27} +(-26.8274 - 8.01821i) q^{28} +(24.5610 - 24.5610i) q^{29} +(18.6159 + 15.6738i) q^{30} -14.5313i q^{31} +(-29.9774 - 11.1962i) q^{32} +5.71711i q^{33} +(-31.7347 + 37.6915i) q^{34} +(17.2500 + 51.4009i) q^{35} +(25.7465 - 4.45089i) q^{36} +(-2.55303 - 2.55303i) q^{37} +(-2.65734 - 30.9712i) q^{38} -24.7811i q^{39} +(15.7363 + 59.9322i) q^{40} -48.3838 q^{41} +(-20.4568 - 8.07647i) q^{42} +(46.0243 + 46.0243i) q^{43} +(-8.38947 + 11.8964i) q^{44} +(-35.7754 - 35.7754i) q^{45} +(13.3655 - 15.8743i) q^{46} -19.3308i q^{47} +(-22.7086 - 10.7751i) q^{48} +(-29.5593 - 39.0800i) q^{49} +(45.0748 - 53.5356i) q^{50} +(-27.3665 + 27.3665i) q^{51} +(36.3646 - 51.5653i) q^{52} +(8.08934 + 8.08934i) q^{53} +(48.6218 - 4.17177i) q^{54} +28.1877 q^{55} +(-30.7155 - 46.8248i) q^{56} -24.4166i q^{57} +(69.2148 - 5.93866i) q^{58} +(-61.0667 + 61.0667i) q^{59} +(8.29096 + 47.9597i) q^{60} +(75.6742 + 75.6742i) q^{61} +(18.7183 - 22.2319i) q^{62} +(40.9389 + 20.3654i) q^{63} +(-31.4411 - 55.7446i) q^{64} -122.181 q^{65} +(-7.36444 + 8.74679i) q^{66} +(-81.1264 + 81.1264i) q^{67} +(-97.1038 + 16.7867i) q^{68} +(11.5258 - 11.5258i) q^{69} +(-39.8203 + 100.860i) q^{70} +9.46404i q^{71} +(45.1238 + 26.3556i) q^{72} +36.7372 q^{73} +(-0.617301 - 7.19462i) q^{74} +(38.8704 - 38.8704i) q^{75} +(35.8297 - 50.8069i) q^{76} +(-24.1510 + 8.10501i) q^{77} +(31.9215 - 37.9134i) q^{78} +55.0332 q^{79} +(-53.1256 + 111.963i) q^{80} -20.4572 q^{81} +(-74.0239 - 62.3251i) q^{82} +(42.2965 + 42.2965i) q^{83} +(-20.8939 - 38.7077i) q^{84} +(134.928 + 134.928i) q^{85} +(11.1283 + 129.700i) q^{86} +54.5665 q^{87} +(-28.1595 + 7.39380i) q^{88} -8.11436 q^{89} +(-8.65021 - 100.818i) q^{90} +(104.684 - 35.1315i) q^{91} +(40.8967 - 7.06995i) q^{92} +(16.1418 - 16.1418i) q^{93} +(24.9008 - 29.5748i) q^{94} -120.384 q^{95} +(-20.8628 - 45.7370i) q^{96} +141.282i q^{97} +(5.11671 - 97.8663i) q^{98} +(16.8093 - 16.8093i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 4 q^{2} - 8 q^{4} - 16 q^{8} + 40 q^{14} - 8 q^{15} + 48 q^{16} + 196 q^{18} - 20 q^{21} - 120 q^{22} - 96 q^{29} - 40 q^{30} - 184 q^{32} - 100 q^{35} + 160 q^{36} - 128 q^{37} - 144 q^{42} - 72 q^{43}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.52993 + 1.28814i 0.764966 + 0.644070i
\(3\) 1.11083 + 1.11083i 0.370278 + 0.370278i 0.867578 0.497300i \(-0.165675\pi\)
−0.497300 + 0.867578i \(0.665675\pi\)
\(4\) 0.681387 + 3.94154i 0.170347 + 0.985384i
\(5\) 5.47687 5.47687i 1.09537 1.09537i 0.100429 0.994944i \(-0.467978\pi\)
0.994944 0.100429i \(-0.0320216\pi\)
\(6\) 0.268590 + 3.13041i 0.0447651 + 0.521735i
\(7\) −3.11774 + 6.26735i −0.445392 + 0.895336i
\(8\) −4.03478 + 6.90801i −0.504347 + 0.863501i
\(9\) 6.53210i 0.725789i
\(10\) 15.4342 1.32426i 1.54342 0.132426i
\(11\) 2.57334 + 2.57334i 0.233940 + 0.233940i 0.814335 0.580395i \(-0.197102\pi\)
−0.580395 + 0.814335i \(0.697102\pi\)
\(12\) −3.62148 + 5.13530i −0.301790 + 0.427942i
\(13\) −11.1543 11.1543i −0.858021 0.858021i 0.133084 0.991105i \(-0.457512\pi\)
−0.991105 + 0.133084i \(0.957512\pi\)
\(14\) −12.8432 + 5.57253i −0.917369 + 0.398038i
\(15\) 12.1678 0.811185
\(16\) −15.0714 + 5.37142i −0.941964 + 0.335714i
\(17\) 24.6360i 1.44918i 0.689181 + 0.724589i \(0.257971\pi\)
−0.689181 + 0.724589i \(0.742029\pi\)
\(18\) 8.41426 9.99367i 0.467459 0.555204i
\(19\) −10.9902 10.9902i −0.578432 0.578432i 0.356039 0.934471i \(-0.384127\pi\)
−0.934471 + 0.356039i \(0.884127\pi\)
\(20\) 25.3191 + 17.8554i 1.26596 + 0.892770i
\(21\) −10.4253 + 3.49869i −0.496442 + 0.166604i
\(22\) 0.622213 + 7.25186i 0.0282824 + 0.329630i
\(23\) 10.3758i 0.451122i −0.974229 0.225561i \(-0.927578\pi\)
0.974229 0.225561i \(-0.0724216\pi\)
\(24\) −12.1556 + 3.19168i −0.506484 + 0.132987i
\(25\) 34.9921i 1.39969i
\(26\) −2.69701 31.4335i −0.103731 1.20898i
\(27\) 17.2536 17.2536i 0.639021 0.639021i
\(28\) −26.8274 8.01821i −0.958121 0.286365i
\(29\) 24.5610 24.5610i 0.846933 0.846933i −0.142817 0.989749i \(-0.545616\pi\)
0.989749 + 0.142817i \(0.0456159\pi\)
\(30\) 18.6159 + 15.6738i 0.620529 + 0.522460i
\(31\) 14.5313i 0.468751i −0.972146 0.234375i \(-0.924696\pi\)
0.972146 0.234375i \(-0.0753045\pi\)
\(32\) −29.9774 11.1962i −0.936794 0.349881i
\(33\) 5.71711i 0.173246i
\(34\) −31.7347 + 37.6915i −0.933373 + 1.10857i
\(35\) 17.2500 + 51.4009i 0.492856 + 1.46860i
\(36\) 25.7465 4.45089i 0.715181 0.123636i
\(37\) −2.55303 2.55303i −0.0690008 0.0690008i 0.671764 0.740765i \(-0.265537\pi\)
−0.740765 + 0.671764i \(0.765537\pi\)
\(38\) −2.65734 30.9712i −0.0699301 0.815032i
\(39\) 24.7811i 0.635412i
\(40\) 15.7363 + 59.9322i 0.393407 + 1.49830i
\(41\) −48.3838 −1.18009 −0.590046 0.807369i \(-0.700890\pi\)
−0.590046 + 0.807369i \(0.700890\pi\)
\(42\) −20.4568 8.07647i −0.487066 0.192297i
\(43\) 46.0243 + 46.0243i 1.07033 + 1.07033i 0.997332 + 0.0729998i \(0.0232573\pi\)
0.0729998 + 0.997332i \(0.476743\pi\)
\(44\) −8.38947 + 11.8964i −0.190670 + 0.270372i
\(45\) −35.7754 35.7754i −0.795010 0.795010i
\(46\) 13.3655 15.8743i 0.290555 0.345093i
\(47\) 19.3308i 0.411294i −0.978626 0.205647i \(-0.934070\pi\)
0.978626 0.205647i \(-0.0659298\pi\)
\(48\) −22.7086 10.7751i −0.473096 0.224481i
\(49\) −29.5593 39.0800i −0.603252 0.797551i
\(50\) 45.0748 53.5356i 0.901496 1.07071i
\(51\) −27.3665 + 27.3665i −0.536599 + 0.536599i
\(52\) 36.3646 51.5653i 0.699319 0.991641i
\(53\) 8.08934 + 8.08934i 0.152629 + 0.152629i 0.779291 0.626662i \(-0.215579\pi\)
−0.626662 + 0.779291i \(0.715579\pi\)
\(54\) 48.6218 4.17177i 0.900404 0.0772551i
\(55\) 28.1877 0.512503
\(56\) −30.7155 46.8248i −0.548491 0.836156i
\(57\) 24.4166i 0.428361i
\(58\) 69.2148 5.93866i 1.19336 0.102391i
\(59\) −61.0667 + 61.0667i −1.03503 + 1.03503i −0.0356642 + 0.999364i \(0.511355\pi\)
−0.999364 + 0.0356642i \(0.988645\pi\)
\(60\) 8.29096 + 47.9597i 0.138183 + 0.799329i
\(61\) 75.6742 + 75.6742i 1.24056 + 1.24056i 0.959768 + 0.280793i \(0.0905975\pi\)
0.280793 + 0.959768i \(0.409403\pi\)
\(62\) 18.7183 22.2319i 0.301908 0.358578i
\(63\) 40.9389 + 20.3654i 0.649824 + 0.323260i
\(64\) −31.4411 55.7446i −0.491268 0.871009i
\(65\) −122.181 −1.87971
\(66\) −7.36444 + 8.74679i −0.111582 + 0.132527i
\(67\) −81.1264 + 81.1264i −1.21084 + 1.21084i −0.240091 + 0.970750i \(0.577177\pi\)
−0.970750 + 0.240091i \(0.922823\pi\)
\(68\) −97.1038 + 16.7867i −1.42800 + 0.246863i
\(69\) 11.5258 11.5258i 0.167041 0.167041i
\(70\) −39.8203 + 100.860i −0.568862 + 1.44086i
\(71\) 9.46404i 0.133296i 0.997777 + 0.0666481i \(0.0212305\pi\)
−0.997777 + 0.0666481i \(0.978769\pi\)
\(72\) 45.1238 + 26.3556i 0.626719 + 0.366049i
\(73\) 36.7372 0.503249 0.251625 0.967825i \(-0.419035\pi\)
0.251625 + 0.967825i \(0.419035\pi\)
\(74\) −0.617301 7.19462i −0.00834191 0.0972246i
\(75\) 38.8704 38.8704i 0.518273 0.518273i
\(76\) 35.8297 50.8069i 0.471444 0.668512i
\(77\) −24.1510 + 8.10501i −0.313650 + 0.105260i
\(78\) 31.9215 37.9134i 0.409250 0.486069i
\(79\) 55.0332 0.696622 0.348311 0.937379i \(-0.386755\pi\)
0.348311 + 0.937379i \(0.386755\pi\)
\(80\) −53.1256 + 111.963i −0.664070 + 1.39953i
\(81\) −20.4572 −0.252558
\(82\) −74.0239 62.3251i −0.902731 0.760063i
\(83\) 42.2965 + 42.2965i 0.509597 + 0.509597i 0.914403 0.404806i \(-0.132661\pi\)
−0.404806 + 0.914403i \(0.632661\pi\)
