Properties

Label 448.3.l.b.433.18
Level $448$
Weight $3$
Character 448.433
Analytic conductor $12.207$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [448,3,Mod(209,448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("448.209"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(448, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 448.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.2071158433\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.18
Character \(\chi\) \(=\) 448.433
Dual form 448.3.l.b.209.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.11083 + 1.11083i) q^{3} +(-5.47687 + 5.47687i) q^{5} +(-3.11774 - 6.26735i) q^{7} -6.53210i q^{9} +(-2.57334 - 2.57334i) q^{11} +(11.1543 + 11.1543i) q^{13} -12.1678 q^{15} -24.6360i q^{17} +(-10.9902 - 10.9902i) q^{19} +(3.49869 - 10.4253i) q^{21} +10.3758i q^{23} -34.9921i q^{25} +(17.2536 - 17.2536i) q^{27} +(24.5610 - 24.5610i) q^{29} -14.5313i q^{31} -5.71711i q^{33} +(51.4009 + 17.2500i) q^{35} +(-2.55303 - 2.55303i) q^{37} +24.7811i q^{39} +48.3838 q^{41} +(-46.0243 - 46.0243i) q^{43} +(35.7754 + 35.7754i) q^{45} -19.3308i q^{47} +(-29.5593 + 39.0800i) q^{49} +(27.3665 - 27.3665i) q^{51} +(8.08934 + 8.08934i) q^{53} +28.1877 q^{55} -24.4166i q^{57} +(-61.0667 + 61.0667i) q^{59} +(-75.6742 - 75.6742i) q^{61} +(-40.9389 + 20.3654i) q^{63} -122.181 q^{65} +(81.1264 - 81.1264i) q^{67} +(-11.5258 + 11.5258i) q^{69} -9.46404i q^{71} -36.7372 q^{73} +(38.8704 - 38.8704i) q^{75} +(-8.10501 + 24.1510i) q^{77} -55.0332 q^{79} -20.4572 q^{81} +(42.2965 + 42.2965i) q^{83} +(134.928 + 134.928i) q^{85} +54.5665 q^{87} +8.11436 q^{89} +(35.1315 - 104.684i) q^{91} +(16.1418 - 16.1418i) q^{93} +120.384 q^{95} -141.282i q^{97} +(-16.8093 + 16.8093i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{15} - 20 q^{21} - 96 q^{29} + 100 q^{35} - 128 q^{37} + 72 q^{43} + 192 q^{49} + 128 q^{51} + 88 q^{53} - 444 q^{63} - 8 q^{65} - 440 q^{67} + 12 q^{77} + 8 q^{79} + 64 q^{81} + 96 q^{85} + 388 q^{91}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.11083 + 1.11083i 0.370278 + 0.370278i 0.867578 0.497300i \(-0.165675\pi\)
−0.497300 + 0.867578i \(0.665675\pi\)
\(4\) 0 0
\(5\) −5.47687 + 5.47687i −1.09537 + 1.09537i −0.100429 + 0.994944i \(0.532022\pi\)
−0.994944 + 0.100429i \(0.967978\pi\)
\(6\) 0 0
\(7\) −3.11774 6.26735i −0.445392 0.895336i
\(8\) 0 0
\(9\) 6.53210i 0.725789i
\(10\) 0 0
\(11\) −2.57334 2.57334i −0.233940 0.233940i 0.580395 0.814335i \(-0.302898\pi\)
−0.814335 + 0.580395i \(0.802898\pi\)
\(12\) 0 0
\(13\) 11.1543 + 11.1543i 0.858021 + 0.858021i 0.991105 0.133084i \(-0.0424881\pi\)
−0.133084 + 0.991105i \(0.542488\pi\)
\(14\) 0 0
\(15\) −12.1678 −0.811185
\(16\) 0 0
\(17\) 24.6360i 1.44918i −0.689181 0.724589i \(-0.742029\pi\)
0.689181 0.724589i \(-0.257971\pi\)
\(18\) 0 0
\(19\) −10.9902 10.9902i −0.578432 0.578432i 0.356039 0.934471i \(-0.384127\pi\)
−0.934471 + 0.356039i \(0.884127\pi\)
\(20\) 0 0
\(21\) 3.49869 10.4253i 0.166604 0.496442i
\(22\) 0 0
\(23\) 10.3758i 0.451122i 0.974229 + 0.225561i \(0.0724216\pi\)
−0.974229 + 0.225561i \(0.927578\pi\)
\(24\) 0 0
\(25\) 34.9921i 1.39969i
\(26\) 0 0
\(27\) 17.2536 17.2536i 0.639021 0.639021i
\(28\) 0 0
\(29\) 24.5610 24.5610i 0.846933 0.846933i −0.142817 0.989749i \(-0.545616\pi\)
0.989749 + 0.142817i \(0.0456159\pi\)
\(30\) 0 0
\(31\) 14.5313i 0.468751i −0.972146 0.234375i \(-0.924696\pi\)
0.972146 0.234375i \(-0.0753045\pi\)
\(32\) 0 0
\(33\) 5.71711i 0.173246i
\(34\) 0 0
\(35\) 51.4009 + 17.2500i 1.46860 + 0.492856i
\(36\) 0 0
\(37\) −2.55303 2.55303i −0.0690008 0.0690008i 0.671764 0.740765i \(-0.265537\pi\)
−0.740765 + 0.671764i \(0.765537\pi\)
\(38\) 0 0
\(39\) 24.7811i 0.635412i
\(40\) 0 0
\(41\) 48.3838 1.18009 0.590046 0.807369i \(-0.299110\pi\)
0.590046 + 0.807369i \(0.299110\pi\)
\(42\) 0 0
\(43\) −46.0243 46.0243i −1.07033 1.07033i −0.997332 0.0729998i \(-0.976743\pi\)
−0.0729998 0.997332i \(-0.523257\pi\)
\(44\) 0 0
\(45\) 35.7754 + 35.7754i 0.795010 + 0.795010i
\(46\) 0 0
\(47\) 19.3308i 0.411294i −0.978626 0.205647i \(-0.934070\pi\)
0.978626 0.205647i \(-0.0659298\pi\)
\(48\) 0 0
\(49\) −29.5593 + 39.0800i −0.603252 + 0.797551i
\(50\) 0 0
\(51\) 27.3665 27.3665i 0.536599 0.536599i
\(52\) 0 0
\(53\) 8.08934 + 8.08934i 0.152629 + 0.152629i 0.779291 0.626662i \(-0.215579\pi\)
−0.626662 + 0.779291i \(0.715579\pi\)
\(54\) 0 0
\(55\) 28.1877 0.512503
\(56\) 0 0
\(57\) 24.4166i 0.428361i
\(58\) 0 0
\(59\) −61.0667 + 61.0667i −1.03503 + 1.03503i −0.0356642 + 0.999364i \(0.511355\pi\)
−0.999364 + 0.0356642i \(0.988645\pi\)
\(60\) 0 0
\(61\) −75.6742 75.6742i −1.24056 1.24056i −0.959768 0.280793i \(-0.909403\pi\)
−0.280793 0.959768i \(-0.590597\pi\)
\(62\) 0 0
\(63\) −40.9389 + 20.3654i −0.649824 + 0.323260i
\(64\) 0 0
\(65\) −122.181 −1.87971
\(66\) 0 0
\(67\) 81.1264 81.1264i 1.21084 1.21084i 0.240091 0.970750i \(-0.422823\pi\)
0.970750 0.240091i \(-0.0771774\pi\)
\(68\) 0 0
\(69\) −11.5258 + 11.5258i −0.167041 + 0.167041i
\(70\) 0 0
\(71\) 9.46404i 0.133296i −0.997777 0.0666481i \(-0.978769\pi\)
