Properties

Label 112.3.l.b.69.23
Level $112$
Weight $3$
Character 112.69
Analytic conductor $3.052$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,3,Mod(13,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.13"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 112.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.05177896084\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 69.23
Character \(\chi\) \(=\) 112.69
Dual form 112.3.l.b.13.23

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.52993 + 1.28814i) q^{2} +(-1.11083 - 1.11083i) q^{3} +(0.681387 + 3.94154i) q^{4} +(-5.47687 + 5.47687i) q^{5} +(-0.268590 - 3.13041i) q^{6} +(3.11774 + 6.26735i) q^{7} +(-4.03478 + 6.90801i) q^{8} -6.53210i q^{9} +(-15.4342 + 1.32426i) q^{10} +(2.57334 + 2.57334i) q^{11} +(3.62148 - 5.13530i) q^{12} +(11.1543 + 11.1543i) q^{13} +(-3.30329 + 13.6047i) q^{14} +12.1678 q^{15} +(-15.0714 + 5.37142i) q^{16} -24.6360i q^{17} +(8.41426 - 9.99367i) q^{18} +(10.9902 + 10.9902i) q^{19} +(-25.3191 - 17.8554i) q^{20} +(3.49869 - 10.4253i) q^{21} +(0.622213 + 7.25186i) q^{22} -10.3758i q^{23} +(12.1556 - 3.19168i) q^{24} -34.9921i q^{25} +(2.69701 + 31.4335i) q^{26} +(-17.2536 + 17.2536i) q^{27} +(-22.5786 + 16.5592i) q^{28} +(24.5610 - 24.5610i) q^{29} +(18.6159 + 15.6738i) q^{30} +14.5313i q^{31} +(-29.9774 - 11.1962i) q^{32} -5.71711i q^{33} +(31.7347 - 37.6915i) q^{34} +(-51.4009 - 17.2500i) q^{35} +(25.7465 - 4.45089i) q^{36} +(-2.55303 - 2.55303i) q^{37} +(2.65734 + 30.9712i) q^{38} -24.7811i q^{39} +(-15.7363 - 59.9322i) q^{40} +48.3838 q^{41} +(18.7820 - 11.4432i) q^{42} +(46.0243 + 46.0243i) q^{43} +(-8.38947 + 11.8964i) q^{44} +(35.7754 + 35.7754i) q^{45} +(13.3655 - 15.8743i) q^{46} +19.3308i q^{47} +(22.7086 + 10.7751i) q^{48} +(-29.5593 + 39.0800i) q^{49} +(45.0748 - 53.5356i) q^{50} +(-27.3665 + 27.3665i) q^{51} +(-36.3646 + 51.5653i) q^{52} +(8.08934 + 8.08934i) q^{53} +(-48.6218 + 4.17177i) q^{54} -28.1877 q^{55} +(-55.8743 - 3.74997i) q^{56} -24.4166i q^{57} +(69.2148 - 5.93866i) q^{58} +(61.0667 - 61.0667i) q^{59} +(8.29096 + 47.9597i) q^{60} +(-75.6742 - 75.6742i) q^{61} +(-18.7183 + 22.2319i) q^{62} +(40.9389 - 20.3654i) q^{63} +(-31.4411 - 55.7446i) q^{64} -122.181 q^{65} +(7.36444 - 8.74679i) q^{66} +(-81.1264 + 81.1264i) q^{67} +(97.1038 - 16.7867i) q^{68} +(-11.5258 + 11.5258i) q^{69} +(-56.4195 - 92.6029i) q^{70} +9.46404i q^{71} +(45.1238 + 26.3556i) q^{72} -36.7372 q^{73} +(-0.617301 - 7.19462i) q^{74} +(-38.8704 + 38.8704i) q^{75} +(-35.8297 + 50.8069i) q^{76} +(-8.10501 + 24.1510i) q^{77} +(31.9215 - 37.9134i) q^{78} +55.0332 q^{79} +(53.1256 - 111.963i) q^{80} -20.4572 q^{81} +(74.0239 + 62.3251i) q^{82} +(-42.2965 - 42.2965i) q^{83} +(43.4756 + 6.68656i) q^{84} +(134.928 + 134.928i) q^{85} +(11.1283 + 129.700i) q^{86} -54.5665 q^{87} +(-28.1595 + 7.39380i) q^{88} +8.11436 q^{89} +(8.65021 + 100.818i) q^{90} +(-35.1315 + 104.684i) q^{91} +(40.8967 - 7.06995i) q^{92} +(16.1418 - 16.1418i) q^{93} +(-24.9008 + 29.5748i) q^{94} -120.384 q^{95} +(20.8628 + 45.7370i) q^{96} -141.282i q^{97} +(-95.5643 + 21.7131i) q^{98} +(16.8093 - 16.8093i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 4 q^{2} - 8 q^{4} - 16 q^{8} + 40 q^{14} - 8 q^{15} + 48 q^{16} + 196 q^{18} - 20 q^{21} - 120 q^{22} - 96 q^{29} - 40 q^{30} - 184 q^{32} - 100 q^{35} + 160 q^{36} - 128 q^{37} - 144 q^{42} - 72 q^{43}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.52993 + 1.28814i 0.764966 + 0.644070i
\(3\) −1.11083 1.11083i −0.370278 0.370278i 0.497300 0.867578i \(-0.334325\pi\)
−0.867578 + 0.497300i \(0.834325\pi\)
\(4\) 0.681387 + 3.94154i 0.170347 + 0.985384i
\(5\) −5.47687 + 5.47687i −1.09537 + 1.09537i −0.100429 + 0.994944i \(0.532022\pi\)
−0.994944 + 0.100429i \(0.967978\pi\)
\(6\) −0.268590 3.13041i −0.0447651 0.521735i
\(7\) 3.11774 + 6.26735i 0.445392 + 0.895336i
\(8\) −4.03478 + 6.90801i −0.504347 + 0.863501i
\(9\) 6.53210i 0.725789i
\(10\) −15.4342 + 1.32426i −1.54342 + 0.132426i
\(11\) 2.57334 + 2.57334i 0.233940 + 0.233940i 0.814335 0.580395i \(-0.197102\pi\)
−0.580395 + 0.814335i \(0.697102\pi\)
\(12\) 3.62148 5.13530i 0.301790 0.427942i
\(13\) 11.1543 + 11.1543i 0.858021 + 0.858021i 0.991105 0.133084i \(-0.0424881\pi\)
−0.133084 + 0.991105i \(0.542488\pi\)
\(14\) −3.30329 + 13.6047i −0.235949 + 0.971765i
\(15\) 12.1678 0.811185
\(16\) −15.0714 + 5.37142i −0.941964 + 0.335714i
\(17\) 24.6360i 1.44918i −0.689181 0.724589i \(-0.742029\pi\)
0.689181 0.724589i \(-0.257971\pi\)
\(18\) 8.41426 9.99367i 0.467459 0.555204i
\(19\) 10.9902 + 10.9902i 0.578432 + 0.578432i 0.934471 0.356039i \(-0.115873\pi\)
−0.356039 + 0.934471i \(0.615873\pi\)
\(20\) −25.3191 17.8554i −1.26596 0.892770i
\(21\) 3.49869 10.4253i 0.166604 0.496442i
\(22\) 0.622213 + 7.25186i 0.0282824 + 0.329630i
\(23\) 10.3758i 0.451122i −0.974229 0.225561i \(-0.927578\pi\)
0.974229 0.225561i \(-0.0724216\pi\)
\(24\) 12.1556 3.19168i 0.506484 0.132987i
\(25\) 34.9921i 1.39969i
\(26\) 2.69701 + 31.4335i 0.103731 + 1.20898i
\(27\) −17.2536 + 17.2536i −0.639021 + 0.639021i
\(28\) −22.5786 + 16.5592i −0.806379 + 0.591400i
\(29\) 24.5610 24.5610i 0.846933 0.846933i −0.142817 0.989749i \(-0.545616\pi\)
0.989749 + 0.142817i \(0.0456159\pi\)
\(30\) 18.6159 + 15.6738i 0.620529 + 0.522460i
\(31\) 14.5313i 0.468751i 0.972146 + 0.234375i \(0.0753045\pi\)
−0.972146 + 0.234375i \(0.924696\pi\)
\(32\) −29.9774 11.1962i −0.936794 0.349881i
\(33\) 5.71711i 0.173246i
\(34\) 31.7347 37.6915i 0.933373 1.10857i
\(35\) −51.4009 17.2500i −1.46860 0.492856i
\(36\) 25.7465 4.45089i 0.715181 0.123636i
\(37\) −2.55303 2.55303i −0.0690008 0.0690008i 0.671764 0.740765i \(-0.265537\pi\)
−0.740765 + 0.671764i \(0.765537\pi\)
\(38\) 2.65734 + 30.9712i 0.0699301 + 0.815032i
\(39\) 24.7811i 0.635412i
\(40\) −15.7363 59.9322i −0.393407 1.49830i
\(41\) 48.3838 1.18009 0.590046 0.807369i \(-0.299110\pi\)
0.590046 + 0.807369i \(0.299110\pi\)
\(42\) 18.7820 11.4432i 0.447190 0.272456i
\(43\) 46.0243 + 46.0243i 1.07033 + 1.07033i 0.997332 + 0.0729998i \(0.0232573\pi\)
0.0729998 + 0.997332i \(0.476743\pi\)
\(44\) −8.38947 + 11.8964i −0.190670 + 0.270372i
\(45\) 35.7754 + 35.7754i 0.795010 + 0.795010i
\(46\) 13.3655 15.8743i 0.290555 0.345093i
\(47\) 19.3308i 0.411294i 0.978626 + 0.205647i \(0.0659298\pi\)
−0.978626 + 0.205647i \(0.934070\pi\)
\(48\) 22.7086 + 10.7751i 0.473096 + 0.224481i
\(49\) −29.5593 + 39.0800i −0.603252 + 0.797551i
\(50\) 45.0748 53.5356i 0.901496 1.07071i
\(51\) −27.3665 + 27.3665i −0.536599 + 0.536599i
\(52\) −36.3646 + 51.5653i −0.699319 + 0.991641i
\(53\) 8.08934 + 8.08934i 0.152629 + 0.152629i 0.779291 0.626662i \(-0.215579\pi\)
−0.626662 + 0.779291i \(0.715579\pi\)
\(54\) −48.6218 + 4.17177i −0.900404 + 0.0772551i
\(55\) −28.1877 −0.512503
\(56\) −55.8743 3.74997i −0.997755 0.0669637i
\(57\) 24.4166i 0.428361i
\(58\) 69.2148 5.93866i 1.19336 0.102391i
\(59\) 61.0667 61.0667i 1.03503 1.03503i 0.0356642 0.999364i \(-0.488645\pi\)
0.999364 0.0356642i \(-0.0113547\pi\)
\(60\) 8.29096 + 47.9597i 0.138183 + 0.799329i
\(61\) −75.6742 75.6742i −1.24056 1.24056i −0.959768 0.280793i \(-0.909403\pi\)
−0.280793 0.959768i \(-0.590597\pi\)
\(62\) −18.7183 + 22.2319i −0.301908 + 0.358578i
\(63\) 40.9389 20.3654i 0.649824 0.323260i
\(64\) −31.4411 55.7446i −0.491268 0.871009i
\(65\) −122.181 −1.87971
\(66\) 7.36444 8.74679i 0.111582 0.132527i