\(84\) −20.8939 38.7077i −0.248736 0.460805i
\(85\) 134.928 + 134.928i 1.58739 + 1.58739i
\(86\) 11.1283 + 129.700i 0.129399 + 1.50814i
\(87\) 54.5665 0.627201
\(88\) −28.1595 + 7.39380i −0.319994 + 0.0840204i
\(89\) −8.11436 −0.0911726 −0.0455863 0.998960i \(-0.514516\pi\)
−0.0455863 + 0.998960i \(0.514516\pi\)
\(90\) −8.65021 100.818i −0.0961134 1.12020i
\(91\) 104.684 35.1315i 1.15037 0.386061i
\(92\) 40.8967 7.06995i 0.444529 0.0768472i
\(93\) 16.1418 16.1418i 0.173568 0.173568i
\(94\) 24.9008 29.5748i 0.264902 0.314626i
\(95\) −120.384 −1.26720
\(96\) −20.8628 45.7370i −0.217321 0.476427i
\(97\) 141.282i 1.45651i 0.685306 + 0.728255i \(0.259669\pi\)
−0.685306 + 0.728255i \(0.740331\pi\)
\(98\) 5.11671 97.8663i 0.0522113 0.998636i
\(99\) 16.8093 16.8093i 0.169791 0.169791i
\(100\) 137.923 23.8432i 1.37923 0.238432i
\(101\) 91.1516 91.1516i 0.902491 0.902491i −0.0931601 0.995651i \(-0.529697\pi\)
0.995651 + 0.0931601i \(0.0296969\pi\)
\(102\) −77.1209 + 6.61700i −0.756087 + 0.0648726i
\(103\) −168.367 −1.63463 −0.817313 0.576193i \(-0.804538\pi\)
−0.817313 + 0.576193i \(0.804538\pi\)
\(104\) 122.059 32.0488i 1.17364 0.308161i
\(105\) −37.9360 + 76.2597i −0.361295 + 0.726283i
\(106\) 1.95594 + 22.7964i 0.0184522 + 0.215060i
\(107\) −60.2166 60.2166i −0.562772 0.562772i 0.367322 0.930094i \(-0.380275\pi\)
−0.930094 + 0.367322i \(0.880275\pi\)
\(108\) 79.7620 + 56.2492i 0.738537 + 0.520826i
\(109\) 3.71167 3.71167i 0.0340520 0.0340520i −0.689876 0.723928i \(-0.742335\pi\)
0.723928 + 0.689876i \(0.242335\pi\)
\(110\) 43.1253 + 36.3097i 0.392048 + 0.330088i
\(111\) 5.67198i 0.0510989i
\(112\) 13.3242 111.205i 0.118966 0.992898i
\(113\) 44.1451 0.390664 0.195332 0.980737i \(-0.437422\pi\)
0.195332 + 0.980737i \(0.437422\pi\)
\(114\) 31.4520 37.3557i 0.275895 0.327682i
\(115\) −56.8270 56.8270i −0.494147 0.494147i
\(116\) 113.544 + 80.0727i 0.978826 + 0.690282i
\(117\) −72.8608 + 72.8608i −0.622742 + 0.622742i
\(118\) −172.090 + 14.7654i −1.45839 + 0.125131i
\(119\) −154.403 76.8088i −1.29750 0.645452i
\(120\) −49.0943 + 84.0551i −0.409119 + 0.700459i
\(121\) 107.756i 0.890544i
\(122\) 18.2974 + 213.256i 0.149979 + 1.74800i
\(123\) −53.7463 53.7463i −0.436962 0.436962i
\(124\) 57.2755 9.90142i 0.461899 0.0798501i
\(125\) −54.7256 54.7256i −0.437805 0.437805i
\(126\) 36.4003 + 83.8928i 0.288891 + 0.665816i
\(127\) 101.945 0.802715 0.401358 0.915921i \(-0.368538\pi\)
0.401358 + 0.915921i \(0.368538\pi\)
\(128\) 23.7040 125.786i 0.185188 0.982703i
\(129\) 102.251i 0.792640i
\(130\) −186.929 157.386i −1.43791 1.21066i
\(131\) 96.2909 + 96.2909i 0.735045 + 0.735045i 0.971615 0.236569i \(-0.0760231\pi\)
−0.236569 + 0.971615i \(0.576023\pi\)
\(132\) −22.5342 + 3.89556i −0.170714 + 0.0295118i
\(133\) 103.144 34.6148i 0.775520 0.260262i
\(134\) −228.620 + 19.6157i −1.70612 + 0.146386i
\(135\) 188.991i 1.39993i
\(136\) −170.186 99.4009i −1.25137 0.730889i
\(137\) 44.6517i 0.325925i 0.986632 + 0.162963i \(0.0521050\pi\)
−0.986632 + 0.162963i \(0.947895\pi\)
\(138\) 32.4806 2.78684i 0.235366 0.0201945i
\(139\) −6.91394 + 6.91394i −0.0497406 + 0.0497406i −0.731540 0.681799i \(-0.761198\pi\)
0.681799 + 0.731540i \(0.261198\pi\)
\(140\) −190.845 + 103.015i −1.36318 + 0.735824i
\(141\) 21.4733 21.4733i 0.152293 0.152293i
\(142\) −12.1910 + 14.4793i −0.0858522 + 0.101967i
\(143\) 57.4075i 0.401451i
\(144\) 35.0867 + 98.4480i 0.243657 + 0.683667i
\(145\) 269.035i 1.85541i
\(146\) 56.2054 + 47.3227i 0.384969 + 0.324128i
\(147\) 10.5758 76.2469i 0.0719445 0.518686i
\(148\) 8.32325 11.8025i 0.0562382 0.0797463i
\(149\) −86.9376 86.9376i −0.583474 0.583474i 0.352382 0.935856i \(-0.385372\pi\)
−0.935856 + 0.352382i \(0.885372\pi\)
\(150\) 109.540 9.39856i 0.730265 0.0626570i
\(151\) 136.089i 0.901251i −0.892713 0.450626i \(-0.851201\pi\)
0.892713 0.450626i \(-0.148799\pi\)
\(152\) 120.264 31.5774i 0.791207 0.207746i
\(153\) 160.925 1.05180
\(154\) −47.3899 18.7098i −0.307726 0.121492i
\(155\) −79.5858 79.5858i −0.513457 0.513457i
\(156\) 97.6755 16.8855i 0.626125 0.108240i
\(157\) −61.2224 61.2224i −0.389952 0.389952i 0.484719 0.874670i \(-0.338922\pi\)
−0.874670 + 0.484719i \(0.838922\pi\)
\(158\) 84.1970 + 70.8905i 0.532893 + 0.448674i
\(159\) 17.9718i 0.113030i
\(160\) −225.502 + 102.862i −1.40939 + 0.642889i
\(161\) 65.0289 + 32.3491i 0.403906 + 0.200926i
\(162\) −31.2981 26.3517i −0.193198 0.162665i
\(163\) 168.015 168.015i 1.03077 1.03077i 0.0312561 0.999511i \(-0.490049\pi\)
0.999511 0.0312561i \(-0.00995075\pi\)
\(164\) −32.9681 190.706i −0.201025 1.16284i
\(165\) 31.3118 + 31.3118i 0.189769 + 0.189769i
\(166\) 10.2270 + 119.195i 0.0616082 + 0.718041i
\(167\) −118.309 −0.708434 −0.354217 0.935163i \(-0.615253\pi\)
−0.354217 + 0.935163i \(0.615253\pi\)
\(168\) 17.8947 86.1343i 0.106516 0.512704i
\(169\) 79.8354i 0.472399i
\(170\) 32.6246 + 380.238i 0.191909 + 2.23669i
\(171\) −71.7891 + 71.7891i −0.419820 + 0.419820i
\(172\) −150.046 + 212.767i −0.872360 + 1.23702i
\(173\) 8.88388 + 8.88388i 0.0513519 + 0.0513519i 0.732316 0.680965i \(-0.238439\pi\)
−0.680965 + 0.732316i \(0.738439\pi\)
\(174\) 83.4830 + 70.2893i 0.479787 + 0.403961i
\(175\) 219.308 + 109.097i 1.25319 + 0.623409i
\(176\) −52.6064 24.9614i −0.298900 0.141826i
\(177\) −135.670 −0.766496
\(178\) −12.4144 10.4524i −0.0697440 0.0587216i
\(179\) −134.233 + 134.233i −0.749904 + 0.749904i −0.974461 0.224557i \(-0.927907\pi\)
0.224557 + 0.974461i \(0.427907\pi\)
\(180\) 116.633 165.387i 0.647963 0.918817i
\(181\) −9.12602 + 9.12602i −0.0504200 + 0.0504200i −0.731867 0.681447i \(-0.761351\pi\)
0.681447 + 0.731867i \(0.261351\pi\)
\(182\) 205.414 + 81.0986i 1.12865 + 0.445597i
\(183\) 168.123i 0.918705i
\(184\) 71.6762 + 41.8641i 0.389545 + 0.227522i
\(185\) −27.9652 −0.151163
\(186\) 45.4888 3.90296i 0.244564 0.0209837i
\(187\) −63.3969 + 63.3969i −0.339021 + 0.339021i
\(188\) 76.1931 13.1718i 0.405282 0.0700625i
\(189\) 54.3420 + 161.926i 0.287524 + 0.856754i
\(190\) −184.179 155.071i −0.969364 0.816165i
\(191\) −182.482 −0.955405 −0.477702 0.878522i \(-0.658530\pi\)
−0.477702 + 0.878522i \(0.658530\pi\)
\(192\) 26.9970 96.8488i 0.140610 0.504421i
\(193\) 378.766 1.96252 0.981258 0.192699i \(-0.0617240\pi\)
0.981258 + 0.192699i \(0.0617240\pi\)
\(194\) −181.991 + 216.151i −0.938095 + 1.11418i
\(195\) −135.723 135.723i −0.696013 0.696013i
\(196\) 133.894 143.138i 0.683132 0.730295i
\(197\) 128.998 + 128.998i 0.654811 + 0.654811i 0.954148 0.299337i \(-0.0967653\pi\)
−0.299337 + 0.954148i \(0.596765\pi\)
\(198\) 47.3699 4.06435i 0.239242 0.0205270i
\(199\) 274.793 1.38087 0.690436 0.723394i \(-0.257419\pi\)
0.690436 + 0.723394i \(0.257419\pi\)
\(200\) 241.726 + 141.186i 1.20863 + 0.705928i
\(201\) −180.236 −0.896696
\(202\) 256.872 22.0397i 1.27164 0.109107i
\(203\) 77.3576 + 230.508i 0.381072 + 1.13551i
\(204\) −126.513 89.2190i −0.620164 0.437348i
\(205\) −264.992 + 264.992i −1.29264 + 1.29264i
\(206\) −257.590 216.880i −1.25043 1.05281i
\(207\) −67.7758 −0.327419
\(208\) 228.025 + 108.196i 1.09627 + 0.520175i
\(209\) 56.5631i 0.270637i
\(210\) −156.273 + 67.8053i −0.744156 + 0.322882i
\(211\) 81.1914 81.1914i 0.384793 0.384793i −0.488032 0.872826i \(-0.662285\pi\)
0.872826 + 0.488032i \(0.162285\pi\)
\(212\) −26.3725 + 37.3964i −0.124398 + 0.176398i