0.997777 0.0666481i \(-0.0212305\pi\)
\(72\) 0 0
\(73\) −36.7372 −0.503249 −0.251625 0.967825i \(-0.580965\pi\)
−0.251625 + 0.967825i \(0.580965\pi\)
\(74\) 0 0
\(75\) 38.8704 38.8704i 0.518273 0.518273i
\(76\) 0 0
\(77\) −8.10501 + 24.1510i −0.105260 + 0.313650i
\(78\) 0 0
\(79\) −55.0332 −0.696622 −0.348311 0.937379i \(-0.613245\pi\)
−0.348311 + 0.937379i \(0.613245\pi\)
\(80\) 0 0
\(81\) −20.4572 −0.252558
\(82\) 0 0
\(83\) 42.2965 + 42.2965i 0.509597 + 0.509597i 0.914403 0.404806i \(-0.132661\pi\)
−0.404806 + 0.914403i \(0.632661\pi\)
\(84\) 0 0
\(85\) 134.928 + 134.928i 1.58739 + 1.58739i
\(86\) 0 0
\(87\) 54.5665 0.627201
\(88\) 0 0
\(89\) 8.11436 0.0911726 0.0455863 0.998960i \(-0.485484\pi\)
0.0455863 + 0.998960i \(0.485484\pi\)
\(90\) 0 0
\(91\) 35.1315 104.684i 0.386061 1.15037i
\(92\) 0 0
\(93\) 16.1418 16.1418i 0.173568 0.173568i
\(94\) 0 0
\(95\) 120.384 1.26720
\(96\) 0 0
\(97\) 141.282i 1.45651i −0.685306 0.728255i \(-0.740331\pi\)
0.685306 0.728255i \(-0.259669\pi\)
\(98\) 0 0
\(99\) −16.8093 + 16.8093i −0.169791 + 0.169791i
\(100\) 0 0
\(101\) −91.1516 + 91.1516i −0.902491 + 0.902491i −0.995651 0.0931601i \(-0.970303\pi\)
0.0931601 + 0.995651i \(0.470303\pi\)
\(102\) 0 0
\(103\) −168.367 −1.63463 −0.817313 0.576193i \(-0.804538\pi\)
−0.817313 + 0.576193i \(0.804538\pi\)
\(104\) 0 0
\(105\) 37.9360 + 76.2597i 0.361295 + 0.726283i
\(106\) 0 0
\(107\) 60.2166 + 60.2166i 0.562772 + 0.562772i 0.930094 0.367322i \(-0.119725\pi\)
−0.367322 + 0.930094i \(0.619725\pi\)
\(108\) 0 0
\(109\) 3.71167 3.71167i 0.0340520 0.0340520i −0.689876 0.723928i \(-0.742335\pi\)
0.723928 + 0.689876i \(0.242335\pi\)
\(110\) 0 0
\(111\) 5.67198i 0.0510989i
\(112\) 0 0
\(113\) 44.1451 0.390664 0.195332 0.980737i \(-0.437422\pi\)
0.195332 + 0.980737i \(0.437422\pi\)
\(114\) 0 0
\(115\) −56.8270 56.8270i −0.494147 0.494147i
\(116\) 0 0
\(117\) 72.8608 72.8608i 0.622742 0.622742i
\(118\) 0 0
\(119\) −154.403 + 76.8088i −1.29750 + 0.645452i
\(120\) 0 0
\(121\) 107.756i 0.890544i
\(122\) 0 0
\(123\) 53.7463 + 53.7463i 0.436962 + 0.436962i
\(124\) 0 0
\(125\) 54.7256 + 54.7256i 0.437805 + 0.437805i
\(126\) 0 0
\(127\) −101.945 −0.802715 −0.401358 0.915921i \(-0.631462\pi\)
−0.401358 + 0.915921i \(0.631462\pi\)
\(128\) 0 0
\(129\) 102.251i 0.792640i
\(130\) 0 0
\(131\) 96.2909 + 96.2909i 0.735045 + 0.735045i 0.971615 0.236569i \(-0.0760231\pi\)
−0.236569 + 0.971615i \(0.576023\pi\)
\(132\) 0 0
\(133\) −34.6148 + 103.144i −0.260262 + 0.775520i
\(134\) 0 0
\(135\) 188.991i 1.39993i
\(136\) 0 0
\(137\) 44.6517i 0.325925i 0.986632 + 0.162963i \(0.0521050\pi\)
−0.986632 + 0.162963i \(0.947895\pi\)
\(138\) 0 0
\(139\) −6.91394 + 6.91394i −0.0497406 + 0.0497406i −0.731540 0.681799i \(-0.761198\pi\)
0.681799 + 0.731540i \(0.261198\pi\)
\(140\) 0 0
\(141\) 21.4733 21.4733i 0.152293 0.152293i
\(142\) 0 0
\(143\) 57.4075i 0.401451i
\(144\) 0 0
\(145\) 269.035i 1.85541i
\(146\) 0 0
\(147\) −76.2469 + 10.5758i −0.518686 + 0.0719445i
\(148\) 0 0
\(149\) −86.9376 86.9376i −0.583474 0.583474i 0.352382 0.935856i \(-0.385372\pi\)
−0.935856 + 0.352382i \(0.885372\pi\)
\(150\) 0 0
\(151\) 136.089i 0.901251i 0.892713 + 0.450626i \(0.148799\pi\)
−0.892713 + 0.450626i \(0.851201\pi\)
\(152\) 0 0
\(153\) −160.925 −1.05180
\(154\) 0 0
\(155\) 79.5858 + 79.5858i 0.513457 + 0.513457i
\(156\) 0 0
\(157\) 61.2224 + 61.2224i 0.389952 + 0.389952i 0.874670 0.484719i \(-0.161078\pi\)
−0.484719 + 0.874670i \(0.661078\pi\)
\(158\) 0 0
\(159\) 17.9718i 0.113030i
\(160\) 0 0
\(161\) 65.0289 32.3491i 0.403906 0.200926i
\(162\) 0 0
\(163\) −168.015 + 168.015i −1.03077 + 1.03077i −0.0312561 + 0.999511i \(0.509951\pi\)
−0.999511 + 0.0312561i \(0.990049\pi\)
\(164\) 0 0
\(165\) 31.3118 + 31.3118i 0.189769 + 0.189769i
\(166\) 0 0
\(167\) −118.309 −0.708434 −0.354217 0.935163i \(-0.615253\pi\)
−0.354217 + 0.935163i \(0.615253\pi\)
\(168\) 0 0
\(169\) 79.8354i 0.472399i
\(170\) 0 0
\(171\) −71.7891 + 71.7891i −0.419820 + 0.419820i
\(172\) 0 0
\(173\) −8.88388 8.88388i −0.0513519 0.0513519i 0.680965 0.732316i \(-0.261561\pi\)
−0.732316 + 0.680965i \(0.761561\pi\)
\(174\) 0 0
\(175\) −219.308 + 109.097i −1.25319 + 0.623409i
\(176\) 0 0
\(177\) −135.670 −0.766496
\(178\) 0 0
\(179\) 134.233 134.233i 0.749904 0.749904i −0.224557 0.974461i \(-0.572093\pi\)
0.974461 + 0.224557i \(0.0720935\pi\)
\(180\) 0 0
\(181\) 9.12602 9.12602i 0.0504200 0.0504200i −0.681447 0.731867i \(-0.738649\pi\)
0.731867 + 0.681447i \(0.238649\pi\)
\(182\) 0 0
\(183\) 168.123i 0.918705i
\(184\) 0 0
\(185\) 27.9652 0.151163
\(186\) 0 0
\(187\) −63.3969 + 63.3969i −0.339021 + 0.339021i
\(188\) 0 0
\(189\) −161.926 54.3420i −0.856754 0.287524i
\(190\) 0 0
\(191\) 182.482 0.955405 0.477702 0.878522i \(-0.341470\pi\)
0.477702 + 0.878522i \(0.341470\pi\)
\(192\) 0 0
\(193\) 378.766 1.96252 0.981258 0.192699i \(-0.0617240\pi\)
0.981258 + 0.192699i \(0.0617240\pi\)
\(194\) 0 0
\(195\) −135.723 135.723i −0.696013 0.696013i
\(196\) 0 0
\(197\) 128.998 + 128.998i 0.654811 + 0.654811i 0.954148 0.299337i \(-0.0967653\pi\)