\(67\) −81.1264 + 81.1264i −1.21084 + 1.21084i −0.240091 + 0.970750i \(0.577177\pi\)
−0.970750 + 0.240091i \(0.922823\pi\)
\(68\) 97.1038 16.7867i 1.42800 0.246863i
\(69\) −11.5258 + 11.5258i −0.167041 + 0.167041i
\(70\) −56.4195 92.6029i −0.805993 1.32290i
\(71\) 9.46404i 0.133296i 0.997777 + 0.0666481i \(0.0212305\pi\)
−0.997777 + 0.0666481i \(0.978769\pi\)
\(72\) 45.1238 + 26.3556i 0.626719 + 0.366049i
\(73\) −36.7372 −0.503249 −0.251625 0.967825i \(-0.580965\pi\)
−0.251625 + 0.967825i \(0.580965\pi\)
\(74\) −0.617301 7.19462i −0.00834191 0.0972246i
\(75\) −38.8704 + 38.8704i −0.518273 + 0.518273i
\(76\) −35.8297 + 50.8069i −0.471444 + 0.668512i
\(77\) −8.10501 + 24.1510i −0.105260 + 0.313650i
\(78\) 31.9215 37.9134i 0.409250 0.486069i
\(79\) 55.0332 0.696622 0.348311 0.937379i \(-0.386755\pi\)
0.348311 + 0.937379i \(0.386755\pi\)
\(80\) 53.1256 111.963i 0.664070 1.39953i
\(81\) −20.4572 −0.252558
\(82\) 74.0239 + 62.3251i 0.902731 + 0.760063i
\(83\) −42.2965 42.2965i −0.509597 0.509597i 0.404806 0.914403i \(-0.367339\pi\)
−0.914403 + 0.404806i \(0.867339\pi\)
\(84\) 43.4756 + 6.68656i 0.517566 + 0.0796019i
\(85\) 134.928 + 134.928i 1.58739 + 1.58739i
\(86\) 11.1283 + 129.700i 0.129399 + 1.50814i
\(87\) −54.5665 −0.627201
\(88\) −28.1595 + 7.39380i −0.319994 + 0.0840204i
\(89\) 8.11436 0.0911726 0.0455863 0.998960i \(-0.485484\pi\)
0.0455863 + 0.998960i \(0.485484\pi\)
\(90\) 8.65021 + 100.818i 0.0961134 + 1.12020i
\(91\) −35.1315 + 104.684i −0.386061 + 1.15037i
\(92\) 40.8967 7.06995i 0.444529 0.0768472i
\(93\) 16.1418 16.1418i 0.173568 0.173568i
\(94\) −24.9008 + 29.5748i −0.264902 + 0.314626i
\(95\) −120.384 −1.26720
\(96\) 20.8628 + 45.7370i 0.217321 + 0.476427i
\(97\) 141.282i 1.45651i −0.685306 0.728255i \(-0.740331\pi\)
0.685306 0.728255i \(-0.259669\pi\)
\(98\) −95.5643 + 21.7131i −0.975146 + 0.221563i
\(99\) 16.8093 16.8093i 0.169791 0.169791i
\(100\) 137.923 23.8432i 1.37923 0.238432i
\(101\) −91.1516 + 91.1516i −0.902491 + 0.902491i −0.995651 0.0931601i \(-0.970303\pi\)
0.0931601 + 0.995651i \(0.470303\pi\)
\(102\) −77.1209 + 6.61700i −0.756087 + 0.0648726i
\(103\) 168.367 1.63463 0.817313 0.576193i \(-0.195462\pi\)
0.817313 + 0.576193i \(0.195462\pi\)
\(104\) −122.059 + 32.0488i −1.17364 + 0.308161i
\(105\) 37.9360 + 76.2597i 0.361295 + 0.726283i
\(106\) 1.95594 + 22.7964i 0.0184522 + 0.215060i
\(107\) −60.2166 60.2166i −0.562772 0.562772i 0.367322 0.930094i \(-0.380275\pi\)
−0.930094 + 0.367322i \(0.880275\pi\)
\(108\) −79.7620 56.2492i −0.738537 0.520826i
\(109\) 3.71167 3.71167i 0.0340520 0.0340520i −0.689876 0.723928i \(-0.742335\pi\)
0.723928 + 0.689876i \(0.242335\pi\)
\(110\) −43.1253 36.3097i −0.392048 0.330088i
\(111\) 5.67198i 0.0510989i
\(112\) −80.6534 77.7112i −0.720120 0.693850i
\(113\) 44.1451 0.390664 0.195332 0.980737i \(-0.437422\pi\)
0.195332 + 0.980737i \(0.437422\pi\)
\(114\) 31.4520 37.3557i 0.275895 0.327682i
\(115\) 56.8270 + 56.8270i 0.494147 + 0.494147i
\(116\) 113.544 + 80.0727i 0.978826 + 0.690282i
\(117\) 72.8608 72.8608i 0.622742 0.622742i
\(118\) 172.090 14.7654i 1.45839 0.125131i
\(119\) 154.403 76.8088i 1.29750 0.645452i
\(120\) −49.0943 + 84.0551i −0.409119 + 0.700459i
\(121\) 107.756i 0.890544i
\(122\) −18.2974 213.256i −0.149979 1.74800i
\(123\) −53.7463 53.7463i −0.436962 0.436962i
\(124\) −57.2755 + 9.90142i −0.461899 + 0.0798501i
\(125\) 54.7256 + 54.7256i 0.437805 + 0.437805i
\(126\) 88.8673 + 21.5774i 0.705296 + 0.171249i
\(127\) 101.945 0.802715 0.401358 0.915921i \(-0.368538\pi\)
0.401358 + 0.915921i \(0.368538\pi\)
\(128\) 23.7040 125.786i 0.185188 0.982703i
\(129\) 102.251i 0.792640i
\(130\) −186.929 157.386i −1.43791 1.21066i
\(131\) −96.2909 96.2909i −0.735045 0.735045i 0.236569 0.971615i \(-0.423977\pi\)
−0.971615 + 0.236569i \(0.923977\pi\)
\(132\) 22.5342 3.89556i 0.170714 0.0295118i
\(133\) −34.6148 + 103.144i −0.260262 + 0.775520i
\(134\) −228.620 + 19.6157i −1.70612 + 0.146386i
\(135\) 188.991i 1.39993i
\(136\) 170.186 + 99.4009i 1.25137 + 0.730889i
\(137\) 44.6517i 0.325925i 0.986632 + 0.162963i \(0.0521050\pi\)
−0.986632 + 0.162963i \(0.947895\pi\)
\(138\) −32.4806 + 2.78684i −0.235366 + 0.0201945i
\(139\) 6.91394 6.91394i 0.0497406 0.0497406i −0.681799 0.731540i \(-0.738802\pi\)
0.731540 + 0.681799i \(0.238802\pi\)
\(140\) 32.9675 214.352i 0.235482 1.53109i
\(141\) 21.4733 21.4733i 0.152293 0.152293i
\(142\) −12.1910 + 14.4793i −0.0858522 + 0.101967i
\(143\) 57.4075i 0.401451i
\(144\) 35.0867 + 98.4480i 0.243657 + 0.683667i
\(145\) 269.035i 1.85541i
\(146\) −56.2054 47.3227i −0.384969 0.324128i
\(147\) 76.2469 10.5758i 0.518686 0.0719445i
\(148\) 8.32325 11.8025i 0.0562382 0.0797463i
\(149\) −86.9376 86.9376i −0.583474 0.583474i 0.352382 0.935856i \(-0.385372\pi\)
−0.935856 + 0.352382i \(0.885372\pi\)
\(150\) −109.540 + 9.39856i −0.730265 + 0.0626570i
\(151\) 136.089i 0.901251i −0.892713 0.450626i \(-0.851201\pi\)
0.892713 0.450626i \(-0.148799\pi\)
\(152\) −120.264 + 31.5774i −0.791207 + 0.207746i
\(153\) −160.925 −1.05180
\(154\) −43.5101 + 26.5091i −0.282533 + 0.172137i
\(155\) −79.5858 79.5858i −0.513457 0.513457i
\(156\) 97.6755 16.8855i 0.626125 0.108240i
\(157\) 61.2224 + 61.2224i 0.389952 + 0.389952i 0.874670 0.484719i \(-0.161078\pi\)
−0.484719 + 0.874670i \(0.661078\pi\)
\(158\) 84.1970 + 70.8905i 0.532893 + 0.448674i
\(159\) 17.9718i 0.113030i
\(160\) 225.502 102.862i 1.40939 0.642889i
\(161\) 65.0289 32.3491i 0.403906 0.200926i
\(162\) −31.2981 26.3517i −0.193198 0.162665i
\(163\) 168.015 168.015i 1.03077 1.03077i 0.0312561 0.999511i \(-0.490049\pi\)
0.999511 0.0312561i \(-0.00995075\pi\)
\(164\) 32.9681 + 190.706i 0.201025 + 1.16284i
\(165\) 31.3118 + 31.3118i 0.189769 + 0.189769i
\(166\) −10.2270 119.195i −0.0616082 0.718041i
\(167\) 118.309 0.708434 0.354217 0.935163i \(-0.384747\pi\)
0.354217 + 0.935163i \(0.384747\pi\)
\(168\) 57.9015 + 66.2326i 0.344652 + 0.394242i
\(169\) 79.8354i 0.472399i
\(170\) 32.6246 + 380.238i 0.191909 + 2.23669i
\(171\) 71.7891 71.7891i 0.419820 0.419820i
\(172\) −150.046 + 212.767i −0.872360 + 1.23702i
\(173\) −8.88388 8.88388i −0.0513519 0.0513519i 0.680965 0.732316i \(-0.261561\pi\)
−0.732316 + 0.680965i \(0.761561\pi\)
\(174\) −83.4830 70.2893i −0.479787 0.403961i
\(175\) 219.308 109.097i 1.25319 0.623409i
\(176\) −52.6064 24.9614i −0.298900 0.141826i
\(177\) −135.670 −0.766496
\(178\) 12.4144 + 10.4524i 0.0697440 + 0.0587216i
\(179\) −134.233 + 134.233i −0.749904 + 0.749904i −0.974461 0.224557i \(-0.927907\pi\)
0.224557 + 0.974461i \(0.427907\pi\)
\(180\) −116.633 + 165.387i −0.647963 + 0.918817i
\(181\) 9.12602 9.12602i 0.0504200 0.0504200i −0.681447 0.731867i \(-0.738649\pi\)
0.731867 + 0.681447i \(0.238649\pi\)
\(182\) −188.596 + 114.905i −1.03624 + 0.631345i
\(183\) 168.123i 0.918705i
\(184\) 71.6762 + 41.8641i 0.389545 + 0.227522i
\(185\) 27.9652 0.151163
\(186\) 45.4888 3.90296i 0.244564 0.0209837i
\(187\) 63.3969 63.3969i 0.339021 0.339021i
\(188\) −76.1931 + 13.1718i −0.405282 + 0.0700625i
\(189\) −161.926 54.3420i −0.856754 0.287524i
\(190\) −184.179 155.071i −0.969364 0.816165i
\(191\) −182.482 −0.955405 −0.477702 0.878522i \(-0.658530\pi\)
−0.477702 + 0.878522i \(0.658530\pi\)
\(192\) −26.9970 + 96.8488i −0.140610 + 0.504421i
\(193\) 378.766 1.96252 0.981258 0.192699i \(-0.0617240\pi\)
0.981258 + 0.192699i \(0.0617240\pi\)
\(194\) 181.991 216.151i 0.938095 1.11418i
\(195\) 135.723 + 135.723i 0.696013 + 0.696013i