\(213\) −10.5130 + 10.5130i −0.0493567 + 0.0493567i
\(214\) −14.5599 169.695i −0.0680368 0.792966i
\(215\) 504.138 2.34483
\(216\) 49.5735 + 188.802i 0.229507 + 0.874084i
\(217\) 91.0725 + 45.3048i 0.419689 + 0.208778i
\(218\) 10.4598 0.897452i 0.0479806 0.00411675i
\(219\) 40.8089 + 40.8089i 0.186342 + 0.186342i
\(220\) 19.2067 + 111.103i 0.0873033 + 0.505013i
\(221\) 274.797 274.797i 1.24343 1.24343i
\(222\) 7.30631 8.67775i 0.0329113 0.0390889i
\(223\) 265.113i 1.18885i −0.804152 0.594424i \(-0.797380\pi\)
0.804152 0.594424i \(-0.202620\pi\)
\(224\) 163.632 152.972i 0.730502 0.682911i
\(225\) −228.572 −1.01588
\(226\) 67.5390 + 56.8650i 0.298845 + 0.251615i
\(227\) 35.0233 + 35.0233i 0.154288 + 0.154288i 0.780030 0.625742i \(-0.215204\pi\)
−0.625742 + 0.780030i \(0.715204\pi\)
\(228\) 96.2389 16.6372i 0.422100 0.0729700i
\(229\) −16.7509 + 16.7509i −0.0731481 + 0.0731481i −0.742734 0.669586i \(-0.766471\pi\)
0.669586 + 0.742734i \(0.266471\pi\)
\(230\) −13.7403 160.143i −0.0597404 0.696272i
\(231\) −35.8311 17.8245i −0.155113 0.0771622i
\(232\) 70.5695 + 268.766i 0.304179 + 1.15848i
\(233\) 162.893i 0.699113i 0.936915 + 0.349556i \(0.113668\pi\)
−0.936915 + 0.349556i \(0.886332\pi\)
\(234\) −205.327 + 17.6171i −0.877466 + 0.0752869i
\(235\) −105.872 105.872i −0.450520 0.450520i
\(236\) −282.306 199.086i −1.19621 0.843587i
\(237\) 61.1327 + 61.1327i 0.257944 + 0.257944i
\(238\) −137.285 316.405i −0.576828 1.32943i
\(239\) −458.835 −1.91981 −0.959906 0.280321i \(-0.909559\pi\)
−0.959906 + 0.280321i \(0.909559\pi\)
\(240\) −183.386 + 65.3583i −0.764107 + 0.272326i
\(241\) 6.17751i 0.0256328i −0.999918 0.0128164i \(-0.995920\pi\)
0.999918 0.0128164i \(-0.00407970\pi\)
\(242\) 138.805 164.859i 0.573573 0.681236i
\(243\) −178.007 178.007i −0.732538 0.732538i
\(244\) −246.709 + 349.836i −1.01110 + 1.43376i
\(245\) −375.928 52.1432i −1.53440 0.212830i
\(246\) −12.9954 151.461i −0.0528269 0.615696i
\(247\) 245.176i 0.992614i
\(248\) 100.382 + 58.6304i 0.404767 + 0.236413i
\(249\) 93.9688i 0.377385i
\(250\) −13.2322 154.221i −0.0529288 0.616883i
\(251\) 19.6790 19.6790i 0.0784025 0.0784025i −0.666818 0.745221i \(-0.732344\pi\)
0.745221 + 0.666818i \(0.232344\pi\)
\(252\) −52.3757 + 175.239i −0.207840 + 0.695393i
\(253\) 26.7005 26.7005i 0.105536 0.105536i
\(254\) 155.969 + 131.319i 0.614050 + 0.517005i
\(255\) 299.766i 1.17555i
\(256\) 198.296 161.910i 0.774592 0.632461i
\(257\) 46.6133i 0.181375i 0.995879 + 0.0906873i \(0.0289064\pi\)
−0.995879 + 0.0906873i \(0.971094\pi\)
\(258\) −131.713 + 156.437i −0.510516 + 0.606343i
\(259\) 23.9604 8.04103i 0.0925112 0.0310465i
\(260\) −83.2525 481.580i −0.320202 1.85223i
\(261\) −160.435 160.435i −0.614694 0.614694i
\(262\) 23.2824 + 271.355i 0.0888639 + 1.03571i
\(263\) 233.528i 0.887940i 0.896042 + 0.443970i \(0.146430\pi\)
−0.896042 + 0.443970i \(0.853570\pi\)
\(264\) −39.4938 23.0673i −0.149598 0.0873760i
\(265\) 88.6085 0.334372
\(266\) 202.392 + 79.9058i 0.760874 + 0.300398i
\(267\) −9.01371 9.01371i −0.0337592 0.0337592i
\(268\) −375.041 264.484i −1.39941 0.986881i
\(269\) 118.706 + 118.706i 0.441286 + 0.441286i 0.892444 0.451158i \(-0.148989\pi\)
−0.451158 + 0.892444i \(0.648989\pi\)
\(270\) 243.447 289.144i 0.901656 1.07090i
\(271\) 131.992i 0.487055i 0.969894 + 0.243527i \(0.0783046\pi\)
−0.969894 + 0.243527i \(0.921695\pi\)
\(272\) −132.331 371.300i −0.486510 1.36507i
\(273\) 155.312 + 77.2610i 0.568907 + 0.283007i
\(274\) −57.5177 + 68.3141i −0.209919 + 0.249322i
\(275\) 90.0467 90.0467i 0.327443 0.327443i
\(276\) 53.2829 + 37.5758i 0.193054 + 0.136144i
\(277\) −249.565 249.565i −0.900958 0.900958i 0.0945613 0.995519i \(-0.469855\pi\)
−0.995519 + 0.0945613i \(0.969855\pi\)
\(278\) −19.4840 + 1.67173i −0.0700863 + 0.00601343i
\(279\) −94.9197 −0.340214
\(280\) −424.678 88.2283i −1.51671 0.315101i
\(281\) 344.044i 1.22436i −0.790720 0.612178i \(-0.790294\pi\)
0.790720 0.612178i \(-0.209706\pi\)
\(282\) 60.5133 5.19207i 0.214586 0.0184116i
\(283\) 141.638 141.638i 0.500489 0.500489i −0.411101 0.911590i \(-0.634856\pi\)
0.911590 + 0.411101i \(0.134856\pi\)
\(284\) −37.3028 + 6.44867i −0.131348 + 0.0227066i
\(285\) −133.726 133.726i −0.469216 0.469216i
\(286\) 73.9489 87.8295i 0.258563 0.307096i
\(287\) 150.848 303.238i 0.525604 1.05658i
\(288\) −73.1347 + 195.815i −0.253940 + 0.679914i
\(289\) −317.934 −1.10012
\(290\) 346.555 411.606i 1.19502 1.41933i
\(291\) −156.940 + 156.940i −0.539314 + 0.539314i
\(292\) 25.0323 + 144.801i 0.0857269 + 0.495894i
\(293\) 82.6004 82.6004i 0.281913 0.281913i −0.551959 0.833871i \(-0.686119\pi\)
0.833871 + 0.551959i \(0.186119\pi\)
\(294\) 114.397 103.029i 0.389106 0.350440i
\(295\) 668.908i 2.26748i
\(296\) 27.9372 7.33544i 0.0943826 0.0247819i
\(297\) 88.7986 0.298985
\(298\) −21.0208 244.997i −0.0705396 0.822136i
\(299\) −115.735 + 115.735i −0.387072 + 0.387072i
\(300\) 179.695 + 126.723i 0.598984 + 0.422412i
\(301\) −431.942 + 144.958i −1.43502 + 0.481589i
\(302\) 175.302 208.207i 0.580469 0.689427i
\(303\) 202.509 0.668345
\(304\) 224.671 + 106.605i 0.739050 + 0.350675i
\(305\) 828.916 2.71776
\(306\) 246.204 + 207.294i 0.804589 + 0.677431i
\(307\) 200.953 + 200.953i 0.654570 + 0.654570i 0.954090 0.299520i \(-0.0968265\pi\)
−0.299520 + 0.954090i \(0.596826\pi\)
\(308\) −48.4024 89.6696i −0.157151 0.291135i
\(309\) −187.027 187.027i −0.605266 0.605266i
\(310\) −19.2432 224.279i −0.0620748 0.723480i
\(311\) −463.074 −1.48898 −0.744491 0.667632i \(-0.767308\pi\)
−0.744491 + 0.667632i \(0.767308\pi\)
\(312\) 171.188 + 99.9861i 0.548679 + 0.320468i
\(313\) −1.09088 −0.00348523 −0.00174262 0.999998i \(-0.500555\pi\)
−0.00174262 + 0.999998i \(0.500555\pi\)
\(314\) −14.8031 172.529i −0.0471435 0.549456i
\(315\) 335.756 112.679i 1.06589 0.357710i
\(316\) 37.4989 + 216.915i 0.118667 + 0.686441i
\(317\) 51.1667 51.1667i 0.161409 0.161409i −0.621782 0.783191i \(-0.713591\pi\)
0.783191 + 0.621782i \(0.213591\pi\)
\(318\) −23.1502 + 27.4957i −0.0727995 + 0.0864644i
\(319\) 126.408 0.396263
\(320\) −477.504 133.107i −1.49220 0.415958i
\(321\) 133.781i 0.416764i
\(322\) 57.8195 + 133.258i 0.179564 + 0.413846i
\(323\) 270.755 270.755i 0.838252 0.838252i
\(324\) −13.9393 80.6327i −0.0430224 0.248866i
\(325\) −390.312 + 390.312i −1.20096 + 1.20096i
\(326\) 473.479 40.6247i 1.45239 0.124616i
\(327\) 8.24610 0.0252174
\(328\) 195.218 334.236i 0.595176 1.01901i
\(329\) 121.153 + 60.2685i 0.368246 + 0.183187i
\(330\) 7.57094 + 88.2390i 0.0229423 + 0.267391i
\(331\) 28.8219 + 28.8219i 0.0870753 + 0.0870753i 0.749303 0.662228i \(-0.230389\pi\)
−0.662228 + 0.749303i \(0.730389\pi\)
\(332\) −137.893 + 195.534i −0.415340 + 0.588957i
\(333\) −16.6766 + 16.6766i −0.0500800 + 0.0500800i
\(334\) −181.004 152.398i −0.541928 0.456282i
\(335\) 888.637i 2.65265i
\(336\) 138.331 108.729i 0.411699 0.323598i
\(337\) −84.7524 −0.251491 −0.125745 0.992063i \(-0.540132\pi\)
−0.125745 + 0.992063i \(0.540132\pi\)
\(338\) −102.839 + 122.143i −0.304258 + 0.361369i
\(339\) 49.0378 + 49.0378i 0.144654 + 0.144654i
\(340\) −439.886 + 623.763i −1.29378 + 1.83460i
\(341\) 37.3939 37.3939i 0.109660 0.109660i
\(342\) −202.307 + 17.3580i −0.591541 + 0.0507545i
\(343\) 337.086 63.4174i 0.982759 0.184890i
\(344\) −503.634 + 132.238i −1.46405 + 0.384414i