−0.299337 + 0.954148i \(0.596765\pi\)
\(198\) 0 0
\(199\) 274.793 1.38087 0.690436 0.723394i \(-0.257419\pi\)
0.690436 + 0.723394i \(0.257419\pi\)
\(200\) 0 0
\(201\) 180.236 0.896696
\(202\) 0 0
\(203\) −230.508 77.3576i −1.13551 0.381072i
\(204\) 0 0
\(205\) −264.992 + 264.992i −1.29264 + 1.29264i
\(206\) 0 0
\(207\) 67.7758 0.327419
\(208\) 0 0
\(209\) 56.5631i 0.270637i
\(210\) 0 0
\(211\) −81.1914 + 81.1914i −0.384793 + 0.384793i −0.872826 0.488032i \(-0.837715\pi\)
0.488032 + 0.872826i \(0.337715\pi\)
\(212\) 0 0
\(213\) 10.5130 10.5130i 0.0493567 0.0493567i
\(214\) 0 0
\(215\) 504.138 2.34483
\(216\) 0 0
\(217\) −91.0725 + 45.3048i −0.419689 + 0.208778i
\(218\) 0 0
\(219\) −40.8089 40.8089i −0.186342 0.186342i
\(220\) 0 0
\(221\) 274.797 274.797i 1.24343 1.24343i
\(222\) 0 0
\(223\) 265.113i 1.18885i −0.804152 0.594424i \(-0.797380\pi\)
0.804152 0.594424i \(-0.202620\pi\)
\(224\) 0 0
\(225\) −228.572 −1.01588
\(226\) 0 0
\(227\) 35.0233 + 35.0233i 0.154288 + 0.154288i 0.780030 0.625742i \(-0.215204\pi\)
−0.625742 + 0.780030i \(0.715204\pi\)
\(228\) 0 0
\(229\) 16.7509 16.7509i 0.0731481 0.0731481i −0.669586 0.742734i \(-0.733529\pi\)
0.742734 + 0.669586i \(0.233529\pi\)
\(230\) 0 0
\(231\) −35.8311 + 17.8245i −0.155113 + 0.0771622i
\(232\) 0 0
\(233\) 162.893i 0.699113i 0.936915 + 0.349556i \(0.113668\pi\)
−0.936915 + 0.349556i \(0.886332\pi\)
\(234\) 0 0
\(235\) 105.872 + 105.872i 0.450520 + 0.450520i
\(236\) 0 0
\(237\) −61.1327 61.1327i −0.257944 0.257944i
\(238\) 0 0
\(239\) 458.835 1.91981 0.959906 0.280321i \(-0.0904408\pi\)
0.959906 + 0.280321i \(0.0904408\pi\)
\(240\) 0 0
\(241\) 6.17751i 0.0256328i 0.999918 + 0.0128164i \(0.00407970\pi\)
−0.999918 + 0.0128164i \(0.995920\pi\)
\(242\) 0 0
\(243\) −178.007 178.007i −0.732538 0.732538i
\(244\) 0 0
\(245\) −52.1432 375.928i −0.212830 1.53440i
\(246\) 0 0
\(247\) 245.176i 0.992614i
\(248\) 0 0
\(249\) 93.9688i 0.377385i
\(250\) 0 0
\(251\) 19.6790 19.6790i 0.0784025 0.0784025i −0.666818 0.745221i \(-0.732344\pi\)
0.745221 + 0.666818i \(0.232344\pi\)
\(252\) 0 0
\(253\) 26.7005 26.7005i 0.105536 0.105536i
\(254\) 0 0
\(255\) 299.766i 1.17555i
\(256\) 0 0
\(257\) 46.6133i 0.181375i −0.995879 0.0906873i \(-0.971094\pi\)
0.995879 0.0906873i \(-0.0289064\pi\)
\(258\) 0 0
\(259\) −8.04103 + 23.9604i −0.0310465 + 0.0925112i
\(260\) 0 0
\(261\) −160.435 160.435i −0.614694 0.614694i
\(262\) 0 0
\(263\) 233.528i 0.887940i −0.896042 0.443970i \(-0.853570\pi\)
0.896042 0.443970i \(-0.146430\pi\)
\(264\) 0 0
\(265\) −88.6085 −0.334372
\(266\) 0 0
\(267\) 9.01371 + 9.01371i 0.0337592 + 0.0337592i
\(268\) 0 0
\(269\) −118.706 118.706i −0.441286 0.441286i 0.451158 0.892444i \(-0.351011\pi\)
−0.892444 + 0.451158i \(0.851011\pi\)
\(270\) 0 0
\(271\) 131.992i 0.487055i 0.969894 + 0.243527i \(0.0783046\pi\)
−0.969894 + 0.243527i \(0.921695\pi\)
\(272\) 0 0
\(273\) 155.312 77.2610i 0.568907 0.283007i
\(274\) 0 0
\(275\) −90.0467 + 90.0467i −0.327443 + 0.327443i
\(276\) 0 0
\(277\) −249.565 249.565i −0.900958 0.900958i 0.0945613 0.995519i \(-0.469855\pi\)
−0.995519 + 0.0945613i \(0.969855\pi\)
\(278\) 0 0
\(279\) −94.9197 −0.340214
\(280\) 0 0
\(281\) 344.044i 1.22436i −0.790720 0.612178i \(-0.790294\pi\)
0.790720 0.612178i \(-0.209706\pi\)
\(282\) 0 0
\(283\) 141.638 141.638i 0.500489 0.500489i −0.411101 0.911590i \(-0.634856\pi\)
0.911590 + 0.411101i \(0.134856\pi\)
\(284\) 0 0
\(285\) 133.726 + 133.726i 0.469216 + 0.469216i
\(286\) 0 0
\(287\) −150.848 303.238i −0.525604 1.05658i
\(288\) 0 0
\(289\) −317.934 −1.10012
\(290\) 0 0
\(291\) 156.940 156.940i 0.539314 0.539314i
\(292\) 0 0
\(293\) −82.6004 + 82.6004i −0.281913 + 0.281913i −0.833871 0.551959i \(-0.813881\pi\)
0.551959 + 0.833871i \(0.313881\pi\)
\(294\) 0 0
\(295\) 668.908i 2.26748i
\(296\) 0 0
\(297\) −88.7986 −0.298985
\(298\) 0 0
\(299\) −115.735 + 115.735i −0.387072 + 0.387072i
\(300\) 0 0
\(301\) −144.958 + 431.942i −0.481589 + 1.43502i
\(302\) 0 0
\(303\) −202.509 −0.668345
\(304\) 0 0
\(305\) 828.916 2.71776
\(306\) 0 0
\(307\) 200.953 + 200.953i 0.654570 + 0.654570i 0.954090 0.299520i \(-0.0968265\pi\)
−0.299520 + 0.954090i \(0.596826\pi\)
\(308\) 0 0
\(309\) −187.027 187.027i −0.605266 0.605266i
\(310\) 0 0
\(311\) −463.074 −1.48898 −0.744491 0.667632i \(-0.767308\pi\)
−0.744491 + 0.667632i \(0.767308\pi\)
\(312\) 0 0
\(313\) 1.09088 0.00348523 0.00174262 0.999998i \(-0.499445\pi\)
0.00174262 + 0.999998i \(0.499445\pi\)
\(314\) 0 0
\(315\) 112.679 335.756i 0.357710 1.06589i
\(316\) 0 0
\(317\) 51.1667 51.1667i 0.161409 0.161409i −0.621782 0.783191i \(-0.713591\pi\)
0.783191 + 0.621782i \(0.213591\pi\)
\(318\) 0 0
\(319\) −126.408 −0.396263
\(320\) 0 0
\(321\) 133.781i 0.416764i
\(322\) 0 0
\(323\) −270.755 + 270.755i −0.838252 + 0.838252i
\(324\) 0 0
\(325\) 390.312 390.312i 1.20096 1.20096i
\(326\) 0 0
\(327\) 8.24610 0.0252174
\(328\) 0 0
\(329\) −121.153 + 60.2685i −0.368246 + 0.183187i
\(330\) 0 0
\(331\) −28.8219 28.8219i −0.0870753 0.0870753i 0.662228 0.749303i \(-0.269611\pi\)