\(196\) −174.177 89.8807i −0.888656 0.458575i
\(197\) 128.998 + 128.998i 0.654811 + 0.654811i 0.954148 0.299337i \(-0.0967653\pi\)
−0.299337 + 0.954148i \(0.596765\pi\)
\(198\) 47.3699 4.06435i 0.239242 0.0205270i
\(199\) −274.793 −1.38087 −0.690436 0.723394i \(-0.742581\pi\)
−0.690436 + 0.723394i \(0.742581\pi\)
\(200\) 241.726 + 141.186i 1.20863 + 0.705928i
\(201\) 180.236 0.896696
\(202\) −256.872 + 22.0397i −1.27164 + 0.109107i
\(203\) 230.508 + 77.3576i 1.13551 + 0.381072i
\(204\) −126.513 89.2190i −0.620164 0.437348i
\(205\) −264.992 + 264.992i −1.29264 + 1.29264i
\(206\) 257.590 + 216.880i 1.25043 + 1.05281i
\(207\) −67.7758 −0.327419
\(208\) −228.025 108.196i −1.09627 0.520175i
\(209\) 56.5631i 0.270637i
\(210\) −40.1937 + 165.539i −0.191399 + 0.788282i
\(211\) 81.1914 81.1914i 0.384793 0.384793i −0.488032 0.872826i \(-0.662285\pi\)
0.872826 + 0.488032i \(0.162285\pi\)
\(212\) −26.3725 + 37.3964i −0.124398 + 0.176398i
\(213\) 10.5130 10.5130i 0.0493567 0.0493567i
\(214\) −14.5599 169.695i −0.0680368 0.792966i
\(215\) −504.138 −2.34483
\(216\) −49.5735 188.802i −0.229507 0.874084i
\(217\) −91.0725 + 45.3048i −0.419689 + 0.208778i
\(218\) 10.4598 0.897452i 0.0479806 0.00411675i
\(219\) 40.8089 + 40.8089i 0.186342 + 0.186342i
\(220\) −19.2067 111.103i −0.0873033 0.505013i
\(221\) 274.797 274.797i 1.24343 1.24343i
\(222\) −7.30631 + 8.67775i −0.0329113 + 0.0390889i
\(223\) 265.113i 1.18885i 0.804152 + 0.594424i \(0.202620\pi\)
−0.804152 + 0.594424i \(0.797380\pi\)
\(224\) −23.2914 222.786i −0.103979 0.994579i
\(225\) −228.572 −1.01588
\(226\) 67.5390 + 56.8650i 0.298845 + 0.251615i
\(227\) −35.0233 35.0233i −0.154288 0.154288i 0.625742 0.780030i \(-0.284796\pi\)
−0.780030 + 0.625742i \(0.784796\pi\)
\(228\) 96.2389 16.6372i 0.422100 0.0729700i
\(229\) 16.7509 16.7509i 0.0731481 0.0731481i −0.669586 0.742734i \(-0.733529\pi\)
0.742734 + 0.669586i \(0.233529\pi\)
\(230\) 13.7403 + 160.143i 0.0597404 + 0.696272i
\(231\) 35.8311 17.8245i 0.155113 0.0771622i
\(232\) 70.5695 + 268.766i 0.304179 + 1.15848i
\(233\) 162.893i 0.699113i 0.936915 + 0.349556i \(0.113668\pi\)
−0.936915 + 0.349556i \(0.886332\pi\)
\(234\) 205.327 17.6171i 0.877466 0.0752869i
\(235\) −105.872 105.872i −0.450520 0.450520i
\(236\) 282.306 + 199.086i 1.19621 + 0.843587i
\(237\) −61.1327 61.1327i −0.257944 0.257944i
\(238\) 335.166 + 81.3800i 1.40826 + 0.341933i
\(239\) −458.835 −1.91981 −0.959906 0.280321i \(-0.909559\pi\)
−0.959906 + 0.280321i \(0.909559\pi\)
\(240\) −183.386 + 65.3583i −0.764107 + 0.272326i
\(241\) 6.17751i 0.0256328i 0.999918 + 0.0128164i \(0.00407970\pi\)
−0.999918 + 0.0128164i \(0.995920\pi\)
\(242\) 138.805 164.859i 0.573573 0.681236i
\(243\) 178.007 + 178.007i 0.732538 + 0.732538i
\(244\) 246.709 349.836i 1.01110 1.43376i
\(245\) −52.1432 375.928i −0.212830 1.53440i
\(246\) −12.9954 151.461i −0.0528269 0.615696i
\(247\) 245.176i 0.992614i
\(248\) −100.382 58.6304i −0.404767 0.236413i
\(249\) 93.9688i 0.377385i
\(250\) 13.2322 + 154.221i 0.0529288 + 0.616883i
\(251\) −19.6790 + 19.6790i −0.0784025 + 0.0784025i −0.745221 0.666818i \(-0.767656\pi\)
0.666818 + 0.745221i \(0.267656\pi\)
\(252\) 108.166 + 147.486i 0.429231 + 0.585260i
\(253\) 26.7005 26.7005i 0.105536 0.105536i
\(254\) 155.969 + 131.319i 0.614050 + 0.517005i
\(255\) 299.766i 1.17555i
\(256\) 198.296 161.910i 0.774592 0.632461i
\(257\) 46.6133i 0.181375i −0.995879 0.0906873i \(-0.971094\pi\)
0.995879 0.0906873i \(-0.0289064\pi\)
\(258\) 131.713 156.437i 0.510516 0.606343i
\(259\) 8.04103 23.9604i 0.0310465 0.0925112i
\(260\) −83.2525 481.580i −0.320202 1.85223i
\(261\) −160.435 160.435i −0.614694 0.614694i
\(262\) −23.2824 271.355i −0.0888639 1.03571i
\(263\) 233.528i 0.887940i 0.896042 + 0.443970i \(0.146430\pi\)
−0.896042 + 0.443970i \(0.853570\pi\)
\(264\) 39.4938 + 23.0673i 0.149598 + 0.0873760i
\(265\) −88.6085 −0.334372
\(266\) −185.823 + 113.215i −0.698581 + 0.425620i
\(267\) −9.01371 9.01371i −0.0337592 0.0337592i
\(268\) −375.041 264.484i −1.39941 0.986881i
\(269\) −118.706 118.706i −0.441286 0.441286i 0.451158 0.892444i \(-0.351011\pi\)
−0.892444 + 0.451158i \(0.851011\pi\)
\(270\) 243.447 289.144i 0.901656 1.07090i
\(271\) 131.992i 0.487055i −0.969894 0.243527i \(-0.921695\pi\)
0.969894 0.243527i \(-0.0783046\pi\)
\(272\) 132.331 + 371.300i 0.486510 + 1.36507i
\(273\) 155.312 77.2610i 0.568907 0.283007i
\(274\) −57.5177 + 68.3141i −0.209919 + 0.249322i
\(275\) 90.0467 90.0467i 0.327443 0.327443i
\(276\) −53.2829 37.5758i −0.193054 0.136144i
\(277\) −249.565 249.565i −0.900958 0.900958i 0.0945613 0.995519i \(-0.469855\pi\)
−0.995519 + 0.0945613i \(0.969855\pi\)
\(278\) 19.4840 1.67173i 0.0700863 0.00601343i
\(279\) 94.9197 0.340214
\(280\) 326.554 285.478i 1.16626 1.01956i
\(281\) 344.044i 1.22436i −0.790720 0.612178i \(-0.790294\pi\)
0.790720 0.612178i \(-0.209706\pi\)
\(282\) 60.5133 5.19207i 0.214586 0.0184116i
\(283\) −141.638 + 141.638i −0.500489 + 0.500489i −0.911590 0.411101i \(-0.865144\pi\)
0.411101 + 0.911590i \(0.365144\pi\)
\(284\) −37.3028 + 6.44867i −0.131348 + 0.0227066i
\(285\) 133.726 + 133.726i 0.469216 + 0.469216i
\(286\) −73.9489 + 87.8295i −0.258563 + 0.307096i
\(287\) 150.848 + 303.238i 0.525604 + 1.05658i
\(288\) −73.1347 + 195.815i −0.253940 + 0.679914i
\(289\) −317.934 −1.10012
\(290\) −346.555 + 411.606i −1.19502 + 1.41933i
\(291\) −156.940 + 156.940i −0.539314 + 0.539314i
\(292\) −25.0323 144.801i −0.0857269 0.495894i
\(293\) −82.6004 + 82.6004i −0.281913 + 0.281913i −0.833871 0.551959i \(-0.813881\pi\)
0.551959 + 0.833871i \(0.313881\pi\)
\(294\) 130.276 + 82.0364i 0.443115 + 0.279035i
\(295\) 668.908i 2.26748i
\(296\) 27.9372 7.33544i 0.0943826 0.0247819i
\(297\) −88.7986 −0.298985
\(298\) −21.0208 244.997i −0.0705396 0.822136i
\(299\) 115.735 115.735i 0.387072 0.387072i
\(300\) −179.695 126.723i −0.598984 0.422412i
\(301\) −144.958 + 431.942i −0.481589 + 1.43502i
\(302\) 175.302 208.207i 0.580469 0.689427i
\(303\) 202.509 0.668345
\(304\) −224.671 106.605i −0.739050 0.350675i
\(305\) 828.916 2.71776
\(306\) −246.204 207.294i −0.804589 0.677431i
\(307\) −200.953 200.953i −0.654570 0.654570i 0.299520 0.954090i \(-0.403174\pi\)
−0.954090 + 0.299520i \(0.903174\pi\)
\(308\) −100.715 15.4900i −0.326996 0.0502922i
\(309\) −187.027 187.027i −0.605266 0.605266i
\(310\) −19.2432 224.279i −0.0620748 0.723480i
\(311\) 463.074 1.48898 0.744491 0.667632i \(-0.232692\pi\)
0.744491 + 0.667632i \(0.232692\pi\)
\(312\) 171.188 + 99.9861i 0.548679 + 0.320468i
\(313\) 1.09088 0.00348523 0.00174262 0.999998i \(-0.499445\pi\)
0.00174262 + 0.999998i \(0.499445\pi\)
\(314\) 14.8031 + 172.529i 0.0471435 + 0.549456i
\(315\) −112.679 + 335.756i −0.357710 + 1.06589i
\(316\) 37.4989 + 216.915i 0.118667 + 0.686441i
\(317\) 51.1667 51.1667i 0.161409 0.161409i −0.621782 0.783191i \(-0.713591\pi\)
0.783191 + 0.621782i \(0.213591\pi\)
\(318\) 23.1502 27.4957i 0.0727995 0.0864644i
\(319\) 126.408 0.396263
\(320\) 477.504 + 133.107i 1.49220 + 0.415958i
\(321\) 133.781i 0.416764i
\(322\) 141.160 + 34.2743i 0.438385 + 0.106442i
\(323\) 270.755 270.755i 0.838252 0.838252i
\(324\) −13.9393 80.6327i −0.0430224 0.248866i
\(325\) 390.312 390.312i 1.20096 1.20096i
\(326\) 473.479 40.6247i 1.45239 0.124616i
\(327\) −8.24610 −0.0252174
\(328\) −195.218 + 334.236i −0.595176 + 1.01901i
\(329\) −121.153 + 60.2685i −0.368246 + 0.183187i
\(330\) 7.57094 + 88.2390i 0.0229423 + 0.267391i