\(345\) 126.251i 0.365944i
\(346\) 2.14805 + 25.0354i 0.00620823 + 0.0723567i
\(347\) −38.7326 38.7326i −0.111621 0.111621i 0.649090 0.760711i \(-0.275150\pi\)
−0.760711 + 0.649090i \(0.775150\pi\)
\(348\) 37.1809 + 215.076i 0.106842 + 0.618034i
\(349\) −3.91040 3.91040i −0.0112046 0.0112046i 0.701482 0.712687i \(-0.252522\pi\)
−0.712687 + 0.701482i \(0.752522\pi\)
\(350\) 194.995 + 449.410i 0.557128 + 1.28403i
\(351\) −384.902 −1.09659
\(352\) −48.3305 105.954i −0.137302 0.301005i
\(353\) 620.142i 1.75678i −0.477949 0.878388i \(-0.658620\pi\)
0.477949 0.878388i \(-0.341380\pi\)
\(354\) −207.566 174.762i −0.586344 0.493677i
\(355\) 51.8333 + 51.8333i 0.146009 + 0.146009i
\(356\) −5.52902 31.9831i −0.0155310 0.0898400i
\(357\) −86.1938 256.838i −0.241439 0.719433i
\(358\) −378.278 + 32.4564i −1.05664 + 0.0906603i
\(359\) 343.001i 0.955435i 0.878514 + 0.477717i \(0.158536\pi\)
−0.878514 + 0.477717i \(0.841464\pi\)
\(360\) 391.483 102.791i 1.08745 0.285531i
\(361\) 119.430i 0.330832i
\(362\) −25.7178 + 2.20660i −0.0710436 + 0.00609557i
\(363\) 119.699 119.699i 0.329749 0.329749i
\(364\) 209.803 + 388.677i 0.576381 + 1.06779i
\(365\) 201.205 201.205i 0.551246 0.551246i
\(366\) −216.566 + 257.217i −0.591711 + 0.702778i
\(367\) 680.088i 1.85310i −0.376171 0.926550i \(-0.622760\pi\)
0.376171 0.926550i \(-0.377240\pi\)
\(368\) 55.7329 + 156.378i 0.151448 + 0.424941i
\(369\) 316.048i 0.856498i
\(370\) −42.7849 36.0231i −0.115635 0.0973597i
\(371\) −75.9193 + 25.4782i −0.204634 + 0.0686745i
\(372\) 74.6224 + 52.6248i 0.200598 + 0.141464i
\(373\) −32.9618 32.9618i −0.0883694 0.0883694i 0.661540 0.749910i \(-0.269903\pi\)
−0.749910 + 0.661540i \(0.769903\pi\)
\(374\) −178.657 + 15.3289i −0.477693 + 0.0409862i
\(375\) 121.582i 0.324219i
\(376\) 133.537 + 77.9955i 0.355152 + 0.207435i
\(377\) −547.921 −1.45337
\(378\) −125.444 + 317.737i −0.331864 + 0.840573i
\(379\) −217.828 217.828i −0.574745 0.574745i 0.358706 0.933451i \(-0.383218\pi\)
−0.933451 + 0.358706i \(0.883218\pi\)
\(380\) −82.0280 474.497i −0.215863 1.24868i
\(381\) 113.244 + 113.244i 0.297228 + 0.297228i
\(382\) −279.186 235.063i −0.730853 0.615348i
\(383\) 263.286i 0.687430i −0.939074 0.343715i \(-0.888315\pi\)
0.939074 0.343715i \(-0.111685\pi\)
\(384\) 166.059 113.396i 0.432444 0.295302i
\(385\) −87.8820 + 176.662i −0.228265 + 0.458863i
\(386\) 579.486 + 487.903i 1.50126 + 1.26400i
\(387\) 300.635 300.635i 0.776835 0.776835i
\(388\) −556.866 + 96.2674i −1.43522 + 0.248112i
\(389\) 28.5590 + 28.5590i 0.0734164 + 0.0734164i 0.742862 0.669445i \(-0.233468\pi\)
−0.669445 + 0.742862i \(0.733468\pi\)
\(390\) −32.8166 382.476i −0.0841452 0.980708i
\(391\) 255.619 0.653757
\(392\) 389.230 46.5172i 0.992934 0.118666i
\(393\) 213.926i 0.544342i
\(394\) 31.1906 + 363.525i 0.0791640 + 0.922653i
\(395\) 301.409 301.409i 0.763062 0.763062i
\(396\) 77.7082 + 54.8009i 0.196233 + 0.138386i
\(397\) 263.058 + 263.058i 0.662615 + 0.662615i 0.955996 0.293380i \(-0.0947803\pi\)
−0.293380 + 0.955996i \(0.594780\pi\)
\(398\) 420.415 + 353.972i 1.05632 + 0.889378i
\(399\) 153.027 + 76.1247i 0.383527 + 0.190789i
\(400\) 187.958 + 527.381i 0.469894 + 1.31845i
\(401\) 372.578 0.929123 0.464562 0.885541i \(-0.346212\pi\)
0.464562 + 0.885541i \(0.346212\pi\)
\(402\) −275.749 232.169i −0.685942 0.577535i
\(403\) −162.086 + 162.086i −0.402198 + 0.402198i
\(404\) 421.387 + 297.168i 1.04304 + 0.735564i
\(405\) −112.041 + 112.041i −0.276645 + 0.276645i
\(406\) −178.574 + 452.309i −0.439838 + 1.11406i
\(407\) 13.1396i 0.0322841i
\(408\) −78.6303 299.466i −0.192721 0.733986i
\(409\) −561.999 −1.37408 −0.687040 0.726620i \(-0.741090\pi\)
−0.687040 + 0.726620i \(0.741090\pi\)
\(410\) −746.766 + 64.0728i −1.82138 + 0.156275i
\(411\) −49.6006 + 49.6006i −0.120683 + 0.120683i
\(412\) −114.723 663.623i −0.278453 1.61074i
\(413\) −192.336 573.116i −0.465704 1.38769i
\(414\) −103.692 87.3048i −0.250465 0.210881i
\(415\) 463.305 1.11640
\(416\) 209.491 + 459.261i 0.503583 + 1.10399i
\(417\) −15.3605 −0.0368357
\(418\) 72.8613 86.5377i 0.174309 0.207028i
\(419\) −238.635 238.635i −0.569534 0.569534i 0.362464 0.931998i \(-0.381936\pi\)
−0.931998 + 0.362464i \(0.881936\pi\)
\(420\) −326.430 97.5638i −0.777213 0.232295i
\(421\) 503.838 + 503.838i 1.19676 + 1.19676i 0.975130 + 0.221635i \(0.0711393\pi\)
0.221635 + 0.975130i \(0.428861\pi\)
\(422\) 228.803 19.6314i 0.542188 0.0465199i
\(423\) −126.271 −0.298512
\(424\) −88.5200 + 23.2425i −0.208773 + 0.0548173i
\(425\) 862.068 2.02839
\(426\) −29.6263 + 2.54195i −0.0695453 + 0.00596702i
\(427\) −710.210 + 238.344i −1.66326 + 0.558183i
\(428\) 196.315 278.377i 0.458680 0.650413i
\(429\) 63.7701 63.7701i 0.148648 0.148648i
\(430\) 771.296 + 649.400i 1.79371 + 1.51023i
\(431\) −580.398 −1.34663 −0.673315 0.739355i \(-0.735130\pi\)
−0.673315 + 0.739355i \(0.735130\pi\)
\(432\) −167.360 + 352.712i −0.387407 + 0.816463i
\(433\) 161.231i 0.372359i −0.982516 0.186179i \(-0.940389\pi\)
0.982516 0.186179i \(-0.0596106\pi\)
\(434\) 80.9759 + 186.627i 0.186580 + 0.430017i
\(435\) 298.853 298.853i 0.687019 0.687019i
\(436\) 17.1588 + 12.1006i 0.0393550 + 0.0277537i
\(437\) −114.032 + 114.032i −0.260944 + 0.260944i
\(438\) 9.86726 + 115.003i 0.0225280 + 0.262563i
\(439\) −171.458 −0.390564 −0.195282 0.980747i \(-0.562562\pi\)
−0.195282 + 0.980747i \(0.562562\pi\)
\(440\) −113.731 + 194.721i −0.258480 + 0.442547i
\(441\) −255.274 + 193.085i −0.578853 + 0.437833i
\(442\) 774.398 66.4436i 1.75203 0.150325i
\(443\) 362.506 + 362.506i 0.818298 + 0.818298i 0.985861 0.167563i \(-0.0535898\pi\)
−0.167563 + 0.985861i \(0.553590\pi\)
\(444\) 22.3563 3.86481i 0.0503521 0.00870453i
\(445\) −44.4413 + 44.4413i −0.0998681 + 0.0998681i
\(446\) 341.503 405.605i 0.765701 0.909428i
\(447\) 193.147i 0.432095i
\(448\) 447.396 23.2554i 0.998652 0.0519093i
\(449\) −680.601 −1.51582 −0.757908 0.652362i \(-0.773778\pi\)
−0.757908 + 0.652362i \(0.773778\pi\)
\(450\) −349.700 294.433i −0.777111 0.654296i
\(451\) −124.508 124.508i −0.276071 0.276071i
\(452\) 30.0799 + 173.999i 0.0665484 + 0.384954i
\(453\) 151.172 151.172i 0.333713 0.333713i
\(454\) 8.46834 + 98.6981i 0.0186527 + 0.217397i
\(455\) 380.929 765.750i 0.837206 1.68297i
\(456\) 168.670 + 98.5155i 0.369890 + 0.216043i
\(457\) 76.4527i 0.167293i 0.996496 + 0.0836463i \(0.0266566\pi\)
−0.996496 + 0.0836463i \(0.973343\pi\)
\(458\) −47.2053 + 4.05023i −0.103068 + 0.00884331i
\(459\) 425.060 + 425.060i 0.926056 + 0.926056i
\(460\) 185.264 262.707i 0.402749 0.571102i
\(461\) 9.52689 + 9.52689i 0.0206657 + 0.0206657i 0.717364 0.696698i \(-0.245348\pi\)
−0.696698 + 0.717364i \(0.745348\pi\)
\(462\) −31.8587 73.4257i −0.0689583 0.158930i
\(463\) 108.583 0.234521 0.117260 0.993101i \(-0.462589\pi\)
0.117260 + 0.993101i \(0.462589\pi\)
\(464\) −238.242 + 502.098i −0.513453 + 1.08211i
\(465\) 176.813i 0.380243i
\(466\) −209.829 + 249.216i −0.450278 + 0.534797i
\(467\) −428.836 428.836i −0.918278 0.918278i 0.0786261 0.996904i \(-0.474947\pi\)
−0.996904 + 0.0786261i \(0.974947\pi\)
\(468\) −336.830 237.537i −0.719722 0.507558i
\(469\) −255.516 761.379i −0.544811 1.62341i
\(470\) −25.5990 298.356i −0.0544660 0.634799i
\(471\) 136.016i 0.288781i
\(472\) −175.459 668.239i −0.371734 1.41576i