−0.749303 + 0.662228i \(0.769611\pi\)
\(332\) 0 0
\(333\) −16.6766 + 16.6766i −0.0500800 + 0.0500800i
\(334\) 0 0
\(335\) 888.637i 2.65265i
\(336\) 0 0
\(337\) −84.7524 −0.251491 −0.125745 0.992063i \(-0.540132\pi\)
−0.125745 + 0.992063i \(0.540132\pi\)
\(338\) 0 0
\(339\) 49.0378 + 49.0378i 0.144654 + 0.144654i
\(340\) 0 0
\(341\) −37.3939 + 37.3939i −0.109660 + 0.109660i
\(342\) 0 0
\(343\) 337.086 + 63.4174i 0.982759 + 0.184890i
\(344\) 0 0
\(345\) 126.251i 0.365944i
\(346\) 0 0
\(347\) 38.7326 + 38.7326i 0.111621 + 0.111621i 0.760711 0.649090i \(-0.224850\pi\)
−0.649090 + 0.760711i \(0.724850\pi\)
\(348\) 0 0
\(349\) 3.91040 + 3.91040i 0.0112046 + 0.0112046i 0.712687 0.701482i \(-0.247478\pi\)
−0.701482 + 0.712687i \(0.747478\pi\)
\(350\) 0 0
\(351\) 384.902 1.09659
\(352\) 0 0
\(353\) 620.142i 1.75678i 0.477949 + 0.878388i \(0.341380\pi\)
−0.477949 + 0.878388i \(0.658620\pi\)
\(354\) 0 0
\(355\) 51.8333 + 51.8333i 0.146009 + 0.146009i
\(356\) 0 0
\(357\) −256.838 86.1938i −0.719433 0.241439i
\(358\) 0 0
\(359\) 343.001i 0.955435i −0.878514 0.477717i \(-0.841464\pi\)
0.878514 0.477717i \(-0.158536\pi\)
\(360\) 0 0
\(361\) 119.430i 0.330832i
\(362\) 0 0
\(363\) 119.699 119.699i 0.329749 0.329749i
\(364\) 0 0
\(365\) 201.205 201.205i 0.551246 0.551246i
\(366\) 0 0
\(367\) 680.088i 1.85310i −0.376171 0.926550i \(-0.622760\pi\)
0.376171 0.926550i \(-0.377240\pi\)
\(368\) 0 0
\(369\) 316.048i 0.856498i
\(370\) 0 0
\(371\) 25.4782 75.9193i 0.0686745 0.204634i
\(372\) 0 0
\(373\) −32.9618 32.9618i −0.0883694 0.0883694i 0.661540 0.749910i \(-0.269903\pi\)
−0.749910 + 0.661540i \(0.769903\pi\)
\(374\) 0 0
\(375\) 121.582i 0.324219i
\(376\) 0 0
\(377\) 547.921 1.45337
\(378\) 0 0
\(379\) 217.828 + 217.828i 0.574745 + 0.574745i 0.933451 0.358706i \(-0.116782\pi\)
−0.358706 + 0.933451i \(0.616782\pi\)
\(380\) 0 0
\(381\) −113.244 113.244i −0.297228 0.297228i
\(382\) 0 0
\(383\) 263.286i 0.687430i −0.939074 0.343715i \(-0.888315\pi\)
0.939074 0.343715i \(-0.111685\pi\)
\(384\) 0 0
\(385\) −87.8820 176.662i −0.228265 0.458863i
\(386\) 0 0
\(387\) −300.635 + 300.635i −0.776835 + 0.776835i
\(388\) 0 0
\(389\) 28.5590 + 28.5590i 0.0734164 + 0.0734164i 0.742862 0.669445i \(-0.233468\pi\)
−0.669445 + 0.742862i \(0.733468\pi\)
\(390\) 0 0
\(391\) 255.619 0.653757
\(392\) 0 0
\(393\) 213.926i 0.544342i
\(394\) 0 0
\(395\) 301.409 301.409i 0.763062 0.763062i
\(396\) 0 0
\(397\) −263.058 263.058i −0.662615 0.662615i 0.293380 0.955996i \(-0.405220\pi\)
−0.955996 + 0.293380i \(0.905220\pi\)
\(398\) 0 0
\(399\) −153.027 + 76.1247i −0.383527 + 0.190789i
\(400\) 0 0
\(401\) 372.578 0.929123 0.464562 0.885541i \(-0.346212\pi\)
0.464562 + 0.885541i \(0.346212\pi\)
\(402\) 0 0
\(403\) 162.086 162.086i 0.402198 0.402198i
\(404\) 0 0
\(405\) 112.041 112.041i 0.276645 0.276645i
\(406\) 0 0
\(407\) 13.1396i 0.0322841i
\(408\) 0 0
\(409\) 561.999 1.37408 0.687040 0.726620i \(-0.258910\pi\)
0.687040 + 0.726620i \(0.258910\pi\)
\(410\) 0 0
\(411\) −49.6006 + 49.6006i −0.120683 + 0.120683i
\(412\) 0 0
\(413\) 573.116 + 192.336i 1.38769 + 0.465704i
\(414\) 0 0
\(415\) −463.305 −1.11640
\(416\) 0 0
\(417\) −15.3605 −0.0368357
\(418\) 0 0
\(419\) −238.635 238.635i −0.569534 0.569534i 0.362464 0.931998i \(-0.381936\pi\)
−0.931998 + 0.362464i \(0.881936\pi\)
\(420\) 0 0
\(421\) 503.838 + 503.838i 1.19676 + 1.19676i 0.975130 + 0.221635i \(0.0711393\pi\)
0.221635 + 0.975130i \(0.428861\pi\)
\(422\) 0 0
\(423\) −126.271 −0.298512
\(424\) 0 0
\(425\) −862.068 −2.02839
\(426\) 0 0
\(427\) −238.344 + 710.210i −0.558183 + 1.66326i
\(428\) 0 0
\(429\) 63.7701 63.7701i 0.148648 0.148648i
\(430\) 0 0
\(431\) 580.398 1.34663 0.673315 0.739355i \(-0.264870\pi\)
0.673315 + 0.739355i \(0.264870\pi\)
\(432\) 0 0
\(433\) 161.231i 0.372359i 0.982516 + 0.186179i \(0.0596106\pi\)
−0.982516 + 0.186179i \(0.940389\pi\)
\(434\) 0 0
\(435\) −298.853 + 298.853i −0.687019 + 0.687019i
\(436\) 0 0
\(437\) 114.032 114.032i 0.260944 0.260944i
\(438\) 0 0
\(439\) −171.458 −0.390564 −0.195282 0.980747i \(-0.562562\pi\)
−0.195282 + 0.980747i \(0.562562\pi\)
\(440\) 0 0
\(441\) 255.274 + 193.085i 0.578853 + 0.437833i
\(442\) 0 0
\(443\) −362.506 362.506i −0.818298 0.818298i 0.167563 0.985861i \(-0.446410\pi\)
−0.985861 + 0.167563i \(0.946410\pi\)
\(444\) 0 0
\(445\) −44.4413 + 44.4413i −0.0998681 + 0.0998681i
\(446\) 0 0
\(447\) 193.147i 0.432095i
\(448\) 0 0
\(449\) −680.601 −1.51582 −0.757908 0.652362i \(-0.773778\pi\)
−0.757908 + 0.652362i \(0.773778\pi\)
\(450\) 0 0
\(451\) −124.508 124.508i −0.276071 0.276071i
\(452\) 0 0
\(453\) −151.172 + 151.172i −0.333713 + 0.333713i
\(454\) 0 0
\(455\) 380.929 + 765.750i 0.837206 + 1.68297i
\(456\) 0 0
\(457\) 76.4527i 0.167293i 0.996496 + 0.0836463i \(0.0266566\pi\)
−0.996496 + 0.0836463i \(0.973343\pi\)
\(458\) 0 0
\(459\) −425.060 425.060i −0.926056 0.926056i
\(460\) 0 0
\(461\) −9.52689 9.52689i −0.0206657 0.0206657i 0.696698 0.717364i \(-0.254652\pi\)
−0.717364 + 0.696698i \(0.754652\pi\)
\(462\) 0 0