\(331\) 28.8219 + 28.8219i 0.0870753 + 0.0870753i 0.749303 0.662228i \(-0.230389\pi\)
−0.662228 + 0.749303i \(0.730389\pi\)
\(332\) 137.893 195.534i 0.415340 0.588957i
\(333\) −16.6766 + 16.6766i −0.0500800 + 0.0500800i
\(334\) 181.004 + 152.398i 0.541928 + 0.456282i
\(335\) 888.637i 2.65265i
\(336\) 3.26837 + 175.917i 0.00972730 + 0.523562i
\(337\) −84.7524 −0.251491 −0.125745 0.992063i \(-0.540132\pi\)
−0.125745 + 0.992063i \(0.540132\pi\)
\(338\) −102.839 + 122.143i −0.304258 + 0.361369i
\(339\) −49.0378 49.0378i −0.144654 0.144654i
\(340\) −439.886 + 623.763i −1.29378 + 1.83460i
\(341\) −37.3939 + 37.3939i −0.109660 + 0.109660i
\(342\) 202.307 17.3580i 0.591541 0.0507545i
\(343\) −337.086 63.4174i −0.982759 0.184890i
\(344\) −503.634 + 132.238i −1.46405 + 0.384414i
\(345\) 126.251i 0.365944i
\(346\) −2.14805 25.0354i −0.00620823 0.0723567i
\(347\) −38.7326 38.7326i −0.111621 0.111621i 0.649090 0.760711i \(-0.275150\pi\)
−0.760711 + 0.649090i \(0.775150\pi\)
\(348\) −37.1809 215.076i −0.106842 0.618034i
\(349\) 3.91040 + 3.91040i 0.0112046 + 0.0112046i 0.712687 0.701482i \(-0.247478\pi\)
−0.701482 + 0.712687i \(0.747478\pi\)
\(350\) 476.058 + 115.589i 1.36017 + 0.330255i
\(351\) −384.902 −1.09659
\(352\) −48.3305 105.954i −0.137302 0.301005i
\(353\) 620.142i 1.75678i 0.477949 + 0.878388i \(0.341380\pi\)
−0.477949 + 0.878388i \(0.658620\pi\)
\(354\) −207.566 174.762i −0.586344 0.493677i
\(355\) −51.8333 51.8333i −0.146009 0.146009i
\(356\) 5.52902 + 31.9831i 0.0155310 + 0.0898400i
\(357\) −256.838 86.1938i −0.719433 0.241439i
\(358\) −378.278 + 32.4564i −1.05664 + 0.0906603i
\(359\) 343.001i 0.955435i 0.878514 + 0.477717i \(0.158536\pi\)
−0.878514 + 0.477717i \(0.841464\pi\)
\(360\) −391.483 + 102.791i −1.08745 + 0.285531i
\(361\) 119.430i 0.330832i
\(362\) 25.7178 2.20660i 0.0710436 0.00609557i
\(363\) −119.699 + 119.699i −0.329749 + 0.329749i
\(364\) −436.553 67.1421i −1.19932 0.184456i
\(365\) 201.205 201.205i 0.551246 0.551246i
\(366\) −216.566 + 257.217i −0.591711 + 0.702778i
\(367\) 680.088i 1.85310i 0.376171 + 0.926550i \(0.377240\pi\)
−0.376171 + 0.926550i \(0.622760\pi\)
\(368\) 55.7329 + 156.378i 0.151448 + 0.424941i
\(369\) 316.048i 0.856498i
\(370\) 42.7849 + 36.0231i 0.115635 + 0.0973597i
\(371\) −25.4782 + 75.9193i −0.0686745 + 0.204634i
\(372\) 74.6224 + 52.6248i 0.200598 + 0.141464i
\(373\) −32.9618 32.9618i −0.0883694 0.0883694i 0.661540 0.749910i \(-0.269903\pi\)
−0.749910 + 0.661540i \(0.769903\pi\)
\(374\) 178.657 15.3289i 0.477693 0.0409862i
\(375\) 121.582i 0.324219i
\(376\) −133.537 77.9955i −0.355152 0.207435i
\(377\) 547.921 1.45337
\(378\) −177.736 291.724i −0.470202 0.771755i
\(379\) −217.828 217.828i −0.574745 0.574745i 0.358706 0.933451i \(-0.383218\pi\)
−0.933451 + 0.358706i \(0.883218\pi\)
\(380\) −82.0280 474.497i −0.215863 1.24868i
\(381\) −113.244 113.244i −0.297228 0.297228i
\(382\) −279.186 235.063i −0.730853 0.615348i
\(383\) 263.286i 0.687430i 0.939074 + 0.343715i \(0.111685\pi\)
−0.939074 + 0.343715i \(0.888315\pi\)
\(384\) −166.059 + 113.396i −0.432444 + 0.295302i
\(385\) −87.8820 176.662i −0.228265 0.458863i
\(386\) 579.486 + 487.903i 1.50126 + 1.26400i
\(387\) 300.635 300.635i 0.776835 0.776835i
\(388\) 556.866 96.2674i 1.43522 0.248112i
\(389\) 28.5590 + 28.5590i 0.0734164 + 0.0734164i 0.742862 0.669445i \(-0.233468\pi\)
−0.669445 + 0.742862i \(0.733468\pi\)
\(390\) 32.8166 + 382.476i 0.0841452 + 0.980708i
\(391\) −255.619 −0.653757
\(392\) −150.699 361.875i −0.384437 0.923151i
\(393\) 213.926i 0.544342i
\(394\) 31.1906 + 363.525i 0.0791640 + 0.922653i
\(395\) −301.409 + 301.409i −0.763062 + 0.763062i
\(396\) 77.7082 + 54.8009i 0.196233 + 0.138386i
\(397\) −263.058 263.058i −0.662615 0.662615i 0.293380 0.955996i \(-0.405220\pi\)
−0.955996 + 0.293380i \(0.905220\pi\)
\(398\) −420.415 353.972i −1.05632 0.889378i
\(399\) 153.027 76.1247i 0.383527 0.190789i
\(400\) 187.958 + 527.381i 0.469894 + 1.31845i
\(401\) 372.578 0.929123 0.464562 0.885541i \(-0.346212\pi\)
0.464562 + 0.885541i \(0.346212\pi\)
\(402\) 275.749 + 232.169i 0.685942 + 0.577535i
\(403\) −162.086 + 162.086i −0.402198 + 0.402198i
\(404\) −421.387 297.168i −1.04304 0.735564i
\(405\) 112.041 112.041i 0.276645 0.276645i
\(406\) 253.014 + 415.278i 0.623187 + 1.02285i
\(407\) 13.1396i 0.0322841i
\(408\) −78.6303 299.466i −0.192721 0.733986i
\(409\) 561.999 1.37408 0.687040 0.726620i \(-0.258910\pi\)
0.687040 + 0.726620i \(0.258910\pi\)
\(410\) −746.766 + 64.0728i −1.82138 + 0.156275i
\(411\) 49.6006 49.6006i 0.120683 0.120683i
\(412\) 114.723 + 663.623i 0.278453 + 1.61074i
\(413\) 573.116 + 192.336i 1.38769 + 0.465704i
\(414\) −103.692 87.3048i −0.250465 0.210881i
\(415\) 463.305 1.11640
\(416\) −209.491 459.261i −0.503583 1.10399i
\(417\) −15.3605 −0.0368357
\(418\) −72.8613 + 86.5377i −0.174309 + 0.207028i
\(419\) 238.635 + 238.635i 0.569534 + 0.569534i 0.931998 0.362464i \(-0.118064\pi\)
−0.362464 + 0.931998i \(0.618064\pi\)
\(420\) −274.731 + 201.489i −0.654122 + 0.479735i
\(421\) 503.838 + 503.838i 1.19676 + 1.19676i 0.975130 + 0.221635i \(0.0711393\pi\)
0.221635 + 0.975130i \(0.428861\pi\)
\(422\) 228.803 19.6314i 0.542188 0.0465199i
\(423\) 126.271 0.298512
\(424\) −88.5200 + 23.2425i −0.208773 + 0.0548173i
\(425\) −862.068 −2.02839
\(426\) 29.6263 2.54195i 0.0695453 0.00596702i
\(427\) 238.344 710.210i 0.558183 1.66326i
\(428\) 196.315 278.377i 0.458680 0.650413i
\(429\) 63.7701 63.7701i 0.148648 0.148648i
\(430\) −771.296 649.400i −1.79371 1.51023i
\(431\) −580.398 −1.34663 −0.673315 0.739355i \(-0.735130\pi\)
−0.673315 + 0.739355i \(0.735130\pi\)
\(432\) 167.360 352.712i 0.387407 0.816463i
\(433\) 161.231i 0.372359i 0.982516 + 0.186179i \(0.0596106\pi\)
−0.982516 + 0.186179i \(0.940389\pi\)
\(434\) −197.694 48.0010i −0.455516 0.110601i
\(435\) 298.853 298.853i 0.687019 0.687019i
\(436\) 17.1588 + 12.1006i 0.0393550 + 0.0277537i
\(437\) 114.032 114.032i 0.260944 0.260944i
\(438\) 9.86726 + 115.003i 0.0225280 + 0.262563i
\(439\) 171.458 0.390564 0.195282 0.980747i \(-0.437438\pi\)
0.195282 + 0.980747i \(0.437438\pi\)
\(440\) 113.731 194.721i 0.258480 0.442547i
\(441\) 255.274 + 193.085i 0.578853 + 0.437833i
\(442\) 774.398 66.4436i 1.75203 0.150325i
\(443\) 362.506 + 362.506i 0.818298 + 0.818298i 0.985861 0.167563i \(-0.0535898\pi\)
−0.167563 + 0.985861i \(0.553590\pi\)
\(444\) −22.3563 + 3.86481i −0.0503521 + 0.00870453i
\(445\) −44.4413 + 44.4413i −0.0998681 + 0.0998681i
\(446\) −341.503 + 405.605i −0.765701 + 0.909428i
\(447\) 193.147i 0.432095i
\(448\) 251.345 370.850i 0.561038 0.827790i
\(449\) −680.601 −1.51582 −0.757908 0.652362i \(-0.773778\pi\)
−0.757908 + 0.652362i \(0.773778\pi\)
\(450\) −349.700 294.433i −0.777111 0.654296i
\(451\) 124.508 + 124.508i 0.276071 + 0.276071i
\(452\) 30.0799 + 173.999i 0.0665484 + 0.384954i
\(453\) −151.172 + 151.172i −0.333713 + 0.333713i
\(454\) −8.46834 98.6981i −0.0186527 0.217397i
\(455\) −380.929 765.750i −0.837206 1.68297i
\(456\) 168.670 + 98.5155i 0.369890 + 0.216043i
\(457\) 76.4527i 0.167293i 0.996496 + 0.0836463i \(0.0266566\pi\)
−0.996496 + 0.0836463i \(0.973343\pi\)
\(458\) 47.2053 4.05023i 0.103068 0.00884331i
\(459\) 425.060 + 425.060i 0.926056 + 0.926056i
\(460\) −185.264 + 262.707i −0.402749 + 0.571102i
\(461\) −9.52689 9.52689i −0.0206657 0.0206657i 0.696698 0.717364i \(-0.254652\pi\)
−0.717364 + 0.696698i \(0.754652\pi\)
\(462\) 77.7796 + 18.8853i 0.168354 + 0.0408772i