\(473\) 236.872i 0.500787i
\(474\) 14.7814 + 172.276i 0.0311844 + 0.363452i
\(475\) −384.571 + 384.571i −0.809623 + 0.809623i
\(476\) 197.537 660.920i 0.414994 1.38849i
\(477\) 52.8404 52.8404i 0.110776 0.110776i
\(478\) −701.987 591.044i −1.46859 1.23649i
\(479\) 678.346i 1.41617i 0.706127 + 0.708085i \(0.250441\pi\)
−0.706127 + 0.708085i \(0.749559\pi\)
\(480\) −364.758 136.233i −0.759913 0.283818i
\(481\) 56.9543i 0.118408i
\(482\) 7.95750 9.45117i 0.0165093 0.0196082i
\(483\) 36.3017 + 108.171i 0.0751589 + 0.223956i
\(484\) 424.724 73.4234i 0.877528 0.151701i
\(485\) 773.780 + 773.780i 1.59542 + 1.59542i
\(486\) −43.0406 501.636i −0.0885608 1.03217i
\(487\) 737.584i 1.51455i −0.653098 0.757273i \(-0.726531\pi\)
0.653098 0.757273i \(-0.273469\pi\)
\(488\) −828.087 + 217.429i −1.69690 + 0.445552i
\(489\) 373.274 0.763341
\(490\) −507.977 564.024i −1.03669 1.15107i
\(491\) −524.855 524.855i −1.06895 1.06895i −0.997440 0.0715115i \(-0.977218\pi\)
−0.0715115 0.997440i \(-0.522782\pi\)
\(492\) 175.221 248.465i 0.356140 0.505011i
\(493\) 605.087 + 605.087i 1.22736 + 1.22736i
\(494\) −315.821 + 375.102i −0.639313 + 0.759316i
\(495\) 184.125i 0.371969i
\(496\) 78.0536 + 219.007i 0.157366 + 0.441546i
\(497\) −59.3144 29.5064i −0.119345 0.0593691i
\(498\) −121.045 + 143.766i −0.243062 + 0.288687i
\(499\) 61.5115 61.5115i 0.123270 0.123270i −0.642781 0.766050i \(-0.722219\pi\)
0.766050 + 0.642781i \(0.222219\pi\)
\(500\) 178.414 252.992i 0.356828 0.505985i
\(501\) −131.421 131.421i −0.262318 0.262318i
\(502\) 55.4569 4.75823i 0.110472 0.00947854i
\(503\) 64.6784 0.128585 0.0642927 0.997931i \(-0.479521\pi\)
0.0642927 + 0.997931i \(0.479521\pi\)
\(504\) −305.864 + 200.637i −0.606873 + 0.398089i
\(505\) 998.450i 1.97713i
\(506\) 75.2440 6.45596i 0.148704 0.0127588i
\(507\) −88.6838 + 88.6838i −0.174919 + 0.174919i
\(508\) 69.4639 + 401.819i 0.136740 + 0.790983i
\(509\) −392.205 392.205i −0.770541 0.770541i 0.207660 0.978201i \(-0.433415\pi\)
−0.978201 + 0.207660i \(0.933415\pi\)
\(510\) −386.140 + 458.621i −0.757138 + 0.899258i
\(511\) −114.537 + 230.245i −0.224143 + 0.450577i
\(512\) 511.942 + 7.72126i 0.999886 + 0.0150806i
\(513\) −379.241 −0.739261
\(514\) −60.0445 + 71.3152i −0.116818 + 0.138745i
\(515\) −922.121 + 922.121i −1.79053 + 1.79053i
\(516\) −403.025 + 69.6722i −0.781055 + 0.135024i
\(517\) 49.7447 49.7447i 0.0962180 0.0962180i
\(518\) 47.0158 + 18.5621i 0.0907641 + 0.0358342i
\(519\) 19.7370i 0.0380289i
\(520\) 492.973 844.026i 0.948024 1.62313i
\(521\) 537.133 1.03097 0.515483 0.856900i \(-0.327613\pi\)
0.515483 + 0.856900i \(0.327613\pi\)
\(522\) −38.7919 452.118i −0.0743140 0.866126i
\(523\) −282.626 + 282.626i −0.540394 + 0.540394i −0.923644 0.383251i \(-0.874805\pi\)
0.383251 + 0.923644i \(0.374805\pi\)
\(524\) −313.923 + 445.146i −0.599089 + 0.849514i
\(525\) 122.427 + 364.803i 0.233194 + 0.694862i
\(526\) −300.817 + 357.282i −0.571896 + 0.679244i
\(527\) 357.993 0.679303
\(528\) −30.7090 86.1649i −0.0581610 0.163191i
\(529\) 421.342 0.796489
\(530\) 135.565 + 114.140i 0.255783 + 0.215359i
\(531\) 398.893 + 398.893i 0.751212 + 0.751212i
\(532\) 206.717 + 382.960i 0.388565 + 0.719850i
\(533\) 539.686 + 539.686i 1.01254 + 1.01254i
\(534\) −2.17944 25.4013i −0.00408135 0.0475679i
\(535\) −659.596 −1.23289
\(536\) −233.095 887.749i −0.434878 1.65625i
\(537\) −298.221 −0.555346
\(538\) 28.7021 + 334.522i 0.0533496 + 0.621788i
\(539\) 24.4998 176.632i 0.0454542 0.327704i
\(540\) 744.915 128.776i 1.37947 0.238474i
\(541\) −53.3102 + 53.3102i −0.0985401 + 0.0985401i −0.754658 0.656118i \(-0.772197\pi\)
0.656118 + 0.754658i \(0.272197\pi\)
\(542\) −170.024 + 201.939i −0.313698 + 0.372581i
\(543\) −20.2750 −0.0373388
\(544\) 275.830 738.525i 0.507040 1.35758i
\(545\) 40.6567i 0.0745994i
\(546\) 138.093 + 318.267i 0.252918 + 0.582907i
\(547\) 301.530 301.530i 0.551244 0.551244i −0.375556 0.926800i \(-0.622548\pi\)
0.926800 + 0.375556i \(0.122548\pi\)
\(548\) −175.996 + 30.4251i −0.321161 + 0.0555203i
\(549\) 494.312 494.312i 0.900385 0.900385i
\(550\) 253.758 21.7726i 0.461378 0.0395865i
\(551\) −539.862 −0.979786
\(552\) 33.1163 + 126.124i 0.0599933 + 0.228486i
\(553\) −171.579 + 344.912i −0.310270 + 0.623711i
\(554\) −60.3428 703.293i −0.108922 1.26948i
\(555\) −31.0647 31.0647i −0.0559724 0.0559724i
\(556\) −31.9626 22.5405i −0.0574867 0.0405404i
\(557\) −524.220 + 524.220i −0.941148 + 0.941148i −0.998362 0.0572135i \(-0.981778\pi\)
0.0572135 + 0.998362i \(0.481778\pi\)
\(558\) −145.221 122.270i −0.260252 0.219122i
\(559\) 1026.73i 1.83673i
\(560\) −536.078 682.028i −0.957282 1.21791i
\(561\) −140.847 −0.251064
\(562\) 443.177 526.364i 0.788571 0.936591i
\(563\) 608.657 + 608.657i 1.08110 + 1.08110i 0.996407 + 0.0846888i \(0.0269896\pi\)
0.0846888 + 0.996407i \(0.473010\pi\)
\(564\) 99.2694 + 70.0062i 0.176010 + 0.124124i
\(565\) 241.777 241.777i 0.427923 0.427923i
\(566\) 399.148 34.2470i 0.705208 0.0605071i
\(567\) 63.7802 128.212i 0.112487 0.226124i
\(568\) −65.3776 38.1853i −0.115101 0.0672276i
\(569\) 576.735i 1.01359i 0.862066 + 0.506797i \(0.169170\pi\)
−0.862066 + 0.506797i \(0.830830\pi\)
\(570\) −32.3340 376.851i −0.0567262 0.661142i
\(571\) −401.402 401.402i −0.702980 0.702980i 0.262069 0.965049i \(-0.415595\pi\)
−0.965049 + 0.262069i \(0.915595\pi\)
\(572\) 226.274 39.1167i 0.395583 0.0683858i
\(573\) −202.708 202.708i −0.353765 0.353765i
\(574\) 621.401 269.620i 1.08258 0.469721i
\(575\) −363.072 −0.631430
\(576\) −364.129 + 205.377i −0.632168 + 0.356557i
\(577\) 933.829i 1.61842i 0.587519 + 0.809210i \(0.300105\pi\)
−0.587519 + 0.809210i \(0.699895\pi\)
\(578\) −486.418 409.544i −0.841554 0.708554i
\(579\) 420.746 + 420.746i 0.726676 + 0.726676i
\(580\) 1060.41 183.317i 1.82830 0.316064i
\(581\) −396.957 + 133.217i −0.683231 + 0.229290i
\(582\) −442.269 + 37.9469i −0.759913 + 0.0652008i
\(583\) 41.6333i 0.0714121i
\(584\) −148.226 + 253.781i −0.253812 + 0.434556i
\(585\) 798.097i 1.36427i
\(586\) 232.774 19.9721i 0.397225 0.0340821i
\(587\) 415.106 415.106i 0.707165 0.707165i −0.258773 0.965938i \(-0.583318\pi\)
0.965938 + 0.258773i \(0.0833181\pi\)
\(588\) 307.736 10.2686i 0.523361 0.0174635i
\(589\) −159.702 + 159.702i −0.271140 + 0.271140i
\(590\) −861.647 + 1023.38i −1.46042 + 1.73455i
\(591\) 286.590i 0.484924i
\(592\) 52.1912 + 24.7644i 0.0881608 + 0.0418317i
\(593\) 818.826i 1.38082i 0.723419 + 0.690409i \(0.242570\pi\)
−0.723419 + 0.690409i \(0.757430\pi\)
\(594\) 135.856 + 114.385i 0.228714 + 0.192568i
\(595\) −1266.31 + 424.971i −2.12826 + 0.714237i
\(596\) 283.430 401.906i 0.475553 0.674339i
\(597\) 305.250 + 305.250i 0.511306 + 0.511306i
\(598\) −326.149 + 27.9837i −0.545399 + 0.0467955i
\(599\) 503.564i 0.840674i −0.907368 0.420337i \(-0.861912\pi\)
0.907368 0.420337i \(-0.138088\pi\)
\(600\) 111.684 + 425.351i 0.186140 + 0.708918i
\(601\) 110.475 0.183819 0.0919093 0.995767i \(-0.470703\pi\)
0.0919093 + 0.995767i \(0.470703\pi\)
\(602\) −847.569 334.626i −1.40792 0.555857i
\(603\) 529.925 + 529.925i 0.878815 + 0.878815i
\(604\) 536.400 92.7292i 0.888079 0.153525i
\(605\) −590.164 590.164i −0.975478 0.975478i
\(606\) 309.824 + 260.859i 0.511261 + 0.430461i
\(607\) 169.212i 0.278769i −0.990238 0.139384i \(-0.955488\pi\)
0.990238 0.139384i \(-0.0445123\pi\)