\(463\) −108.583 −0.234521 −0.117260 0.993101i \(-0.537411\pi\)
−0.117260 + 0.993101i \(0.537411\pi\)
\(464\) 0 0
\(465\) 176.813i 0.380243i
\(466\) 0 0
\(467\) −428.836 428.836i −0.918278 0.918278i 0.0786261 0.996904i \(-0.474947\pi\)
−0.996904 + 0.0786261i \(0.974947\pi\)
\(468\) 0 0
\(469\) −761.379 255.516i −1.62341 0.544811i
\(470\) 0 0
\(471\) 136.016i 0.288781i
\(472\) 0 0
\(473\) 236.872i 0.500787i
\(474\) 0 0
\(475\) −384.571 + 384.571i −0.809623 + 0.809623i
\(476\) 0 0
\(477\) 52.8404 52.8404i 0.110776 0.110776i
\(478\) 0 0
\(479\) 678.346i 1.41617i 0.706127 + 0.708085i \(0.250441\pi\)
−0.706127 + 0.708085i \(0.749559\pi\)
\(480\) 0 0
\(481\) 56.9543i 0.118408i
\(482\) 0 0
\(483\) 108.171 + 36.3017i 0.223956 + 0.0751589i
\(484\) 0 0
\(485\) 773.780 + 773.780i 1.59542 + 1.59542i
\(486\) 0 0
\(487\) 737.584i 1.51455i 0.653098 + 0.757273i \(0.273469\pi\)
−0.653098 + 0.757273i \(0.726531\pi\)
\(488\) 0 0
\(489\) −373.274 −0.763341
\(490\) 0 0
\(491\) 524.855 + 524.855i 1.06895 + 1.06895i 0.997440 + 0.0715115i \(0.0227823\pi\)
0.0715115 + 0.997440i \(0.477218\pi\)
\(492\) 0 0
\(493\) −605.087 605.087i −1.22736 1.22736i
\(494\) 0 0
\(495\) 184.125i 0.371969i
\(496\) 0 0
\(497\) −59.3144 + 29.5064i −0.119345 + 0.0593691i
\(498\) 0 0
\(499\) −61.5115 + 61.5115i −0.123270 + 0.123270i −0.766050 0.642781i \(-0.777781\pi\)
0.642781 + 0.766050i \(0.277781\pi\)
\(500\) 0 0
\(501\) −131.421 131.421i −0.262318 0.262318i
\(502\) 0 0
\(503\) 64.6784 0.128585 0.0642927 0.997931i \(-0.479521\pi\)
0.0642927 + 0.997931i \(0.479521\pi\)
\(504\) 0 0
\(505\) 998.450i 1.97713i
\(506\) 0 0
\(507\) −88.6838 + 88.6838i −0.174919 + 0.174919i
\(508\) 0 0
\(509\) 392.205 + 392.205i 0.770541 + 0.770541i 0.978201 0.207660i \(-0.0665847\pi\)
−0.207660 + 0.978201i \(0.566585\pi\)
\(510\) 0 0
\(511\) 114.537 + 230.245i 0.224143 + 0.450577i
\(512\) 0 0
\(513\) −379.241 −0.739261
\(514\) 0 0
\(515\) 922.121 922.121i 1.79053 1.79053i
\(516\) 0 0
\(517\) −49.7447 + 49.7447i −0.0962180 + 0.0962180i
\(518\) 0 0
\(519\) 19.7370i 0.0380289i
\(520\) 0 0
\(521\) −537.133 −1.03097 −0.515483 0.856900i \(-0.672387\pi\)
−0.515483 + 0.856900i \(0.672387\pi\)
\(522\) 0 0
\(523\) −282.626 + 282.626i −0.540394 + 0.540394i −0.923644 0.383251i \(-0.874805\pi\)
0.383251 + 0.923644i \(0.374805\pi\)
\(524\) 0 0
\(525\) −364.803 122.427i −0.694862 0.233194i
\(526\) 0 0
\(527\) −357.993 −0.679303
\(528\) 0 0
\(529\) 421.342 0.796489
\(530\) 0 0
\(531\) 398.893 + 398.893i 0.751212 + 0.751212i
\(532\) 0 0
\(533\) 539.686 + 539.686i 1.01254 + 1.01254i
\(534\) 0 0
\(535\) −659.596 −1.23289
\(536\) 0 0
\(537\) 298.221 0.555346
\(538\) 0 0
\(539\) 176.632 24.4998i 0.327704 0.0454542i
\(540\) 0 0
\(541\) −53.3102 + 53.3102i −0.0985401 + 0.0985401i −0.754658 0.656118i \(-0.772197\pi\)
0.656118 + 0.754658i \(0.272197\pi\)
\(542\) 0 0
\(543\) 20.2750 0.0373388
\(544\) 0 0
\(545\) 40.6567i 0.0745994i
\(546\) 0 0
\(547\) −301.530 + 301.530i −0.551244 + 0.551244i −0.926800 0.375556i \(-0.877452\pi\)
0.375556 + 0.926800i \(0.377452\pi\)
\(548\) 0 0
\(549\) −494.312 + 494.312i −0.900385 + 0.900385i
\(550\) 0 0
\(551\) −539.862 −0.979786
\(552\) 0 0
\(553\) 171.579 + 344.912i 0.310270 + 0.623711i
\(554\) 0 0
\(555\) 31.0647 + 31.0647i 0.0559724 + 0.0559724i
\(556\) 0 0
\(557\) −524.220 + 524.220i −0.941148 + 0.941148i −0.998362 0.0572135i \(-0.981778\pi\)
0.0572135 + 0.998362i \(0.481778\pi\)
\(558\) 0 0
\(559\) 1026.73i 1.83673i
\(560\) 0 0
\(561\) −140.847 −0.251064
\(562\) 0 0
\(563\) 608.657 + 608.657i 1.08110 + 1.08110i 0.996407 + 0.0846888i \(0.0269896\pi\)
0.0846888 + 0.996407i \(0.473010\pi\)
\(564\) 0 0
\(565\) −241.777 + 241.777i −0.427923 + 0.427923i
\(566\) 0 0
\(567\) 63.7802 + 128.212i 0.112487 + 0.226124i
\(568\) 0 0
\(569\) 576.735i 1.01359i 0.862066 + 0.506797i \(0.169170\pi\)
−0.862066 + 0.506797i \(0.830830\pi\)
\(570\) 0 0
\(571\) 401.402 + 401.402i 0.702980 + 0.702980i 0.965049 0.262069i \(-0.0844048\pi\)
−0.262069 + 0.965049i \(0.584405\pi\)
\(572\) 0 0
\(573\) 202.708 + 202.708i 0.353765 + 0.353765i
\(574\) 0 0
\(575\) 363.072 0.631430
\(576\) 0 0
\(577\) 933.829i 1.61842i −0.587519 0.809210i \(-0.699895\pi\)
0.587519 0.809210i \(-0.300105\pi\)
\(578\) 0 0
\(579\) 420.746 + 420.746i 0.726676 + 0.726676i
\(580\) 0 0
\(581\) 133.217 396.957i 0.229290 0.683231i
\(582\) 0 0
\(583\) 41.6333i 0.0714121i
\(584\) 0 0
\(585\) 798.097i 1.36427i
\(586\) 0 0
\(587\) 415.106 415.106i 0.707165 0.707165i −0.258773 0.965938i \(-0.583318\pi\)
0.965938 + 0.258773i \(0.0833181\pi\)
\(588\) 0 0
\(589\) −159.702 + 159.702i −0.271140 + 0.271140i
\(590\) 0 0
\(591\) 286.590i 0.484924i
\(592\) 0 0
\(593\) 818.826i 1.38082i −0.723419 0.690409i \(-0.757430\pi\)
0.723419 0.690409i \(-0.242570\pi\)
\(594\) 0 0
\(595\) 424.971 1266.31i 0.714237 2.12826i
\(596\) 0 0
\(597\) 305.250 + 305.250i 0.511306 + 0.511306i
\(598\) 0 0
\(599\) 503.564i 0.840674i 0.907368 + 0.420337i \(0.138088\pi\)
−0.907368 + 0.420337i \(0.861912\pi\)
\(600\) 0 0
\(601\) −110.475 −0.183819 −0.0919093 0.995767i \(-0.529297\pi\)