\(463\) 108.583 0.234521 0.117260 0.993101i \(-0.462589\pi\)
0.117260 + 0.993101i \(0.462589\pi\)
\(464\) −238.242 + 502.098i −0.513453 + 1.08211i
\(465\) 176.813i 0.380243i
\(466\) −209.829 + 249.216i −0.450278 + 0.534797i
\(467\) 428.836 + 428.836i 0.918278 + 0.918278i 0.996904 0.0786261i \(-0.0250533\pi\)
−0.0786261 + 0.996904i \(0.525053\pi\)
\(468\) 336.830 + 237.537i 0.719722 + 0.507558i
\(469\) −761.379 255.516i −1.62341 0.544811i
\(470\) −25.5990 298.356i −0.0544660 0.634799i
\(471\) 136.016i 0.288781i
\(472\) 175.459 + 668.239i 0.371734 + 1.41576i
\(473\) 236.872i 0.500787i
\(474\) −14.7814 172.276i −0.0311844 0.363452i
\(475\) 384.571 384.571i 0.809623 0.809623i
\(476\) 407.953 + 556.247i 0.857044 + 1.16859i
\(477\) 52.8404 52.8404i 0.110776 0.110776i
\(478\) −701.987 591.044i −1.46859 1.23649i
\(479\) 678.346i 1.41617i −0.706127 0.708085i \(-0.749559\pi\)
0.706127 0.708085i \(-0.250441\pi\)
\(480\) −364.758 136.233i −0.759913 0.283818i
\(481\) 56.9543i 0.118408i
\(482\) −7.95750 + 9.45117i −0.0165093 + 0.0196082i
\(483\) −108.171 36.3017i −0.223956 0.0751589i
\(484\) 424.724 73.4234i 0.877528 0.151701i
\(485\) 773.780 + 773.780i 1.59542 + 1.59542i
\(486\) 43.0406 + 501.636i 0.0885608 + 1.03217i
\(487\) 737.584i 1.51455i −0.653098 0.757273i \(-0.726531\pi\)
0.653098 0.757273i \(-0.273469\pi\)
\(488\) 828.087 217.429i 1.69690 0.445552i
\(489\) −373.274 −0.763341
\(490\) 404.473 642.313i 0.825455 1.31084i
\(491\) −524.855 524.855i −1.06895 1.06895i −0.997440 0.0715115i \(-0.977218\pi\)
−0.0715115 0.997440i \(-0.522782\pi\)
\(492\) 175.221 248.465i 0.356140 0.505011i
\(493\) −605.087 605.087i −1.22736 1.22736i
\(494\) −315.821 + 375.102i −0.639313 + 0.759316i
\(495\) 184.125i 0.371969i
\(496\) −78.0536 219.007i −0.157366 0.441546i
\(497\) −59.3144 + 29.5064i −0.119345 + 0.0593691i
\(498\) −121.045 + 143.766i −0.243062 + 0.288687i
\(499\) 61.5115 61.5115i 0.123270 0.123270i −0.642781 0.766050i \(-0.722219\pi\)
0.766050 + 0.642781i \(0.222219\pi\)
\(500\) −178.414 + 252.992i −0.356828 + 0.505985i
\(501\) −131.421 131.421i −0.262318 0.262318i
\(502\) −55.4569 + 4.75823i −0.110472 + 0.00947854i
\(503\) −64.6784 −0.128585 −0.0642927 0.997931i \(-0.520479\pi\)
−0.0642927 + 0.997931i \(0.520479\pi\)
\(504\) −24.4951 + 364.976i −0.0486015 + 0.724159i
\(505\) 998.450i 1.97713i
\(506\) 75.2440 6.45596i 0.148704 0.0127588i
\(507\) 88.6838 88.6838i 0.174919 0.174919i
\(508\) 69.4639 + 401.819i 0.136740 + 0.790983i
\(509\) 392.205 + 392.205i 0.770541 + 0.770541i 0.978201 0.207660i \(-0.0665847\pi\)
−0.207660 + 0.978201i \(0.566585\pi\)
\(510\) 386.140 458.621i 0.757138 0.899258i
\(511\) −114.537 230.245i −0.224143 0.450577i
\(512\) 511.942 + 7.72126i 0.999886 + 0.0150806i
\(513\) −379.241 −0.739261
\(514\) 60.0445 71.3152i 0.116818 0.138745i
\(515\) −922.121 + 922.121i −1.79053 + 1.79053i
\(516\) 403.025 69.6722i 0.781055 0.135024i
\(517\) −49.7447 + 49.7447i −0.0962180 + 0.0962180i
\(518\) 43.1666 26.2998i 0.0833332 0.0507719i
\(519\) 19.7370i 0.0380289i
\(520\) 492.973 844.026i 0.948024 1.62313i
\(521\) −537.133 −1.03097 −0.515483 0.856900i \(-0.672387\pi\)
−0.515483 + 0.856900i \(0.672387\pi\)
\(522\) −38.7919 452.118i −0.0743140 0.866126i
\(523\) 282.626 282.626i 0.540394 0.540394i −0.383251 0.923644i \(-0.625195\pi\)
0.923644 + 0.383251i \(0.125195\pi\)
\(524\) 313.923 445.146i 0.599089 0.849514i
\(525\) −364.803 122.427i −0.694862 0.233194i
\(526\) −300.817 + 357.282i −0.571896 + 0.679244i
\(527\) 357.993 0.679303
\(528\) 30.7090 + 86.1649i 0.0581610 + 0.163191i
\(529\) 421.342 0.796489
\(530\) −135.565 114.140i −0.255783 0.215359i
\(531\) −398.893 398.893i −0.751212 0.751212i
\(532\) −430.133 66.1546i −0.808520 0.124351i
\(533\) 539.686 + 539.686i 1.01254 + 1.01254i
\(534\) −2.17944 25.4013i −0.00408135 0.0475679i
\(535\) 659.596 1.23289
\(536\) −233.095 887.749i −0.434878 1.65625i
\(537\) 298.221 0.555346
\(538\) −28.7021 334.522i −0.0533496 0.621788i
\(539\) −176.632 + 24.4998i −0.327704 + 0.0454542i
\(540\) 744.915 128.776i 1.37947 0.238474i
\(541\) −53.3102 + 53.3102i −0.0985401 + 0.0985401i −0.754658 0.656118i \(-0.772197\pi\)
0.656118 + 0.754658i \(0.272197\pi\)
\(542\) 170.024 201.939i 0.313698 0.372581i
\(543\) −20.2750 −0.0373388
\(544\) −275.830 + 738.525i −0.507040 + 1.35758i
\(545\) 40.6567i 0.0745994i
\(546\) 337.139 + 81.8591i 0.617471 + 0.149925i
\(547\) 301.530 301.530i 0.551244 0.551244i −0.375556 0.926800i \(-0.622548\pi\)
0.926800 + 0.375556i \(0.122548\pi\)
\(548\) −175.996 + 30.4251i −0.321161 + 0.0555203i
\(549\) −494.312 + 494.312i −0.900385 + 0.900385i
\(550\) 253.758 21.7726i 0.461378 0.0395865i
\(551\) 539.862 0.979786
\(552\) −33.1163 126.124i −0.0599933 0.228486i
\(553\) 171.579 + 344.912i 0.310270 + 0.623711i
\(554\) −60.3428 703.293i −0.108922 1.26948i
\(555\) −31.0647 31.0647i −0.0559724 0.0559724i
\(556\) 31.9626 + 22.5405i 0.0574867 + 0.0405404i
\(557\) −524.220 + 524.220i −0.941148 + 0.941148i −0.998362 0.0572135i \(-0.981778\pi\)
0.0572135 + 0.998362i \(0.481778\pi\)
\(558\) 145.221 + 122.270i 0.260252 + 0.219122i
\(559\) 1026.73i 1.83673i
\(560\) 867.342 16.1144i 1.54882 0.0287757i
\(561\) −140.847 −0.251064
\(562\) 443.177 526.364i 0.788571 0.936591i
\(563\) −608.657 608.657i −1.08110 1.08110i −0.996407 0.0846888i \(-0.973010\pi\)
−0.0846888 0.996407i \(-0.526990\pi\)
\(564\) 99.2694 + 70.0062i 0.176010 + 0.124124i
\(565\) −241.777 + 241.777i −0.427923 + 0.427923i
\(566\) −399.148 + 34.2470i −0.705208 + 0.0605071i
\(567\) −63.7802 128.212i −0.112487 0.226124i
\(568\) −65.3776 38.1853i −0.115101 0.0672276i
\(569\) 576.735i 1.01359i 0.862066 + 0.506797i \(0.169170\pi\)
−0.862066 + 0.506797i \(0.830830\pi\)
\(570\) 32.3340 + 376.851i 0.0567262 + 0.661142i
\(571\) −401.402 401.402i −0.702980 0.702980i 0.262069 0.965049i \(-0.415595\pi\)
−0.965049 + 0.262069i \(0.915595\pi\)
\(572\) −226.274 + 39.1167i −0.395583 + 0.0683858i
\(573\) 202.708 + 202.708i 0.353765 + 0.353765i
\(574\) −159.826 + 658.248i −0.278442 + 1.14677i
\(575\) −363.072 −0.631430
\(576\) −364.129 + 205.377i −0.632168 + 0.356557i
\(577\) 933.829i 1.61842i −0.587519 0.809210i \(-0.699895\pi\)
0.587519 0.809210i \(-0.300105\pi\)
\(578\) −486.418 409.544i −0.841554 0.708554i
\(579\) −420.746 420.746i −0.726676 0.726676i
\(580\) −1060.41 + 183.317i −1.82830 + 0.316064i
\(581\) 133.217 396.957i 0.229290 0.683231i
\(582\) −442.269 + 37.9469i −0.759913 + 0.0652008i
\(583\) 41.6333i 0.0714121i
\(584\) 148.226 253.781i 0.253812 0.434556i
\(585\) 798.097i 1.36427i
\(586\) −232.774 + 19.9721i −0.397225 + 0.0340821i
\(587\) −415.106 + 415.106i −0.707165 + 0.707165i −0.965938 0.258773i \(-0.916682\pi\)
0.258773 + 0.965938i \(0.416682\pi\)
\(588\) 93.6387 + 293.324i 0.159249 + 0.498850i
\(589\) −159.702 + 159.702i −0.271140 + 0.271140i
\(590\) −861.647 + 1023.38i −1.46042 + 1.73455i
\(591\) 286.590i 0.484924i
\(592\) 52.1912 + 24.7644i 0.0881608 + 0.0418317i
\(593\) 818.826i 1.38082i −0.723419 0.690409i \(-0.757430\pi\)
0.723419 0.690409i \(-0.242570\pi\)
\(594\) −135.856 114.385i −0.228714 0.192568i
\(595\) −424.971 + 1266.31i −0.714237 + 2.12826i
\(596\) 283.430 401.906i 0.475553 0.674339i
\(597\) 305.250 + 305.250i 0.511306 + 0.511306i
\(598\) 326.149 27.9837i 0.545399 0.0467955i
\(599\) 503.564i 0.840674i −0.907368 0.420337i \(-0.861912\pi\)
0.907368 0.420337i \(-0.138088\pi\)
\(600\) −111.684 425.351i −0.186140 0.708918i