\(608\) 206.410 + 452.507i 0.339489 + 0.744254i
\(609\) −170.124 + 341.987i −0.279350 + 0.561555i
\(610\) 1268.18 + 1067.76i 2.07899 + 1.75043i
\(611\) −215.621 + 215.621i −0.352898 + 0.352898i
\(612\) 109.652 + 634.292i 0.179170 + 1.03642i
\(613\) 199.765 + 199.765i 0.325881 + 0.325881i 0.851018 0.525137i \(-0.175986\pi\)
−0.525137 + 0.851018i \(0.675986\pi\)
\(614\) 48.5888 + 566.300i 0.0791349 + 0.922313i
\(615\) −588.723 −0.957273
\(616\) 41.4546 199.537i 0.0672965 0.323924i
\(617\) 166.208i 0.269381i −0.990888 0.134690i \(-0.956996\pi\)
0.990888 0.134690i \(-0.0430040\pi\)
\(618\) −45.2217 527.057i −0.0731742 0.852842i
\(619\) 474.519 474.519i 0.766589 0.766589i −0.210915 0.977504i \(-0.567644\pi\)
0.977504 + 0.210915i \(0.0676444\pi\)
\(620\) 259.462 367.919i 0.418487 0.593418i
\(621\) −179.020 179.020i −0.288277 0.288277i
\(622\) −708.471 596.504i −1.13902 0.959010i
\(623\) 25.2985 50.8555i 0.0406075 0.0816301i
\(624\) 133.110 + 373.486i 0.213317 + 0.598535i
\(625\) 275.354 0.440566
\(626\) −1.66897 1.40520i −0.00266609 0.00224474i
\(627\) 62.8322 62.8322i 0.100211 0.100211i
\(628\) 199.594 283.026i 0.317825 0.450679i
\(629\) 62.8965 62.8965i 0.0999944 0.0999944i
\(630\) 658.829 + 260.110i 1.04576 + 0.412873i
\(631\) 326.927i 0.518110i 0.965863 + 0.259055i \(0.0834111\pi\)
−0.965863 + 0.259055i \(0.916589\pi\)
\(632\) −222.047 + 380.170i −0.351340 + 0.601534i
\(633\) 180.380 0.284961
\(634\) 144.191 12.3717i 0.227431 0.0195137i
\(635\) 558.338 558.338i 0.879273 0.879273i
\(636\) −70.8366 + 12.2458i −0.111378 + 0.0192544i
\(637\) −106.196 + 765.621i −0.166712 + 1.20192i
\(638\) 193.395 + 162.831i 0.303128 + 0.255221i
\(639\) 61.8200 0.0967449
\(640\) −559.090 818.737i −0.873577 1.27928i
\(641\) −468.475 −0.730850 −0.365425 0.930841i \(-0.619076\pi\)
−0.365425 + 0.930841i \(0.619076\pi\)
\(642\) 172.329 204.676i 0.268425 0.318810i
\(643\) 162.961 + 162.961i 0.253438 + 0.253438i 0.822379 0.568941i \(-0.192647\pi\)
−0.568941 + 0.822379i \(0.692647\pi\)
\(644\) −83.1955 + 278.356i −0.129186 + 0.432230i
\(645\) 560.013 + 560.013i 0.868237 + 0.868237i
\(646\) 763.008 65.4664i 1.18113 0.101341i
\(647\) 648.535 1.00237 0.501186 0.865340i \(-0.332897\pi\)
0.501186 + 0.865340i \(0.332897\pi\)
\(648\) 82.5401 141.318i 0.127377 0.218084i
\(649\) −314.291 −0.484269
\(650\) −1099.93 + 94.3742i −1.69220 + 0.145191i
\(651\) 50.8404 + 151.493i 0.0780958 + 0.232707i
\(652\) 776.721 + 547.754i 1.19129 + 0.840114i
\(653\) 198.998 198.998i 0.304744 0.304744i −0.538122 0.842867i \(-0.680866\pi\)
0.842867 + 0.538122i \(0.180866\pi\)
\(654\) 12.6160 + 10.6221i 0.0192905 + 0.0162418i
\(655\) 1054.75 1.61030
\(656\) 729.213 259.890i 1.11160 0.396174i
\(657\) 239.971i 0.365253i
\(658\) 107.721 + 248.269i 0.163710 + 0.377308i
\(659\) 273.506 273.506i 0.415032 0.415032i −0.468455 0.883487i \(-0.655189\pi\)
0.883487 + 0.468455i \(0.155189\pi\)
\(660\) −102.081 + 144.752i −0.154669 + 0.219322i
\(661\) 418.775 418.775i 0.633547 0.633547i −0.315409 0.948956i \(-0.602142\pi\)
0.948956 + 0.315409i \(0.102142\pi\)
\(662\) 6.96890 + 81.2223i 0.0105270 + 0.122692i
\(663\) 610.507 0.920826
\(664\) −462.842 + 121.528i −0.697051 + 0.183024i
\(665\) 375.326 754.488i 0.564400 1.13457i
\(666\) −46.9960 + 4.03227i −0.0705645 + 0.00605446i
\(667\) −254.841 254.841i −0.382070 0.382070i
\(668\) −80.6139 466.317i −0.120679 0.698080i
\(669\) 294.496 294.496i 0.440204 0.440204i
\(670\) −1144.69 + 1359.55i −1.70849 + 2.02919i
\(671\) 389.471i 0.580434i
\(672\) 351.695 + 11.8419i 0.523355 + 0.0176218i
\(673\) −1171.54 −1.74077 −0.870383 0.492375i \(-0.836129\pi\)
−0.870383 + 0.492375i \(0.836129\pi\)
\(674\) −129.666 109.173i −0.192382 0.161978i
\(675\) −603.740 603.740i −0.894429 0.894429i
\(676\) −314.674 + 54.3988i −0.465494 + 0.0804716i
\(677\) −104.959 + 104.959i −0.155035 + 0.155035i −0.780362 0.625328i \(-0.784965\pi\)
0.625328 + 0.780362i \(0.284965\pi\)
\(678\) 11.8569 + 138.192i 0.0174881 + 0.203823i
\(679\) −885.461 440.480i −1.30407 0.648718i
\(680\) −1476.49 + 387.680i −2.17131 + 0.570118i
\(681\) 77.8100i 0.114259i
\(682\) 105.379 9.04154i 0.154514 0.0132574i
\(683\) 598.937 + 598.937i 0.876921 + 0.876921i 0.993215 0.116294i \(-0.0371016\pi\)
−0.116294 + 0.993215i \(0.537102\pi\)
\(684\) −331.876 234.043i −0.485198 0.342169i
\(685\) 244.552 + 244.552i 0.357010 + 0.357010i
\(686\) 597.410 + 337.190i 0.870860 + 0.491531i
\(687\) −37.2150 −0.0541703
\(688\) −940.867 446.435i −1.36754 0.648889i
\(689\) 180.461i 0.261918i
\(690\) 162.629 193.155i 0.235694 0.279935i
\(691\) 397.739 + 397.739i 0.575599 + 0.575599i 0.933688 0.358089i \(-0.116571\pi\)
−0.358089 + 0.933688i \(0.616571\pi\)
\(692\) −28.9628 + 41.0695i −0.0418537 + 0.0593490i
\(693\) 52.9427 + 157.757i 0.0763964 + 0.227643i
\(694\) −9.36522 109.151i −0.0134946 0.157278i
\(695\) 75.7335i 0.108969i
\(696\) −220.164 + 376.946i −0.316327 + 0.541588i
\(697\) 1191.98i 1.71016i
\(698\) −0.945502 11.0198i −0.00135459 0.0157877i
\(699\) −180.947 + 180.947i −0.258866 + 0.258866i
\(700\) −280.574 + 938.747i −0.400821 + 1.34107i
\(701\) 848.967 848.967i 1.21108 1.21108i 0.240409 0.970672i \(-0.422718\pi\)
0.970672 0.240409i \(-0.0772815\pi\)
\(702\) −588.874 495.808i −0.838852 0.706279i
\(703\) 56.1166i 0.0798245i
\(704\) 62.5410 224.358i 0.0888366 0.318691i
\(705\) 235.213i 0.333635i
\(706\) 798.830 948.775i 1.13149 1.34387i
\(707\) 287.092 + 855.466i 0.406070 + 1.20999i
\(708\) −92.4436 534.747i −0.130570 0.755293i
\(709\) 250.885 + 250.885i 0.353857 + 0.353857i 0.861542 0.507685i \(-0.169499\pi\)
−0.507685 + 0.861542i \(0.669499\pi\)
\(710\) 12.5329 + 146.070i 0.0176519 + 0.205732i
\(711\) 359.482i 0.505601i
\(712\) 32.7396 56.0541i 0.0459827 0.0787276i
\(713\) −150.774 −0.211464
\(714\) 198.972 503.974i 0.278672 0.705846i
\(715\) −314.413 314.413i −0.439738 0.439738i
\(716\) −620.548 437.619i −0.866687 0.611200i
\(717\) −509.690 509.690i −0.710864 0.710864i
\(718\) −441.834 + 524.769i −0.615367 + 0.730875i
\(719\) 1326.17i 1.84446i 0.386642 + 0.922230i \(0.373635\pi\)
−0.386642 + 0.922230i \(0.626365\pi\)
\(720\) 731.352 + 347.022i 1.01577 + 0.481974i
\(721\) 524.924 1055.21i 0.728050 1.46354i
\(722\) 153.843 182.721i 0.213079 0.253076i
\(723\) 6.86219 6.86219i 0.00949127 0.00949127i
\(724\) −42.1889 29.7522i −0.0582719 0.0410942i
\(725\) −859.444 859.444i −1.18544 1.18544i
\(726\) 337.320 28.9422i 0.464628 0.0398653i
\(727\) 135.744 0.186719 0.0933593 0.995632i \(-0.470239\pi\)
0.0933593 + 0.995632i \(0.470239\pi\)
\(728\) −179.687 + 864.905i −0.246823 + 1.18806i
\(729\) 211.357i 0.289927i
\(730\) 567.010 48.6497i 0.776726 0.0666434i
\(731\) −1133.86 + 1133.86i −1.55110 + 1.55110i
\(732\) −662.663 + 114.557i −0.905277 + 0.156498i
\(733\) −340.606 340.606i −0.464674 0.464674i 0.435510 0.900184i \(-0.356568\pi\)
−0.900184 + 0.435510i \(0.856568\pi\)
\(734\) 876.049 1040.49i 1.19353 1.41756i
\(735\) −359.672 475.516i −0.489349 0.646961i
\(736\) −116.170 + 311.040i −0.157839 + 0.422609i
\(737\) −417.532 −0.566529
\(738\) −407.114 + 483.532i −0.551645 + 0.655192i
\(739\) 422.281 422.281i 0.571423 0.571423i −0.361103 0.932526i \(-0.617600\pi\)
0.932526 + 0.361103i \(0.117600\pi\)
\(740\) −19.0551 110.226i −0.0257502 0.148954i
\(741\) −272.349 + 272.349i −0.367543 + 0.367543i