−0.0919093 + 0.995767i \(0.529297\pi\)
\(602\) 0 0
\(603\) −529.925 529.925i −0.878815 0.878815i
\(604\) 0 0
\(605\) 590.164 + 590.164i 0.975478 + 0.975478i
\(606\) 0 0
\(607\) 169.212i 0.278769i −0.990238 0.139384i \(-0.955488\pi\)
0.990238 0.139384i \(-0.0445123\pi\)
\(608\) 0 0
\(609\) −170.124 341.987i −0.279350 0.561555i
\(610\) 0 0
\(611\) 215.621 215.621i 0.352898 0.352898i
\(612\) 0 0
\(613\) 199.765 + 199.765i 0.325881 + 0.325881i 0.851018 0.525137i \(-0.175986\pi\)
−0.525137 + 0.851018i \(0.675986\pi\)
\(614\) 0 0
\(615\) −588.723 −0.957273
\(616\) 0 0
\(617\) 166.208i 0.269381i −0.990888 0.134690i \(-0.956996\pi\)
0.990888 0.134690i \(-0.0430040\pi\)
\(618\) 0 0
\(619\) 474.519 474.519i 0.766589 0.766589i −0.210915 0.977504i \(-0.567644\pi\)
0.977504 + 0.210915i \(0.0676444\pi\)
\(620\) 0 0
\(621\) 179.020 + 179.020i 0.288277 + 0.288277i
\(622\) 0 0
\(623\) −25.2985 50.8555i −0.0406075 0.0816301i
\(624\) 0 0
\(625\) 275.354 0.440566
\(626\) 0 0
\(627\) −62.8322 + 62.8322i −0.100211 + 0.100211i
\(628\) 0 0
\(629\) −62.8965 + 62.8965i −0.0999944 + 0.0999944i
\(630\) 0 0
\(631\) 326.927i 0.518110i −0.965863 0.259055i \(-0.916589\pi\)
0.965863 0.259055i \(-0.0834111\pi\)
\(632\) 0 0
\(633\) −180.380 −0.284961
\(634\) 0 0
\(635\) 558.338 558.338i 0.879273 0.879273i
\(636\) 0 0
\(637\) −765.621 + 106.196i −1.20192 + 0.166712i
\(638\) 0 0
\(639\) −61.8200 −0.0967449
\(640\) 0 0
\(641\) −468.475 −0.730850 −0.365425 0.930841i \(-0.619076\pi\)
−0.365425 + 0.930841i \(0.619076\pi\)
\(642\) 0 0
\(643\) 162.961 + 162.961i 0.253438 + 0.253438i 0.822379 0.568941i \(-0.192647\pi\)
−0.568941 + 0.822379i \(0.692647\pi\)
\(644\) 0 0
\(645\) 560.013 + 560.013i 0.868237 + 0.868237i
\(646\) 0 0
\(647\) 648.535 1.00237 0.501186 0.865340i \(-0.332897\pi\)
0.501186 + 0.865340i \(0.332897\pi\)
\(648\) 0 0
\(649\) 314.291 0.484269
\(650\) 0 0
\(651\) −151.493 50.8404i −0.232707 0.0780958i
\(652\) 0 0
\(653\) 198.998 198.998i 0.304744 0.304744i −0.538122 0.842867i \(-0.680866\pi\)
0.842867 + 0.538122i \(0.180866\pi\)
\(654\) 0 0
\(655\) −1054.75 −1.61030
\(656\) 0 0
\(657\) 239.971i 0.365253i
\(658\) 0 0
\(659\) −273.506 + 273.506i −0.415032 + 0.415032i −0.883487 0.468455i \(-0.844811\pi\)
0.468455 + 0.883487i \(0.344811\pi\)
\(660\) 0 0
\(661\) −418.775 + 418.775i −0.633547 + 0.633547i −0.948956 0.315409i \(-0.897858\pi\)
0.315409 + 0.948956i \(0.397858\pi\)
\(662\) 0 0
\(663\) 610.507 0.920826
\(664\) 0 0
\(665\) −375.326 754.488i −0.564400 1.13457i
\(666\) 0 0
\(667\) 254.841 + 254.841i 0.382070 + 0.382070i
\(668\) 0 0
\(669\) 294.496 294.496i 0.440204 0.440204i
\(670\) 0 0
\(671\) 389.471i 0.580434i
\(672\) 0 0
\(673\) −1171.54 −1.74077 −0.870383 0.492375i \(-0.836129\pi\)
−0.870383 + 0.492375i \(0.836129\pi\)
\(674\) 0 0
\(675\) −603.740 603.740i −0.894429 0.894429i
\(676\) 0 0
\(677\) 104.959 104.959i 0.155035 0.155035i −0.625328 0.780362i \(-0.715035\pi\)
0.780362 + 0.625328i \(0.215035\pi\)
\(678\) 0 0
\(679\) −885.461 + 440.480i −1.30407 + 0.648718i
\(680\) 0 0
\(681\) 77.8100i 0.114259i
\(682\) 0 0
\(683\) −598.937 598.937i −0.876921 0.876921i 0.116294 0.993215i \(-0.462898\pi\)
−0.993215 + 0.116294i \(0.962898\pi\)
\(684\) 0 0
\(685\) −244.552 244.552i −0.357010 0.357010i
\(686\) 0 0
\(687\) 37.2150 0.0541703
\(688\) 0 0
\(689\) 180.461i 0.261918i
\(690\) 0 0
\(691\) 397.739 + 397.739i 0.575599 + 0.575599i 0.933688 0.358089i \(-0.116571\pi\)
−0.358089 + 0.933688i \(0.616571\pi\)
\(692\) 0 0
\(693\) 157.757 + 52.9427i 0.227643 + 0.0763964i
\(694\) 0 0
\(695\) 75.7335i 0.108969i
\(696\) 0 0
\(697\) 1191.98i 1.71016i
\(698\) 0 0
\(699\) −180.947 + 180.947i −0.258866 + 0.258866i
\(700\) 0 0
\(701\) 848.967 848.967i 1.21108 1.21108i 0.240409 0.970672i \(-0.422718\pi\)
0.970672 0.240409i \(-0.0772815\pi\)
\(702\) 0 0
\(703\) 56.1166i 0.0798245i
\(704\) 0 0
\(705\) 235.213i 0.333635i
\(706\) 0 0
\(707\) 855.466 + 287.092i 1.20999 + 0.406070i
\(708\) 0 0
\(709\) 250.885 + 250.885i 0.353857 + 0.353857i 0.861542 0.507685i \(-0.169499\pi\)
−0.507685 + 0.861542i \(0.669499\pi\)
\(710\) 0 0
\(711\) 359.482i 0.505601i
\(712\) 0 0
\(713\) 150.774 0.211464
\(714\) 0 0
\(715\) 314.413 + 314.413i 0.439738 + 0.439738i
\(716\) 0 0
\(717\) 509.690 + 509.690i 0.710864 + 0.710864i
\(718\) 0 0
\(719\) 1326.17i 1.84446i 0.386642 + 0.922230i \(0.373635\pi\)
−0.386642 + 0.922230i \(0.626365\pi\)
\(720\) 0 0
\(721\) 524.924 + 1055.21i 0.728050 + 1.46354i
\(722\) 0 0
\(723\) −6.86219 + 6.86219i −0.00949127 + 0.00949127i
\(724\) 0 0
\(725\) −859.444 859.444i −1.18544 1.18544i
\(726\) 0 0
\(727\) 135.744 0.186719 0.0933593 0.995632i \(-0.470239\pi\)
0.0933593 + 0.995632i \(0.470239\pi\)
\(728\) 0 0
\(729\) 211.357i 0.289927i
\(730\) 0 0
\(731\) −1133.86 + 1133.86i −1.55110 + 1.55110i
\(732\) 0 0
\(733\) 340.606 + 340.606i 0.464674 + 0.464674i 0.900184 0.435510i \(-0.143432\pi\)
−0.435510 + 0.900184i \(0.643432\pi\)
\(734\) 0 0
\(735\) 359.672 475.516i 0.489349 0.646961i
\(736\) 0 0
\(737\) −417.532 −0.566529
\(738\) 0 0