\(601\) −110.475 −0.183819 −0.0919093 0.995767i \(-0.529297\pi\)
−0.0919093 + 0.995767i \(0.529297\pi\)
\(602\) −778.179 + 474.115i −1.29266 + 0.787567i
\(603\) 529.925 + 529.925i 0.878815 + 0.878815i
\(604\) 536.400 92.7292i 0.888079 0.153525i
\(605\) 590.164 + 590.164i 0.975478 + 0.975478i
\(606\) 309.824 + 260.859i 0.511261 + 0.430461i
\(607\) 169.212i 0.278769i 0.990238 + 0.139384i \(0.0445123\pi\)
−0.990238 + 0.139384i \(0.955488\pi\)
\(608\) −206.410 452.507i −0.339489 0.744254i
\(609\) −170.124 341.987i −0.279350 0.561555i
\(610\) 1268.18 + 1067.76i 2.07899 + 1.75043i
\(611\) −215.621 + 215.621i −0.352898 + 0.352898i
\(612\) −109.652 634.292i −0.179170 1.03642i
\(613\) 199.765 + 199.765i 0.325881 + 0.325881i 0.851018 0.525137i \(-0.175986\pi\)
−0.525137 + 0.851018i \(0.675986\pi\)
\(614\) −48.5888 566.300i −0.0791349 0.922313i
\(615\) 588.723 0.957273
\(616\) −134.134 153.434i −0.217749 0.249080i
\(617\) 166.208i 0.269381i −0.990888 0.134690i \(-0.956996\pi\)
0.990888 0.134690i \(-0.0430040\pi\)
\(618\) −45.2217 527.057i −0.0731742 0.852842i
\(619\) −474.519 + 474.519i −0.766589 + 0.766589i −0.977504 0.210915i \(-0.932356\pi\)
0.210915 + 0.977504i \(0.432356\pi\)
\(620\) 259.462 367.919i 0.418487 0.593418i
\(621\) 179.020 + 179.020i 0.288277 + 0.288277i
\(622\) 708.471 + 596.504i 1.13902 + 0.959010i
\(623\) 25.2985 + 50.8555i 0.0406075 + 0.0816301i
\(624\) 133.110 + 373.486i 0.213317 + 0.598535i
\(625\) 275.354 0.440566
\(626\) 1.66897 + 1.40520i 0.00266609 + 0.00224474i
\(627\) 62.8322 62.8322i 0.100211 0.100211i
\(628\) −199.594 + 283.026i −0.317825 + 0.450679i
\(629\) −62.8965 + 62.8965i −0.0999944 + 0.0999944i
\(630\) −604.891 + 368.538i −0.960145 + 0.584981i
\(631\) 326.927i 0.518110i 0.965863 + 0.259055i \(0.0834111\pi\)
−0.965863 + 0.259055i \(0.916589\pi\)
\(632\) −222.047 + 380.170i −0.351340 + 0.601534i
\(633\) −180.380 −0.284961
\(634\) 144.191 12.3717i 0.227431 0.0195137i
\(635\) −558.338 + 558.338i −0.879273 + 0.879273i
\(636\) 70.8366 12.2458i 0.111378 0.0192544i
\(637\) −765.621 + 106.196i −1.20192 + 0.166712i
\(638\) 193.395 + 162.831i 0.303128 + 0.255221i
\(639\) 61.8200 0.0967449
\(640\) 559.090 + 818.737i 0.873577 + 1.27928i
\(641\) −468.475 −0.730850 −0.365425 0.930841i \(-0.619076\pi\)
−0.365425 + 0.930841i \(0.619076\pi\)
\(642\) −172.329 + 204.676i −0.268425 + 0.318810i
\(643\) −162.961 162.961i −0.253438 0.253438i 0.568941 0.822379i \(-0.307353\pi\)
−0.822379 + 0.568941i \(0.807353\pi\)
\(644\) 171.815 + 234.271i 0.266794 + 0.363775i
\(645\) 560.013 + 560.013i 0.868237 + 0.868237i
\(646\) 763.008 65.4664i 1.18113 0.101341i
\(647\) −648.535 −1.00237 −0.501186 0.865340i \(-0.667103\pi\)
−0.501186 + 0.865340i \(0.667103\pi\)
\(648\) 82.5401 141.318i 0.127377 0.218084i
\(649\) 314.291 0.484269
\(650\) 1099.93 94.3742i 1.69220 0.145191i
\(651\) 151.493 + 50.8404i 0.232707 + 0.0780958i
\(652\) 776.721 + 547.754i 1.19129 + 0.840114i
\(653\) 198.998 198.998i 0.304744 0.304744i −0.538122 0.842867i \(-0.680866\pi\)
0.842867 + 0.538122i \(0.180866\pi\)
\(654\) −12.6160 10.6221i −0.0192905 0.0162418i
\(655\) 1054.75 1.61030
\(656\) −729.213 + 259.890i −1.11160 + 0.396174i
\(657\) 239.971i 0.365253i
\(658\) −262.990 63.8553i −0.399681 0.0970445i
\(659\) 273.506 273.506i 0.415032 0.415032i −0.468455 0.883487i \(-0.655189\pi\)
0.883487 + 0.468455i \(0.155189\pi\)
\(660\) −102.081 + 144.752i −0.154669 + 0.219322i
\(661\) −418.775 + 418.775i −0.633547 + 0.633547i −0.948956 0.315409i \(-0.897858\pi\)
0.315409 + 0.948956i \(0.397858\pi\)
\(662\) 6.96890 + 81.2223i 0.0105270 + 0.122692i
\(663\) −610.507 −0.920826
\(664\) 462.842 121.528i 0.697051 0.183024i
\(665\) −375.326 754.488i −0.564400 1.13457i
\(666\) −46.9960 + 4.03227i −0.0705645 + 0.00605446i
\(667\) −254.841 254.841i −0.382070 0.382070i
\(668\) 80.6139 + 466.317i 0.120679 + 0.698080i
\(669\) 294.496 294.496i 0.440204 0.440204i
\(670\) 1144.69 1359.55i 1.70849 2.02919i
\(671\) 389.471i 0.580434i
\(672\) −221.605 + 273.351i −0.329769 + 0.406772i
\(673\) −1171.54 −1.74077 −0.870383 0.492375i \(-0.836129\pi\)
−0.870383 + 0.492375i \(0.836129\pi\)
\(674\) −129.666 109.173i −0.192382 0.161978i
\(675\) 603.740 + 603.740i 0.894429 + 0.894429i
\(676\) −314.674 + 54.3988i −0.465494 + 0.0804716i
\(677\) 104.959 104.959i 0.155035 0.155035i −0.625328 0.780362i \(-0.715035\pi\)
0.780362 + 0.625328i \(0.215035\pi\)
\(678\) −11.8569 138.192i −0.0174881 0.203823i
\(679\) 885.461 440.480i 1.30407 0.648718i
\(680\) −1476.49 + 387.680i −2.17131 + 0.570118i
\(681\) 77.8100i 0.114259i
\(682\) −105.379 + 9.04154i −0.154514 + 0.0132574i
\(683\) 598.937 + 598.937i 0.876921 + 0.876921i 0.993215 0.116294i \(-0.0371016\pi\)
−0.116294 + 0.993215i \(0.537102\pi\)
\(684\) 331.876 + 234.043i 0.485198 + 0.342169i
\(685\) −244.552 244.552i −0.357010 0.357010i
\(686\) −434.029 531.239i −0.632695 0.774401i
\(687\) −37.2150 −0.0541703
\(688\) −940.867 446.435i −1.36754 0.648889i
\(689\) 180.461i 0.261918i
\(690\) 162.629 193.155i 0.235694 0.279935i
\(691\) −397.739 397.739i −0.575599 0.575599i 0.358089 0.933688i \(-0.383429\pi\)
−0.933688 + 0.358089i \(0.883429\pi\)
\(692\) 28.9628 41.0695i 0.0418537 0.0593490i
\(693\) 157.757 + 52.9427i 0.227643 + 0.0763964i
\(694\) −9.36522 109.151i −0.0134946 0.157278i
\(695\) 75.7335i 0.108969i
\(696\) 220.164 376.946i 0.316327 0.541588i
\(697\) 1191.98i 1.71016i
\(698\) 0.945502 + 11.0198i 0.00135459 + 0.0157877i
\(699\) 180.947 180.947i 0.258866 0.258866i
\(700\) 579.442 + 790.074i 0.827774 + 1.12868i
\(701\) 848.967 848.967i 1.21108 1.21108i 0.240409 0.970672i \(-0.422718\pi\)
0.970672 0.240409i \(-0.0772815\pi\)
\(702\) −588.874 495.808i −0.838852 0.706279i
\(703\) 56.1166i 0.0798245i
\(704\) 62.5410 224.358i 0.0888366 0.318691i
\(705\) 235.213i 0.333635i
\(706\) −798.830 + 948.775i −1.13149 + 1.34387i
\(707\) −855.466 287.092i −1.20999 0.406070i
\(708\) −92.4436 534.747i −0.130570 0.755293i
\(709\) 250.885 + 250.885i 0.353857 + 0.353857i 0.861542 0.507685i \(-0.169499\pi\)
−0.507685 + 0.861542i \(0.669499\pi\)
\(710\) −12.5329 146.070i −0.0176519 0.205732i
\(711\) 359.482i 0.505601i
\(712\) −32.7396 + 56.0541i −0.0459827 + 0.0787276i
\(713\) 150.774 0.211464
\(714\) −281.914 462.714i −0.394838 0.648058i
\(715\) −314.413 314.413i −0.439738 0.439738i
\(716\) −620.548 437.619i −0.866687 0.611200i
\(717\) 509.690 + 509.690i 0.710864 + 0.710864i
\(718\) −441.834 + 524.769i −0.615367 + 0.730875i
\(719\) 1326.17i 1.84446i −0.386642 0.922230i \(-0.626365\pi\)
0.386642 0.922230i \(-0.373635\pi\)
\(720\) −731.352 347.022i −1.01577 0.481974i
\(721\) 524.924 + 1055.21i 0.728050 + 1.46354i
\(722\) 153.843 182.721i 0.213079 0.253076i
\(723\) 6.86219 6.86219i 0.00949127 0.00949127i
\(724\) 42.1889 + 29.7522i 0.0582719 + 0.0410942i
\(725\) −859.444 859.444i −1.18544 1.18544i
\(726\) −337.320 + 28.9422i −0.464628 + 0.0398653i
\(727\) −135.744 −0.186719 −0.0933593 0.995632i \(-0.529761\pi\)
−0.0933593 + 0.995632i \(0.529761\pi\)
\(728\) −581.409 665.065i −0.798638 0.913551i
\(729\) 211.357i 0.289927i
\(730\) 567.010 48.6497i 0.776726 0.0666434i
\(731\) 1133.86 1133.86i 1.55110 1.55110i
\(732\) −662.663 + 114.557i −0.905277 + 0.156498i
\(733\) 340.606 + 340.606i 0.464674 + 0.464674i 0.900184 0.435510i \(-0.143432\pi\)
−0.435510 + 0.900184i \(0.643432\pi\)
\(734\) −876.049 + 1040.49i −1.19353 + 1.41756i
\(735\) −359.672 + 475.516i −0.489349 + 0.646961i