\(742\) −148.971 58.8147i −0.200769 0.0792651i
\(743\) 125.612i 0.169061i 0.996421 + 0.0845303i \(0.0269390\pi\)
−0.996421 + 0.0845303i \(0.973061\pi\)
\(744\) 46.3792 + 176.636i 0.0623376 + 0.237415i
\(745\) −952.292 −1.27824
\(746\) −7.96989 92.8887i −0.0106835 0.124516i
\(747\) 276.285 276.285i 0.369860 0.369860i
\(748\) −293.079 206.683i −0.391817 0.276315i
\(749\) 565.138 189.658i 0.754524 0.253216i
\(750\) 156.615 186.012i 0.208820 0.248017i
\(751\) −964.776 −1.28465 −0.642327 0.766430i \(-0.722031\pi\)
−0.642327 + 0.766430i \(0.722031\pi\)
\(752\) 103.834 + 291.343i 0.138077 + 0.387424i
\(753\) 43.7202 0.0580614
\(754\) −838.282 705.799i −1.11178 0.936073i
\(755\) −745.341 745.341i −0.987207 0.987207i
\(756\) −601.211 + 324.525i −0.795253 + 0.429266i
\(757\) −313.133 313.133i −0.413650 0.413650i 0.469358 0.883008i \(-0.344485\pi\)
−0.883008 + 0.469358i \(0.844485\pi\)
\(758\) −52.6691 613.857i −0.0694843 0.809837i
\(759\) 59.3196 0.0781550
\(760\) 485.722 831.613i 0.639108 1.09423i
\(761\) −1428.00 −1.87648 −0.938242 0.345980i \(-0.887547\pi\)
−0.938242 + 0.345980i \(0.887547\pi\)
\(762\) 27.3814 + 319.129i 0.0359336 + 0.418805i
\(763\) 11.6903 + 34.8344i 0.0153215 + 0.0456545i
\(764\) −124.341 719.261i −0.162750 0.941441i
\(765\) 881.365 881.365i 1.15211 1.15211i
\(766\) 339.149 402.809i 0.442753 0.525861i
\(767\) 1362.31 1.77615
\(768\) 400.129 + 40.4184i 0.521001 + 0.0526281i
\(769\) 870.738i 1.13230i 0.824303 + 0.566149i \(0.191567\pi\)
−0.824303 + 0.566149i \(0.808433\pi\)
\(770\) −362.019 + 157.077i −0.470155 + 0.203996i
\(771\) −51.7796 + 51.7796i −0.0671590 + 0.0671590i
\(772\) 258.086 + 1492.92i 0.334308 + 1.93383i
\(773\) −3.78212 + 3.78212i −0.00489279 + 0.00489279i −0.709549 0.704656i \(-0.751101\pi\)
0.704656 + 0.709549i \(0.251101\pi\)
\(774\) 847.211 72.6911i 1.09459 0.0939161i
\(775\) −508.480 −0.656104
\(776\) −975.974 570.040i −1.25770 0.734587i
\(777\) 35.5483 + 17.6838i 0.0457507 + 0.0227590i
\(778\) 6.90533 + 80.4813i 0.00887574 + 0.103446i
\(779\) 531.748 + 531.748i 0.682603 + 0.682603i
\(780\) 442.476 627.435i 0.567277 0.804404i
\(781\) −24.3542 + 24.3542i −0.0311833 + 0.0311833i
\(782\) 391.080 + 329.273i 0.500102 + 0.421065i
\(783\) 847.532i 1.08242i
\(784\) 655.417 + 430.215i 0.835991 + 0.548744i
\(785\) −670.614 −0.854285
\(786\) −275.567 + 327.293i −0.350594 + 0.416403i
\(787\) 376.678 + 376.678i 0.478626 + 0.478626i 0.904692 0.426066i \(-0.140101\pi\)
−0.426066 + 0.904692i \(0.640101\pi\)
\(788\) −420.552 + 596.347i −0.533696 + 0.756785i
\(789\) −259.411 + 259.411i −0.328784 + 0.328784i
\(790\) 849.394 72.8783i 1.07518 0.0922510i
\(791\) −137.633 + 276.672i −0.173999 + 0.349776i
\(792\) 48.2970 + 183.941i 0.0609811 + 0.232248i
\(793\) 1688.18i 2.12885i
\(794\) 63.6053 + 741.318i 0.0801075 + 0.933649i
\(795\) 98.4293 + 98.4293i 0.123810 + 0.123810i
\(796\) 187.241 + 1083.11i 0.235227 + 1.36069i
\(797\) 1054.97 + 1054.97i 1.32367 + 1.32367i 0.910778 + 0.412896i \(0.135483\pi\)
0.412896 + 0.910778i \(0.364517\pi\)
\(798\) 136.062 + 313.586i 0.170504 + 0.392965i
\(799\) 476.234 0.596038
\(800\) −391.779 + 1048.97i −0.489724 + 1.31122i
\(801\) 53.0038i 0.0661720i
\(802\) 570.020 + 479.933i 0.710748 + 0.598421i
\(803\) 94.5373 + 94.5373i 0.117730 + 0.117730i
\(804\) −122.810 710.406i −0.152749 0.883590i
\(805\) 533.326 178.983i 0.662517 0.222339i
\(806\) −456.769 + 39.1910i −0.566711 + 0.0486241i
\(807\) 263.725i 0.326797i
\(808\) 261.899 + 997.452i 0.324133 + 1.23447i
\(809\) 826.800i 1.02200i 0.859580 + 0.511001i \(0.170725\pi\)
−0.859580 + 0.511001i \(0.829275\pi\)
\(810\) −315.740 + 27.0906i −0.389803 + 0.0334452i
\(811\) −185.728 + 185.728i −0.229012 + 0.229012i −0.812280 0.583268i \(-0.801774\pi\)
0.583268 + 0.812280i \(0.301774\pi\)
\(812\) −855.844 + 461.973i −1.05400 + 0.568932i
\(813\) −146.621 + 146.621i −0.180346 + 0.180346i
\(814\) 16.9257 20.1027i 0.0207932 0.0246962i
\(815\) 1840.39i 2.25815i
\(816\) 265.455 559.450i 0.325313 0.685600i
\(817\) 1011.63i 1.23823i
\(818\) −859.820 723.933i −1.05112 0.885004i
\(819\) −229.483 683.805i −0.280199 0.834927i
\(820\) −1225.04 863.912i −1.49395 1.05355i
\(821\) −293.780 293.780i −0.357832 0.357832i 0.505181 0.863013i \(-0.331426\pi\)
−0.863013 + 0.505181i \(0.831426\pi\)
\(822\) −139.778 + 11.9930i −0.170047 + 0.0145901i
\(823\) 118.012i 0.143393i −0.997427 0.0716964i \(-0.977159\pi\)
0.997427 0.0716964i \(-0.0228413\pi\)
\(824\) 679.322 1163.08i 0.824420 1.41150i
\(825\) 200.054 0.242489
\(826\) 443.993 1124.58i 0.537522 1.36148i
\(827\) 36.0081 + 36.0081i 0.0435406 + 0.0435406i 0.728542 0.685001i \(-0.240198\pi\)
−0.685001 + 0.728542i \(0.740198\pi\)
\(828\) −46.1816 267.141i −0.0557748 0.322634i
\(829\) −52.8642 52.8642i −0.0637686 0.0637686i 0.674503 0.738272i \(-0.264358\pi\)
−0.738272 + 0.674503i \(0.764358\pi\)
\(830\) 708.825 + 596.802i 0.854006 + 0.719039i
\(831\) 554.451i 0.667209i
\(832\) −271.087 + 972.492i −0.325825 + 1.16886i
\(833\) 962.776 728.225i 1.15579 0.874220i
\(834\) −23.5005 19.7865i −0.0281780 0.0237248i
\(835\) −647.960 + 647.960i −0.776000 + 0.776000i
\(836\) 222.946 38.5414i 0.266681 0.0461021i
\(837\) −250.716 250.716i −0.299542 0.299542i
\(838\) −57.6999 672.490i −0.0688543 0.802494i
\(839\) 1257.63 1.49897 0.749484 0.662023i \(-0.230302\pi\)
0.749484 + 0.662023i \(0.230302\pi\)
\(840\) −373.739 569.753i −0.444928 0.678278i
\(841\) 365.490i 0.434589i
\(842\) 121.824 + 1419.85i 0.144684 + 1.68629i
\(843\) 382.176 382.176i 0.453352 0.453352i
\(844\) 375.341 + 264.696i 0.444717 + 0.313621i
\(845\) 437.248 + 437.248i 0.517453 + 0.517453i
\(846\) −193.186 162.654i −0.228352 0.192263i
\(847\) 675.344 + 335.955i 0.797336 + 0.396641i
\(848\) −165.369 78.4666i −0.195011 0.0925314i
\(849\) 314.674 0.370640
\(850\) 1318.91 + 1110.46i 1.55165 + 1.30643i
\(851\) −26.4897 + 26.4897i −0.0311278 + 0.0311278i
\(852\) −48.6007 34.2739i −0.0570430 0.0402275i
\(853\) −906.916 + 906.916i −1.06321 + 1.06321i −0.0653442 + 0.997863i \(0.520815\pi\)
−0.997863 + 0.0653442i \(0.979185\pi\)
\(854\) −1393.59 550.200i −1.63184 0.644262i
\(855\) 786.359i 0.919718i
\(856\) 658.937 173.016i 0.769786 0.202122i
\(857\) 1015.16 1.18455 0.592273 0.805737i \(-0.298231\pi\)
0.592273 + 0.805737i \(0.298231\pi\)
\(858\) 179.709 15.4191i 0.209451 0.0179710i
\(859\) 851.483 851.483i 0.991249 0.991249i −0.00871336 0.999962i \(-0.502774\pi\)
0.999962 + 0.00871336i \(0.00277359\pi\)
\(860\) 343.513 + 1987.08i 0.399433 + 2.31055i
\(861\) 504.414 169.280i 0.585847 0.196608i
\(862\) −887.970 747.634i −1.03013 0.867325i
\(863\) −873.705 −1.01240 −0.506202 0.862415i \(-0.668951\pi\)
−0.506202 + 0.862415i \(0.668951\pi\)
\(864\) −710.392 + 324.043i −0.822213 + 0.375050i
\(865\) 97.3116 0.112499
\(866\) 207.689 246.673i 0.239825 0.284842i
\(867\) −353.172 353.172i −0.407350 0.407350i
\(868\) −116.515 + 389.836i −0.134234 + 0.449120i
\(869\) 141.619 + 141.619i 0.162968 + 0.162968i
\(870\) 842.190 72.2603i 0.968035 0.0830578i
\(871\) 1809.81 2.07785
\(872\) 10.6645 + 40.6160i 0.0122299 + 0.0465780i
\(873\) 922.865 1.05712
\(874\) −321.352 + 27.5721i −0.367679 + 0.0315470i
\(875\) 513.605 172.364i 0.586977 0.196988i
\(876\) −133.043 + 188.657i −0.151876 + 0.215361i