\(739\) −422.281 + 422.281i −0.571423 + 0.571423i −0.932526 0.361103i \(-0.882400\pi\)
0.361103 + 0.932526i \(0.382400\pi\)
\(740\) 0 0
\(741\) 272.349 272.349i 0.367543 0.367543i
\(742\) 0 0
\(743\) 125.612i 0.169061i −0.996421 0.0845303i \(-0.973061\pi\)
0.996421 0.0845303i \(-0.0269390\pi\)
\(744\) 0 0
\(745\) 952.292 1.27824
\(746\) 0 0
\(747\) 276.285 276.285i 0.369860 0.369860i
\(748\) 0 0
\(749\) 189.658 565.138i 0.253216 0.754524i
\(750\) 0 0
\(751\) 964.776 1.28465 0.642327 0.766430i \(-0.277969\pi\)
0.642327 + 0.766430i \(0.277969\pi\)
\(752\) 0 0
\(753\) 43.7202 0.0580614
\(754\) 0 0
\(755\) −745.341 745.341i −0.987207 0.987207i
\(756\) 0 0
\(757\) −313.133 313.133i −0.413650 0.413650i 0.469358 0.883008i \(-0.344485\pi\)
−0.883008 + 0.469358i \(0.844485\pi\)
\(758\) 0 0
\(759\) 59.3196 0.0781550
\(760\) 0 0
\(761\) 1428.00 1.87648 0.938242 0.345980i \(-0.112453\pi\)
0.938242 + 0.345980i \(0.112453\pi\)
\(762\) 0 0
\(763\) −34.8344 11.6903i −0.0456545 0.0153215i
\(764\) 0 0
\(765\) 881.365 881.365i 1.15211 1.15211i
\(766\) 0 0
\(767\) −1362.31 −1.77615
\(768\) 0 0
\(769\) 870.738i 1.13230i −0.824303 0.566149i \(-0.808433\pi\)
0.824303 0.566149i \(-0.191567\pi\)
\(770\) 0 0
\(771\) 51.7796 51.7796i 0.0671590 0.0671590i
\(772\) 0 0
\(773\) 3.78212 3.78212i 0.00489279 0.00489279i −0.704656 0.709549i \(-0.748899\pi\)
0.709549 + 0.704656i \(0.248899\pi\)
\(774\) 0 0
\(775\) −508.480 −0.656104
\(776\) 0 0
\(777\) −35.5483 + 17.6838i −0.0457507 + 0.0227590i
\(778\) 0 0
\(779\) −531.748 531.748i −0.682603 0.682603i
\(780\) 0 0
\(781\) −24.3542 + 24.3542i −0.0311833 + 0.0311833i
\(782\) 0 0
\(783\) 847.532i 1.08242i
\(784\) 0 0
\(785\) −670.614 −0.854285
\(786\) 0 0
\(787\) 376.678 + 376.678i 0.478626 + 0.478626i 0.904692 0.426066i \(-0.140101\pi\)
−0.426066 + 0.904692i \(0.640101\pi\)
\(788\) 0 0
\(789\) 259.411 259.411i 0.328784 0.328784i
\(790\) 0 0
\(791\) −137.633 276.672i −0.173999 0.349776i
\(792\) 0 0
\(793\) 1688.18i 2.12885i
\(794\) 0 0
\(795\) −98.4293 98.4293i −0.123810 0.123810i
\(796\) 0 0
\(797\) −1054.97 1054.97i −1.32367 1.32367i −0.910778 0.412896i \(-0.864517\pi\)
−0.412896 0.910778i \(-0.635483\pi\)
\(798\) 0 0
\(799\) −476.234 −0.596038
\(800\) 0 0
\(801\) 53.0038i 0.0661720i
\(802\) 0 0
\(803\) 94.5373 + 94.5373i 0.117730 + 0.117730i
\(804\) 0 0
\(805\) −178.983 + 533.326i −0.222339 + 0.662517i
\(806\) 0 0
\(807\) 263.725i 0.326797i
\(808\) 0 0
\(809\) 826.800i 1.02200i 0.859580 + 0.511001i \(0.170725\pi\)
−0.859580 + 0.511001i \(0.829275\pi\)
\(810\) 0 0
\(811\) −185.728 + 185.728i −0.229012 + 0.229012i −0.812280 0.583268i \(-0.801774\pi\)
0.583268 + 0.812280i \(0.301774\pi\)
\(812\) 0 0
\(813\) −146.621 + 146.621i −0.180346 + 0.180346i
\(814\) 0 0
\(815\) 1840.39i 2.25815i
\(816\) 0 0
\(817\) 1011.63i 1.23823i
\(818\) 0 0
\(819\) −683.805 229.483i −0.834927 0.280199i
\(820\) 0 0
\(821\) −293.780 293.780i −0.357832 0.357832i 0.505181 0.863013i \(-0.331426\pi\)
−0.863013 + 0.505181i \(0.831426\pi\)
\(822\) 0 0
\(823\) 118.012i 0.143393i 0.997427 + 0.0716964i \(0.0228413\pi\)
−0.997427 + 0.0716964i \(0.977159\pi\)
\(824\) 0 0
\(825\) −200.054 −0.242489
\(826\) 0 0
\(827\) −36.0081 36.0081i −0.0435406 0.0435406i 0.685001 0.728542i \(-0.259802\pi\)
−0.728542 + 0.685001i \(0.759802\pi\)
\(828\) 0 0
\(829\) 52.8642 + 52.8642i 0.0637686 + 0.0637686i 0.738272 0.674503i \(-0.235642\pi\)
−0.674503 + 0.738272i \(0.735642\pi\)
\(830\) 0 0
\(831\) 554.451i 0.667209i
\(832\) 0 0
\(833\) 962.776 + 728.225i 1.15579 + 0.874220i
\(834\) 0 0
\(835\) 647.960 647.960i 0.776000 0.776000i
\(836\) 0 0
\(837\) −250.716 250.716i −0.299542 0.299542i
\(838\) 0 0
\(839\) 1257.63 1.49897 0.749484 0.662023i \(-0.230302\pi\)
0.749484 + 0.662023i \(0.230302\pi\)
\(840\) 0 0
\(841\) 365.490i 0.434589i
\(842\) 0 0
\(843\) 382.176 382.176i 0.453352 0.453352i
\(844\) 0 0
\(845\) −437.248 437.248i −0.517453 0.517453i
\(846\) 0 0
\(847\) −675.344 + 335.955i −0.797336 + 0.396641i
\(848\) 0 0
\(849\) 314.674 0.370640
\(850\) 0 0
\(851\) 26.4897 26.4897i 0.0311278 0.0311278i
\(852\) 0 0
\(853\) 906.916 906.916i 1.06321 1.06321i 0.0653442 0.997863i \(-0.479185\pi\)
0.997863 0.0653442i \(-0.0208145\pi\)
\(854\) 0 0
\(855\) 786.359i 0.919718i
\(856\) 0 0
\(857\) −1015.16 −1.18455 −0.592273 0.805737i \(-0.701769\pi\)
−0.592273 + 0.805737i \(0.701769\pi\)
\(858\) 0 0
\(859\) 851.483 851.483i 0.991249 0.991249i −0.00871336 0.999962i \(-0.502774\pi\)
0.999962 + 0.00871336i \(0.00277359\pi\)
\(860\) 0 0
\(861\) 169.280 504.414i 0.196608 0.585847i
\(862\) 0 0
\(863\) 873.705 1.01240 0.506202 0.862415i \(-0.331049\pi\)
0.506202 + 0.862415i \(0.331049\pi\)
\(864\) 0 0
\(865\) 97.3116 0.112499
\(866\) 0 0
\(867\) −353.172 353.172i −0.407350 0.407350i
\(868\) 0 0
\(869\) 141.619 + 141.619i 0.162968 + 0.162968i
\(870\) 0 0
\(871\) 1809.81 2.07785
\(872\) 0 0
\(873\) −922.865 −1.05712
\(874\) 0 0
\(875\) 172.364 513.605i 0.196988 0.586977i
\(876\) 0 0
\(877\) −1140.58 + 1140.58i −1.30055 + 1.30055i −0.372525 + 0.928022i \(0.621508\pi\)