\(736\) −116.170 + 311.040i −0.157839 + 0.422609i
\(737\) −417.532 −0.566529
\(738\) 407.114 483.532i 0.551645 0.655192i
\(739\) 422.281 422.281i 0.571423 0.571423i −0.361103 0.932526i \(-0.617600\pi\)
0.932526 + 0.361103i \(0.117600\pi\)
\(740\) 19.0551 + 110.226i 0.0257502 + 0.148954i
\(741\) 272.349 272.349i 0.367543 0.367543i
\(742\) −136.775 + 83.3318i −0.184332 + 0.112307i
\(743\) 125.612i 0.169061i 0.996421 + 0.0845303i \(0.0269390\pi\)
−0.996421 + 0.0845303i \(0.973061\pi\)
\(744\) 46.3792 + 176.636i 0.0623376 + 0.237415i
\(745\) 952.292 1.27824
\(746\) −7.96989 92.8887i −0.0106835 0.124516i
\(747\) −276.285 + 276.285i −0.369860 + 0.369860i
\(748\) 293.079 + 206.683i 0.391817 + 0.276315i
\(749\) 189.658 565.138i 0.253216 0.754524i
\(750\) 156.615 186.012i 0.208820 0.248017i
\(751\) −964.776 −1.28465 −0.642327 0.766430i \(-0.722031\pi\)
−0.642327 + 0.766430i \(0.722031\pi\)
\(752\) −103.834 291.343i −0.138077 0.387424i
\(753\) 43.7202 0.0580614
\(754\) 838.282 + 705.799i 1.11178 + 0.936073i
\(755\) 745.341 + 745.341i 0.987207 + 0.987207i
\(756\) 103.856 675.267i 0.137376 0.893210i
\(757\) −313.133 313.133i −0.413650 0.413650i 0.469358 0.883008i \(-0.344485\pi\)
−0.883008 + 0.469358i \(0.844485\pi\)
\(758\) −52.6691 613.857i −0.0694843 0.809837i
\(759\) −59.3196 −0.0781550
\(760\) 485.722 831.613i 0.639108 1.09423i
\(761\) 1428.00 1.87648 0.938242 0.345980i \(-0.112453\pi\)
0.938242 + 0.345980i \(0.112453\pi\)
\(762\) −27.3814 319.129i −0.0359336 0.418805i
\(763\) 34.8344 + 11.6903i 0.0456545 + 0.0153215i
\(764\) −124.341 719.261i −0.162750 0.941441i
\(765\) 881.365 881.365i 1.15211 1.15211i
\(766\) −339.149 + 402.809i −0.442753 + 0.525861i
\(767\) 1362.31 1.77615
\(768\) −400.129 40.4184i −0.521001 0.0526281i
\(769\) 870.738i 1.13230i −0.824303 0.566149i \(-0.808433\pi\)
0.824303 0.566149i \(-0.191567\pi\)
\(770\) 93.1121 383.485i 0.120925 0.498033i
\(771\) −51.7796 + 51.7796i −0.0671590 + 0.0671590i
\(772\) 258.086 + 1492.92i 0.334308 + 1.93383i
\(773\) 3.78212 3.78212i 0.00489279 0.00489279i −0.704656 0.709549i \(-0.748899\pi\)
0.709549 + 0.704656i \(0.248899\pi\)
\(774\) 847.211 72.6911i 1.09459 0.0939161i
\(775\) 508.480 0.656104
\(776\) 975.974 + 570.040i 1.25770 + 0.734587i
\(777\) −35.5483 + 17.6838i −0.0457507 + 0.0227590i
\(778\) 6.90533 + 80.4813i 0.00887574 + 0.103446i
\(779\) 531.748 + 531.748i 0.682603 + 0.682603i
\(780\) −442.476 + 627.435i −0.567277 + 0.804404i
\(781\) −24.3542 + 24.3542i −0.0311833 + 0.0311833i
\(782\) −391.080 329.273i −0.500102 0.421065i
\(783\) 847.532i 1.08242i
\(784\) 235.586 747.767i 0.300493 0.953784i
\(785\) −670.614 −0.854285
\(786\) −275.567 + 327.293i −0.350594 + 0.416403i
\(787\) −376.678 376.678i −0.478626 0.478626i 0.426066 0.904692i \(-0.359899\pi\)
−0.904692 + 0.426066i \(0.859899\pi\)
\(788\) −420.552 + 596.347i −0.533696 + 0.756785i
\(789\) 259.411 259.411i 0.328784 0.328784i
\(790\) −849.394 + 72.8783i −1.07518 + 0.0922510i
\(791\) 137.633 + 276.672i 0.173999 + 0.349776i
\(792\) 48.2970 + 183.941i 0.0609811 + 0.232248i
\(793\) 1688.18i 2.12885i
\(794\) −63.6053 741.318i −0.0801075 0.933649i
\(795\) 98.4293 + 98.4293i 0.123810 + 0.123810i
\(796\) −187.241 1083.11i −0.235227 1.36069i
\(797\) −1054.97 1054.97i −1.32367 1.32367i −0.910778 0.412896i \(-0.864517\pi\)
−0.412896 0.910778i \(-0.635483\pi\)
\(798\) 332.181 + 80.6551i 0.416267 + 0.101072i
\(799\) 476.234 0.596038
\(800\) −391.779 + 1048.97i −0.489724 + 1.31122i
\(801\) 53.0038i 0.0661720i
\(802\) 570.020 + 479.933i 0.710748 + 0.598421i
\(803\) −94.5373 94.5373i −0.117730 0.117730i
\(804\) 122.810 + 710.406i 0.152749 + 0.883590i
\(805\) −178.983 + 533.326i −0.222339 + 0.662517i
\(806\) −456.769 + 39.1910i −0.566711 + 0.0486241i
\(807\) 263.725i 0.326797i
\(808\) −261.899 997.452i −0.324133 1.23447i
\(809\) 826.800i 1.02200i 0.859580 + 0.511001i \(0.170725\pi\)
−0.859580 + 0.511001i \(0.829275\pi\)
\(810\) 315.740 27.0906i 0.389803 0.0334452i
\(811\) 185.728 185.728i 0.229012 0.229012i −0.583268 0.812280i \(-0.698226\pi\)
0.812280 + 0.583268i \(0.198226\pi\)
\(812\) −147.843 + 961.265i −0.182073 + 1.18382i
\(813\) −146.621 + 146.621i −0.180346 + 0.180346i
\(814\) 16.9257 20.1027i 0.0207932 0.0246962i
\(815\) 1840.39i 2.25815i
\(816\) 265.455 559.450i 0.325313 0.685600i
\(817\) 1011.63i 1.23823i
\(818\) 859.820 + 723.933i 1.05112 + 0.885004i
\(819\) 683.805 + 229.483i 0.834927 + 0.280199i
\(820\) −1225.04 863.912i −1.49395 1.05355i
\(821\) −293.780 293.780i −0.357832 0.357832i 0.505181 0.863013i \(-0.331426\pi\)
−0.863013 + 0.505181i \(0.831426\pi\)
\(822\) 139.778 11.9930i 0.170047 0.0145901i
\(823\) 118.012i 0.143393i −0.997427 0.0716964i \(-0.977159\pi\)
0.997427 0.0716964i \(-0.0228413\pi\)
\(824\) −679.322 + 1163.08i −0.824420 + 1.41150i
\(825\) −200.054 −0.242489
\(826\) 629.074 + 1032.52i 0.761590 + 1.25002i
\(827\) 36.0081 + 36.0081i 0.0435406 + 0.0435406i 0.728542 0.685001i \(-0.240198\pi\)
−0.685001 + 0.728542i \(0.740198\pi\)
\(828\) −46.1816 267.141i −0.0557748 0.322634i
\(829\) 52.8642 + 52.8642i 0.0637686 + 0.0637686i 0.738272 0.674503i \(-0.235642\pi\)
−0.674503 + 0.738272i \(0.735642\pi\)
\(830\) 708.825 + 596.802i 0.854006 + 0.719039i
\(831\) 554.451i 0.667209i
\(832\) 271.087 972.492i 0.325825 1.16886i
\(833\) 962.776 + 728.225i 1.15579 + 0.874220i
\(834\) −23.5005 19.7865i −0.0281780 0.0237248i
\(835\) −647.960 + 647.960i −0.776000 + 0.776000i
\(836\) −222.946 + 38.5414i −0.266681 + 0.0461021i
\(837\) −250.716 250.716i −0.299542 0.299542i
\(838\) 57.6999 + 672.490i 0.0688543 + 0.802494i
\(839\) −1257.63 −1.49897 −0.749484 0.662023i \(-0.769698\pi\)
−0.749484 + 0.662023i \(0.769698\pi\)
\(840\) −679.866 45.6287i −0.809364 0.0543199i
\(841\) 365.490i 0.434589i
\(842\) 121.824 + 1419.85i 0.144684 + 1.68629i
\(843\) −382.176 + 382.176i −0.453352 + 0.453352i
\(844\) 375.341 + 264.696i 0.444717 + 0.313621i
\(845\) −437.248 437.248i −0.517453 0.517453i
\(846\) 193.186 + 162.654i 0.228352 + 0.192263i
\(847\) 675.344 335.955i 0.797336 0.396641i
\(848\) −165.369 78.4666i −0.195011 0.0925314i
\(849\) 314.674 0.370640
\(850\) −1318.91 1110.46i −1.55165 1.30643i
\(851\) −26.4897 + 26.4897i −0.0311278 + 0.0311278i
\(852\) 48.6007 + 34.2739i 0.0570430 + 0.0402275i
\(853\) 906.916 906.916i 1.06321 1.06321i 0.0653442 0.997863i \(-0.479185\pi\)
0.997863 0.0653442i \(-0.0208145\pi\)
\(854\) 1279.50 779.553i 1.49824 0.912825i
\(855\) 786.359i 0.919718i
\(856\) 658.937 173.016i 0.769786 0.202122i
\(857\) −1015.16 −1.18455 −0.592273 0.805737i \(-0.701769\pi\)
−0.592273 + 0.805737i \(0.701769\pi\)
\(858\) 179.709 15.4191i 0.209451 0.0179710i
\(859\) −851.483 + 851.483i −0.991249 + 0.991249i −0.999962 0.00871336i \(-0.997226\pi\)
0.00871336 + 0.999962i \(0.497226\pi\)
\(860\) −343.513 1987.08i −0.399433 2.31055i
\(861\) 169.280 504.414i 0.196608 0.585847i
\(862\) −887.970 747.634i −1.03013 0.867325i
\(863\) −873.705 −1.01240 −0.506202 0.862415i \(-0.668951\pi\)
−0.506202 + 0.862415i \(0.668951\pi\)
\(864\) 710.392 324.043i 0.822213 0.375050i
\(865\) 97.3116 0.112499
\(866\) −207.689 + 246.673i −0.239825 + 0.284842i
\(867\) 353.172 + 353.172i 0.407350 + 0.407350i
\(868\) −240.626 328.096i −0.277219 0.377990i
\(869\) 141.619 + 141.619i 0.162968 + 0.162968i
\(870\) 842.190 72.2603i 0.968035 0.0830578i
\(871\) −1809.81 −2.07785
\(872\) 10.6645 + 40.6160i 0.0122299 + 0.0465780i
\(873\) −922.865 −1.05712