\(877\) −1140.58 + 1140.58i −1.30055 + 1.30055i −0.372525 + 0.928022i \(0.621508\pi\)
−0.928022 + 0.372525i \(0.878492\pi\)
\(878\) −262.319 220.862i −0.298769 0.251551i
\(879\) 183.511 0.208772
\(880\) −424.829 + 151.408i −0.482760 + 0.172055i
\(881\) 626.678i 0.711325i 0.934614 + 0.355663i \(0.115745\pi\)
−0.934614 + 0.355663i \(0.884255\pi\)
\(882\) −639.272 33.4228i −0.724799 0.0378944i
\(883\) 101.385 101.385i 0.114819 0.114819i −0.647363 0.762182i \(-0.724128\pi\)
0.762182 + 0.647363i \(0.224128\pi\)
\(884\) 1270.37 + 895.879i 1.43706 + 1.01344i
\(885\) −743.045 + 743.045i −0.839599 + 0.839599i
\(886\) 87.6510 + 1021.57i 0.0989289 + 1.15301i
\(887\) −966.644 −1.08979 −0.544895 0.838504i \(-0.683431\pi\)
−0.544895 + 0.838504i \(0.683431\pi\)
\(888\) 39.1821 + 22.8852i 0.0441240 + 0.0257716i
\(889\) −317.838 + 638.924i −0.357523 + 0.718700i
\(890\) −125.239 + 10.7455i −0.140718 + 0.0120736i
\(891\) −52.6433 52.6433i −0.0590834 0.0590834i
\(892\) 1044.95 180.644i 1.17147 0.202516i
\(893\) −212.450 + 212.450i −0.237905 + 0.237905i
\(894\) 248.800 295.501i 0.278300 0.330538i
\(895\) 1470.35i 1.64285i
\(896\) 714.442 + 540.730i 0.797368 + 0.603493i
\(897\) −257.124 −0.286649
\(898\) −1041.27 876.710i −1.15955 0.976292i
\(899\) −356.903 356.903i −0.397000 0.397000i
\(900\) −155.746 900.925i −0.173051 1.00103i
\(901\) −199.289 + 199.289i −0.221187 + 0.221187i
\(902\) −30.1050 350.873i −0.0333758 0.388994i
\(903\) −640.840 318.791i −0.709679 0.353036i
\(904\) −178.115 + 304.954i −0.197030 + 0.337339i
\(905\) 99.9640i 0.110457i
\(906\) 426.014 36.5522i 0.470214 0.0403446i
\(907\) 5.22275 + 5.22275i 0.00575826 + 0.00575826i 0.709980 0.704222i \(-0.248704\pi\)
−0.704222 + 0.709980i \(0.748704\pi\)
\(908\) −114.181 + 161.910i −0.125750 + 0.178315i
\(909\) −595.411 595.411i −0.655018 0.655018i
\(910\) 1569.19 680.857i 1.72438 0.748194i
\(911\) −1180.89 −1.29626 −0.648130 0.761530i \(-0.724449\pi\)
−0.648130 + 0.761530i \(0.724449\pi\)
\(912\) 131.152 + 367.993i 0.143807 + 0.403501i
\(913\) 217.687i 0.238430i
\(914\) −98.4818 + 116.967i −0.107748 + 0.127973i
\(915\) 920.787 + 920.787i 1.00632 + 1.00632i
\(916\) −77.4382 54.6105i −0.0845395 0.0596184i
\(917\) −903.699 + 303.278i −0.985495 + 0.330729i
\(918\) 102.776 + 1197.85i 0.111956 + 1.30485i
\(919\) 541.429i 0.589150i 0.955628 + 0.294575i \(0.0951781\pi\)
−0.955628 + 0.294575i \(0.904822\pi\)
\(920\) 621.845 163.277i 0.675919 0.177475i
\(921\) 446.451i 0.484746i
\(922\) 2.30352 + 26.8475i 0.00249840 + 0.0291187i
\(923\) 105.564 105.564i 0.114371 0.114371i
\(924\) 45.8410 153.375i 0.0496114 0.165990i
\(925\) −89.3359 + 89.3359i −0.0965794 + 0.0965794i
\(926\) 166.125 + 139.870i 0.179400 + 0.151048i
\(927\) 1099.79i 1.18639i
\(928\) −1011.27 + 461.286i −1.08973 + 0.497076i
\(929\) 362.906i 0.390641i −0.980739 0.195321i \(-0.937425\pi\)
0.980739 0.195321i \(-0.0625748\pi\)
\(930\) 227.760 270.512i 0.244904 0.290873i
\(931\) −104.634 + 754.361i −0.112389 + 0.810269i
\(932\) −642.050 + 110.993i −0.688894 + 0.119092i
\(933\) −514.398 514.398i −0.551337 0.551337i
\(934\) −103.689 1208.49i −0.111016 1.29389i
\(935\) 694.433i 0.742709i
\(936\) −209.346 797.300i −0.223660 0.851816i
\(937\) −1172.13 −1.25094 −0.625469 0.780249i \(-0.715092\pi\)
−0.625469 + 0.780249i \(0.715092\pi\)
\(938\) 589.841 1494.00i 0.628828 1.59275i
\(939\) −1.21178 1.21178i −0.00129050 0.00129050i
\(940\) 345.159 489.439i 0.367191 0.520680i
\(941\) −930.677 930.677i −0.989030 0.989030i 0.0109108 0.999940i \(-0.496527\pi\)
−0.999940 + 0.0109108i \(0.996527\pi\)
\(942\) 175.207 208.095i 0.185995 0.220908i
\(943\) 502.021i 0.532366i
\(944\) 592.347 1248.38i 0.627486 1.32243i
\(945\) 1184.47 + 589.226i 1.25341 + 0.623519i
\(946\) −305.125 + 362.398i −0.322542 + 0.383085i
\(947\) 265.946 265.946i 0.280830 0.280830i −0.552610 0.833440i \(-0.686368\pi\)
0.833440 + 0.552610i \(0.186368\pi\)
\(948\) −199.302 + 282.612i −0.210234 + 0.298114i
\(949\) −409.777 409.777i −0.431798 0.431798i
\(950\) −1083.75 + 92.9861i −1.14079 + 0.0978801i
\(951\) 113.675 0.119532
\(952\) 1153.58 756.708i 1.21174 0.794861i
\(953\) 1378.60i 1.44659i 0.690540 + 0.723294i \(0.257373\pi\)
−0.690540 + 0.723294i \(0.742627\pi\)
\(954\) 148.908 12.7764i 0.156088 0.0133924i
\(955\) −999.431 + 999.431i −1.04653 + 1.04653i
\(956\) −312.644 1808.52i −0.327034 1.89175i
\(957\) 140.418 + 140.418i 0.146727 + 0.146727i
\(958\) −873.805 + 1037.82i −0.912113 + 1.08332i
\(959\) −279.848 139.213i −0.291812 0.145164i
\(960\) −382.569 678.287i −0.398509 0.706549i
\(961\) 749.842 0.780273
\(962\) −73.3652 + 87.1363i −0.0762632 + 0.0905782i
\(963\) −393.340 + 393.340i −0.408453 + 0.408453i
\(964\) 24.3489 4.20928i 0.0252582 0.00436647i
\(965\) 2074.45 2074.45i 2.14969 2.14969i
\(966\) −83.7999 + 212.256i −0.0867494 + 0.219726i
\(967\) 1533.12i 1.58544i 0.609584 + 0.792722i \(0.291337\pi\)
−0.609584 + 0.792722i \(0.708663\pi\)
\(968\) 744.378 + 434.771i 0.768986 + 0.449143i
\(969\) 601.528 0.620772
\(970\) 187.094 + 2180.57i 0.192880 + 2.24801i
\(971\) −44.2230 + 44.2230i −0.0455437 + 0.0455437i −0.729512 0.683968i \(-0.760253\pi\)
0.683968 + 0.729512i \(0.260253\pi\)
\(972\) 580.328 822.911i 0.597046 0.846617i
\(973\) −21.7762 64.8880i −0.0223805 0.0666886i
\(974\) 950.112 1128.45i 0.975474 1.15858i
\(975\) −867.143 −0.889377
\(976\) −1547.00 734.040i −1.58504 0.752090i
\(977\) −623.770 −0.638454 −0.319227 0.947678i \(-0.603423\pi\)
−0.319227 + 0.947678i \(0.603423\pi\)
\(978\) 571.084 + 480.829i 0.583930 + 0.491645i
\(979\) −20.8810 20.8810i −0.0213289 0.0213289i
\(980\) −50.6283 1517.27i −0.0516615 1.54823i
\(981\) −24.2450 24.2450i −0.0247146 0.0247146i
\(982\) −126.906 1479.08i −0.129232 1.50619i
\(983\) −1124.01 −1.14345 −0.571724 0.820446i \(-0.693725\pi\)
−0.571724 + 0.820446i \(0.693725\pi\)
\(984\) 588.135 154.426i 0.597698 0.156937i
\(985\) 1413.01 1.43453
\(986\) 146.305 + 1705.18i 0.148382 + 1.72939i
\(987\) 67.6324 + 201.529i 0.0685232 + 0.204183i
\(988\) −966.368 + 167.059i −0.978106 + 0.169088i
\(989\) 477.539 477.539i 0.482851 0.482851i
\(990\) 237.179 281.698i 0.239574 0.284544i
\(991\) 392.328 0.395891 0.197946 0.980213i \(-0.436573\pi\)
0.197946 + 0.980213i \(0.436573\pi\)
\(992\) −162.695 + 435.610i −0.164007 + 0.439123i
\(993\) 64.0327i 0.0644841i
\(994\) −52.7386 121.548i −0.0530570 0.122282i
\(995\) 1505.01 1505.01i 1.51257 1.51257i
\(996\) −370.382 + 64.0291i −0.371869 + 0.0642863i
\(997\) 744.756 744.756i 0.746997 0.746997i −0.226917 0.973914i \(-0.572865\pi\)
0.973914 + 0.226917i \(0.0728648\pi\)
\(998\) 173.344 14.8730i 0.173691 0.0149028i
\(999\) −88.0977 −0.0881859
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.3.l.b.69.24 yes 56
4.3 odd 2 448.3.l.b.433.11 56
7.6 odd 2 inner 112.3.l.b.69.23 yes 56
16.3 odd 4 448.3.l.b.209.18 56
16.13 even 4 inner 112.3.l.b.13.23 56
28.27 even 2 448.3.l.b.433.18 56
112.13 odd 4 inner 112.3.l.b.13.24 yes 56
112.83 even 4 448.3.l.b.209.11 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.3.l.b.13.23 56 16.13 even 4 inner
112.3.l.b.13.24 yes 56 112.13 odd 4 inner
112.3.l.b.69.23 yes 56 7.6 odd 2 inner
112.3.l.b.69.24 yes 56 1.1 even 1 trivial
448.3.l.b.209.11 56 112.83 even 4
448.3.l.b.209.18 56 16.3 odd 4
448.3.l.b.433.11 56 4.3 odd 2
448.3.l.b.433.18 56 28.27 even 2