−0.928022 + 0.372525i \(0.878492\pi\)
\(878\) 0 0
\(879\) −183.511 −0.208772
\(880\) 0 0
\(881\) 626.678i 0.711325i −0.934614 0.355663i \(-0.884255\pi\)
0.934614 0.355663i \(-0.115745\pi\)
\(882\) 0 0
\(883\) −101.385 + 101.385i −0.114819 + 0.114819i −0.762182 0.647363i \(-0.775872\pi\)
0.647363 + 0.762182i \(0.275872\pi\)
\(884\) 0 0
\(885\) 743.045 743.045i 0.839599 0.839599i
\(886\) 0 0
\(887\) −966.644 −1.08979 −0.544895 0.838504i \(-0.683431\pi\)
−0.544895 + 0.838504i \(0.683431\pi\)
\(888\) 0 0
\(889\) 317.838 + 638.924i 0.357523 + 0.718700i
\(890\) 0 0
\(891\) 52.6433 + 52.6433i 0.0590834 + 0.0590834i
\(892\) 0 0
\(893\) −212.450 + 212.450i −0.237905 + 0.237905i
\(894\) 0 0
\(895\) 1470.35i 1.64285i
\(896\) 0 0
\(897\) −257.124 −0.286649
\(898\) 0 0
\(899\) −356.903 356.903i −0.397000 0.397000i
\(900\) 0 0
\(901\) 199.289 199.289i 0.221187 0.221187i
\(902\) 0 0
\(903\) −640.840 + 318.791i −0.709679 + 0.353036i
\(904\) 0 0
\(905\) 99.9640i 0.110457i
\(906\) 0 0
\(907\) −5.22275 5.22275i −0.00575826 0.00575826i 0.704222 0.709980i \(-0.251296\pi\)
−0.709980 + 0.704222i \(0.751296\pi\)
\(908\) 0 0
\(909\) 595.411 + 595.411i 0.655018 + 0.655018i
\(910\) 0 0
\(911\) 1180.89 1.29626 0.648130 0.761530i \(-0.275551\pi\)
0.648130 + 0.761530i \(0.275551\pi\)
\(912\) 0 0
\(913\) 217.687i 0.238430i
\(914\) 0 0
\(915\) 920.787 + 920.787i 1.00632 + 1.00632i
\(916\) 0 0
\(917\) 303.278 903.699i 0.330729 0.985495i
\(918\) 0 0
\(919\) 541.429i 0.589150i −0.955628 0.294575i \(-0.904822\pi\)
0.955628 0.294575i \(-0.0951781\pi\)
\(920\) 0 0
\(921\) 446.451i 0.484746i
\(922\) 0 0
\(923\) 105.564 105.564i 0.114371 0.114371i
\(924\) 0 0
\(925\) −89.3359 + 89.3359i −0.0965794 + 0.0965794i
\(926\) 0 0
\(927\) 1099.79i 1.18639i
\(928\) 0 0
\(929\) 362.906i 0.390641i 0.980739 + 0.195321i \(0.0625748\pi\)
−0.980739 + 0.195321i \(0.937425\pi\)
\(930\) 0 0
\(931\) 754.361 104.634i 0.810269 0.112389i
\(932\) 0 0
\(933\) −514.398 514.398i −0.551337 0.551337i
\(934\) 0 0
\(935\) 694.433i 0.742709i
\(936\) 0 0
\(937\) 1172.13 1.25094 0.625469 0.780249i \(-0.284908\pi\)
0.625469 + 0.780249i \(0.284908\pi\)
\(938\) 0 0
\(939\) 1.21178 + 1.21178i 0.00129050 + 0.00129050i
\(940\) 0 0
\(941\) 930.677 + 930.677i 0.989030 + 0.989030i 0.999940 0.0109108i \(-0.00347309\pi\)
−0.0109108 + 0.999940i \(0.503473\pi\)
\(942\) 0 0
\(943\) 502.021i 0.532366i
\(944\) 0 0
\(945\) 1184.47 589.226i 1.25341 0.623519i
\(946\) 0 0
\(947\) −265.946 + 265.946i −0.280830 + 0.280830i −0.833440 0.552610i \(-0.813632\pi\)
0.552610 + 0.833440i \(0.313632\pi\)
\(948\) 0 0
\(949\) −409.777 409.777i −0.431798 0.431798i
\(950\) 0 0
\(951\) 113.675 0.119532
\(952\) 0 0
\(953\) 1378.60i 1.44659i 0.690540 + 0.723294i \(0.257373\pi\)
−0.690540 + 0.723294i \(0.742627\pi\)
\(954\) 0 0
\(955\) −999.431 + 999.431i −1.04653 + 1.04653i
\(956\) 0 0
\(957\) −140.418 140.418i −0.146727 0.146727i
\(958\) 0 0
\(959\) 279.848 139.213i 0.291812 0.145164i
\(960\) 0 0
\(961\) 749.842 0.780273
\(962\) 0 0
\(963\) 393.340 393.340i 0.408453 0.408453i
\(964\) 0 0
\(965\) −2074.45 + 2074.45i −2.14969 + 2.14969i
\(966\) 0 0
\(967\) 1533.12i 1.58544i −0.609584 0.792722i \(-0.708663\pi\)
0.609584 0.792722i \(-0.291337\pi\)
\(968\) 0 0
\(969\) −601.528 −0.620772
\(970\) 0 0
\(971\) −44.2230 + 44.2230i −0.0455437 + 0.0455437i −0.729512 0.683968i \(-0.760253\pi\)
0.683968 + 0.729512i \(0.260253\pi\)
\(972\) 0 0
\(973\) 64.8880 + 21.7762i 0.0666886 + 0.0223805i
\(974\) 0 0
\(975\) 867.143 0.889377
\(976\) 0 0
\(977\) −623.770 −0.638454 −0.319227 0.947678i \(-0.603423\pi\)
−0.319227 + 0.947678i \(0.603423\pi\)
\(978\) 0 0
\(979\) −20.8810 20.8810i −0.0213289 0.0213289i
\(980\) 0 0
\(981\) −24.2450 24.2450i −0.0247146 0.0247146i
\(982\) 0 0
\(983\) −1124.01 −1.14345 −0.571724 0.820446i \(-0.693725\pi\)
−0.571724 + 0.820446i \(0.693725\pi\)
\(984\) 0 0
\(985\) −1413.01 −1.43453
\(986\) 0 0
\(987\) −201.529 67.6324i −0.204183 0.0685232i
\(988\) 0 0
\(989\) 477.539 477.539i 0.482851 0.482851i
\(990\) 0 0
\(991\) −392.328 −0.395891 −0.197946 0.980213i \(-0.563427\pi\)
−0.197946 + 0.980213i \(0.563427\pi\)
\(992\) 0 0
\(993\) 64.0327i 0.0644841i
\(994\) 0 0
\(995\) −1505.01 + 1505.01i −1.51257 + 1.51257i
\(996\) 0 0
\(997\) −744.756 + 744.756i −0.746997 + 0.746997i −0.973914 0.226917i \(-0.927135\pi\)
0.226917 + 0.973914i \(0.427135\pi\)
\(998\) 0 0
\(999\) −88.0977 −0.0881859
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.3.l.b.433.18 56
4.3 odd 2 112.3.l.b.69.23 yes 56
7.6 odd 2 inner 448.3.l.b.433.11 56
16.3 odd 4 112.3.l.b.13.24 yes 56
16.13 even 4 inner 448.3.l.b.209.11 56
28.27 even 2 112.3.l.b.69.24 yes 56
112.13 odd 4 inner 448.3.l.b.209.18 56
112.83 even 4 112.3.l.b.13.23 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.3.l.b.13.23 56 112.83 even 4
112.3.l.b.13.24 yes 56 16.3 odd 4
112.3.l.b.69.23 yes 56 4.3 odd 2
112.3.l.b.69.24 yes 56 28.27 even 2
448.3.l.b.209.11 56 16.13 even 4 inner
448.3.l.b.209.18 56 112.13 odd 4 inner
448.3.l.b.433.11 56 7.6 odd 2 inner
448.3.l.b.433.18 56 1.1 even 1 trivial