Properties

Label 112.3
Level 112
Weight 3
Dimension 391
Nonzero newspaces 8
Newform subspaces 16
Sturm bound 2304
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 16 \)
Sturm bound: \(2304\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(112))\).

Total New Old
Modular forms 852 437 415
Cusp forms 684 391 293
Eisenstein series 168 46 122

Trace form

\( 391 q - 8 q^{2} - 5 q^{3} + 4 q^{4} + q^{5} + 4 q^{6} - 5 q^{7} - 32 q^{8} - 21 q^{9} - 84 q^{10} + 27 q^{11} - 116 q^{12} - 28 q^{13} - 24 q^{14} - 18 q^{15} + 68 q^{16} + 41 q^{17} + 136 q^{18} - 21 q^{19}+ \cdots - 1942 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(112))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
112.3.c \(\chi_{112}(97, \cdot)\) 112.3.c.a 1 1
112.3.c.b 2
112.3.c.c 4
112.3.d \(\chi_{112}(15, \cdot)\) 112.3.d.a 2 1
112.3.d.b 4
112.3.g \(\chi_{112}(71, \cdot)\) None 0 1
112.3.h \(\chi_{112}(41, \cdot)\) None 0 1
112.3.k \(\chi_{112}(43, \cdot)\) 112.3.k.a 48 2
112.3.l \(\chi_{112}(13, \cdot)\) 112.3.l.a 4 2
112.3.l.b 56
112.3.n \(\chi_{112}(73, \cdot)\) None 0 2
112.3.o \(\chi_{112}(23, \cdot)\) None 0 2
112.3.r \(\chi_{112}(79, \cdot)\) 112.3.r.a 4 2
112.3.r.b 6
112.3.r.c 6
112.3.s \(\chi_{112}(17, \cdot)\) 112.3.s.a 2 2
112.3.s.b 4
112.3.s.c 8
112.3.u \(\chi_{112}(11, \cdot)\) 112.3.u.a 120 4
112.3.x \(\chi_{112}(5, \cdot)\) 112.3.x.a 120 4

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(112))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(112)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 2}\)