\(874\) 321.352 27.5721i 0.367679 0.0315470i
\(875\) −172.364 + 513.605i −0.196988 + 0.586977i
\(876\) −133.043 + 188.657i −0.151876 + 0.215361i
\(877\) −1140.58 + 1140.58i −1.30055 + 1.30055i −0.372525 + 0.928022i \(0.621508\pi\)
−0.928022 + 0.372525i \(0.878492\pi\)
\(878\) 262.319 + 220.862i 0.298769 + 0.251551i
\(879\) 183.511 0.208772
\(880\) 424.829 151.408i 0.482760 0.172055i
\(881\) 626.678i 0.711325i −0.934614 0.355663i \(-0.884255\pi\)
0.934614 0.355663i \(-0.115745\pi\)
\(882\) 141.832 + 624.235i 0.160808 + 0.707750i
\(883\) 101.385 101.385i 0.114819 0.114819i −0.647363 0.762182i \(-0.724128\pi\)
0.762182 + 0.647363i \(0.224128\pi\)
\(884\) 1270.37 + 895.879i 1.43706 + 1.01344i
\(885\) 743.045 743.045i 0.839599 0.839599i
\(886\) 87.6510 + 1021.57i 0.0989289 + 1.15301i
\(887\) 966.644 1.08979 0.544895 0.838504i \(-0.316569\pi\)
0.544895 + 0.838504i \(0.316569\pi\)
\(888\) −39.1821 22.8852i −0.0441240 0.0257716i
\(889\) 317.838 + 638.924i 0.357523 + 0.718700i
\(890\) −125.239 + 10.7455i −0.140718 + 0.0120736i
\(891\) −52.6433 52.6433i −0.0590834 0.0590834i
\(892\) −1044.95 + 180.644i −1.17147 + 0.202516i
\(893\) −212.450 + 212.450i −0.237905 + 0.237905i
\(894\) −248.800 + 295.501i −0.278300 + 0.330538i
\(895\) 1470.35i 1.64285i
\(896\) 862.248 243.607i 0.962330 0.271883i
\(897\) −257.124 −0.286649
\(898\) −1041.27 876.710i −1.15955 0.976292i
\(899\) 356.903 + 356.903i 0.397000 + 0.397000i
\(900\) −155.746 900.925i −0.173051 1.00103i
\(901\) 199.289 199.289i 0.221187 0.221187i
\(902\) 30.1050 + 350.873i 0.0333758 + 0.388994i
\(903\) 640.840 318.791i 0.709679 0.353036i
\(904\) −178.115 + 304.954i −0.197030 + 0.337339i
\(905\) 99.9640i 0.110457i
\(906\) −426.014 + 36.5522i −0.470214 + 0.0403446i
\(907\) 5.22275 + 5.22275i 0.00575826 + 0.00575826i 0.709980 0.704222i \(-0.248704\pi\)
−0.704222 + 0.709980i \(0.748704\pi\)
\(908\) 114.181 161.910i 0.125750 0.178315i
\(909\) 595.411 + 595.411i 0.655018 + 0.655018i
\(910\) 403.599 1662.24i 0.443515 1.82663i
\(911\) −1180.89 −1.29626 −0.648130 0.761530i \(-0.724449\pi\)
−0.648130 + 0.761530i \(0.724449\pi\)
\(912\) 131.152 + 367.993i 0.143807 + 0.403501i
\(913\) 217.687i 0.238430i
\(914\) −98.4818 + 116.967i −0.107748 + 0.127973i
\(915\) −920.787 920.787i −1.00632 1.00632i
\(916\) 77.4382 + 54.6105i 0.0845395 + 0.0596184i
\(917\) 303.278 903.699i 0.330729 0.985495i
\(918\) 102.776 + 1197.85i 0.111956 + 1.30485i
\(919\) 541.429i 0.589150i 0.955628 + 0.294575i \(0.0951781\pi\)
−0.955628 + 0.294575i \(0.904822\pi\)
\(920\) −621.845 + 163.277i −0.675919 + 0.177475i
\(921\) 446.451i 0.484746i
\(922\) −2.30352 26.8475i −0.00249840 0.0291187i
\(923\) −105.564 + 105.564i −0.114371 + 0.114371i
\(924\) 94.6707 + 129.084i 0.102457 + 0.139702i
\(925\) −89.3359 + 89.3359i −0.0965794 + 0.0965794i
\(926\) 166.125 + 139.870i 0.179400 + 0.151048i
\(927\) 1099.79i 1.18639i
\(928\) −1011.27 + 461.286i −1.08973 + 0.497076i
\(929\) 362.906i 0.390641i 0.980739 + 0.195321i \(0.0625748\pi\)
−0.980739 + 0.195321i \(0.937425\pi\)
\(930\) −227.760 + 270.512i −0.244904 + 0.290873i
\(931\) −754.361 + 104.634i −0.810269 + 0.112389i
\(932\) −642.050 + 110.993i −0.688894 + 0.119092i
\(933\) −514.398 514.398i −0.551337 0.551337i
\(934\) 103.689 + 1208.49i 0.111016 + 1.29389i
\(935\) 694.433i 0.742709i
\(936\) 209.346 + 797.300i 0.223660 + 0.851816i
\(937\) 1172.13 1.25094 0.625469 0.780249i \(-0.284908\pi\)
0.625469 + 0.780249i \(0.284908\pi\)
\(938\) −835.717 1371.69i −0.890957 1.46235i
\(939\) −1.21178 1.21178i −0.00129050 0.00129050i
\(940\) 345.159 489.439i 0.367191 0.520680i
\(941\) 930.677 + 930.677i 0.989030 + 0.989030i 0.999940 0.0109108i \(-0.00347309\pi\)
−0.0109108 + 0.999940i \(0.503473\pi\)
\(942\) 175.207 208.095i 0.185995 0.220908i
\(943\) 502.021i 0.532366i
\(944\) −592.347 + 1248.38i −0.627486 + 1.32243i
\(945\) 1184.47 589.226i 1.25341 0.623519i
\(946\) −305.125 + 362.398i −0.322542 + 0.383085i
\(947\) 265.946 265.946i 0.280830 0.280830i −0.552610 0.833440i \(-0.686368\pi\)
0.833440 + 0.552610i \(0.186368\pi\)
\(948\) 199.302 282.612i 0.210234 0.298114i
\(949\) −409.777 409.777i −0.431798 0.431798i
\(950\) 1083.75 92.9861i 1.14079 0.0978801i
\(951\) −113.675 −0.119532
\(952\) −92.3843 + 1376.52i −0.0970423 + 1.44593i
\(953\) 1378.60i 1.44659i 0.690540 + 0.723294i \(0.257373\pi\)
−0.690540 + 0.723294i \(0.742627\pi\)
\(954\) 148.908 12.7764i 0.156088 0.0133924i
\(955\) 999.431 999.431i 1.04653 1.04653i
\(956\) −312.644 1808.52i −0.327034 1.89175i
\(957\) −140.418 140.418i −0.146727 0.146727i
\(958\) 873.805 1037.82i 0.912113 1.08332i
\(959\) −279.848 + 139.213i −0.291812 + 0.145164i
\(960\) −382.569 678.287i −0.398509 0.706549i
\(961\) 749.842 0.780273
\(962\) 73.3652 87.1363i 0.0762632 0.0905782i
\(963\) −393.340 + 393.340i −0.408453 + 0.408453i
\(964\) −24.3489 + 4.20928i −0.0252582 + 0.00436647i
\(965\) −2074.45 + 2074.45i −2.14969 + 2.14969i
\(966\) −118.732 194.878i −0.122911 0.201737i
\(967\) 1533.12i 1.58544i 0.609584 + 0.792722i \(0.291337\pi\)
−0.609584 + 0.792722i \(0.708663\pi\)
\(968\) 744.378 + 434.771i 0.768986 + 0.449143i
\(969\) −601.528 −0.620772
\(970\) 187.094 + 2180.57i 0.192880 + 2.24801i
\(971\) 44.2230 44.2230i 0.0455437 0.0455437i −0.683968 0.729512i \(-0.739747\pi\)
0.729512 + 0.683968i \(0.239747\pi\)
\(972\) −580.328 + 822.911i −0.597046 + 0.846617i
\(973\) 64.8880 + 21.7762i 0.0666886 + 0.0223805i
\(974\) 950.112 1128.45i 0.975474 1.15858i
\(975\) −867.143 −0.889377
\(976\) 1547.00 + 734.040i 1.58504 + 0.752090i
\(977\) −623.770 −0.638454 −0.319227 0.947678i \(-0.603423\pi\)
−0.319227 + 0.947678i \(0.603423\pi\)
\(978\) −571.084 480.829i −0.583930 0.491645i
\(979\) 20.8810 + 20.8810i 0.0213289 + 0.0213289i
\(980\) 1446.21 461.677i 1.47572 0.471099i
\(981\) −24.2450 24.2450i −0.0247146 0.0247146i
\(982\) −126.906 1479.08i −0.129232 1.50619i
\(983\) 1124.01 1.14345 0.571724 0.820446i \(-0.306275\pi\)
0.571724 + 0.820446i \(0.306275\pi\)
\(984\) 588.135 154.426i 0.597698 0.156937i
\(985\) −1413.01 −1.43453
\(986\) −146.305 1705.18i −0.148382 1.72939i
\(987\) 201.529 + 67.6324i 0.204183 + 0.0685232i
\(988\) −966.368 + 167.059i −0.978106 + 0.169088i
\(989\) 477.539 477.539i 0.482851 0.482851i
\(990\) −237.179 + 281.698i −0.239574 + 0.284544i
\(991\) 392.328 0.395891 0.197946 0.980213i \(-0.436573\pi\)
0.197946 + 0.980213i \(0.436573\pi\)
\(992\) 162.695 435.610i 0.164007 0.439123i
\(993\) 64.0327i 0.0644841i
\(994\) −128.756 31.2625i −0.129533 0.0314512i
\(995\) 1505.01 1505.01i 1.51257 1.51257i
\(996\) −370.382 + 64.0291i −0.371869 + 0.0642863i
\(997\) −744.756 + 744.756i −0.746997 + 0.746997i −0.973914 0.226917i \(-0.927135\pi\)
0.226917 + 0.973914i \(0.427135\pi\)
\(998\) 173.344 14.8730i 0.173691 0.0149028i
\(999\) 88.0977 0.0881859
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.3.l.b.69.23 yes 56
4.3 odd 2 448.3.l.b.433.18 56
7.6 odd 2 inner 112.3.l.b.69.24 yes 56
16.3 odd 4 448.3.l.b.209.11 56
16.13 even 4 inner 112.3.l.b.13.24 yes 56
28.27 even 2 448.3.l.b.433.11 56
112.13 odd 4 inner 112.3.l.b.13.23 56
112.83 even 4 448.3.l.b.209.18 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.3.l.b.13.23 56 112.13 odd 4 inner
112.3.l.b.13.24 yes 56 16.13 even 4 inner
112.3.l.b.69.23 yes 56 1.1 even 1 trivial
112.3.l.b.69.24 yes 56 7.6 odd 2 inner
448.3.l.b.209.11 56 16.3 odd 4
448.3.l.b.209.18 56 112.83 even 4
448.3.l.b.433.11 56 28.27 even 2
448.3.l.b.433.18 56 4.3 odd 2