Properties

Label 112.10.i.c.65.2
Level $112$
Weight $10$
Character 112.65
Analytic conductor $57.684$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(65,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.65"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,-161] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 430 x^{8} + 61 x^{7} + 146753 x^{6} + 23608 x^{5} + 16136944 x^{4} + 30575648 x^{3} + \cdots + 761760000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{3}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 65.2
Root \(5.89912 - 10.2176i\) of defining polynomial
Character \(\chi\) \(=\) 112.65
Dual form 112.10.i.c.81.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-104.977 - 181.826i) q^{3} +(983.791 - 1703.98i) q^{5} +(5768.52 - 2660.41i) q^{7} +(-12198.9 + 21129.2i) q^{9} +(15898.9 + 27537.7i) q^{11} -100188. q^{13} -413103. q^{15} +(-169129. - 292940. i) q^{17} +(130759. - 226480. i) q^{19} +(-1.08930e6 - 769584. i) q^{21} +(-272337. + 471702. i) q^{23} +(-959125. - 1.66125e6i) q^{25} +989914. q^{27} +2.32128e6 q^{29} +(-2.53535e6 - 4.39136e6i) q^{31} +(3.33804e6 - 5.78166e6i) q^{33} +(1.14174e6 - 1.24467e7i) q^{35} +(-2.93235e6 + 5.07897e6i) q^{37} +(1.05174e7 + 1.82167e7i) q^{39} -2.81312e7 q^{41} -3.88522e7 q^{43} +(2.40024e7 + 4.15734e7i) q^{45} +(1.26741e7 - 2.19521e7i) q^{47} +(2.61980e7 - 3.06933e7i) q^{49} +(-3.55094e7 + 6.15041e7i) q^{51} +(2.26489e7 + 3.92291e7i) q^{53} +6.25647e7 q^{55} -5.49067e7 q^{57} +(9.44557e6 + 1.63602e7i) q^{59} +(-5.08255e7 + 8.80323e7i) q^{61} +(-1.41575e7 + 1.54338e8i) q^{63} +(-9.85638e7 + 1.70718e8i) q^{65} +(6.55496e7 + 1.13535e8i) q^{67} +1.14357e8 q^{69} -9.51959e7 q^{71} +(-1.19056e8 - 2.06211e8i) q^{73} +(-2.01373e8 + 3.48788e8i) q^{75} +(1.64975e8 + 1.16554e8i) q^{77} +(9.42601e7 - 1.63263e8i) q^{79} +(1.36193e8 + 2.35894e8i) q^{81} +1.76014e8 q^{83} -6.65551e8 q^{85} +(-2.43682e8 - 4.22070e8i) q^{87} +(2.41517e8 - 4.18319e8i) q^{89} +(-5.77936e8 + 2.66541e8i) q^{91} +(-5.32309e8 + 9.21986e8i) q^{93} +(-2.57278e8 - 4.45619e8i) q^{95} -2.28821e7 q^{97} -7.75799e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 161 q^{3} + 1533 q^{5} + 1036 q^{7} - 35734 q^{9} - 42213 q^{11} - 319676 q^{13} - 151394 q^{15} + 324681 q^{17} + 16121 q^{19} - 1557857 q^{21} - 2638863 q^{23} - 1304092 q^{25} + 18331558 q^{27}+ \cdots + 1900777180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −104.977 181.826i −0.748255 1.29602i −0.948659 0.316302i \(-0.897559\pi\)
0.200404 0.979713i \(-0.435775\pi\)
\(4\) 0 0
\(5\) 983.791 1703.98i 0.703943 1.21927i −0.263128 0.964761i \(-0.584754\pi\)
0.967072 0.254505i \(-0.0819124\pi\)
\(6\) 0 0
\(7\) 5768.52 2660.41i 0.908078 0.418801i
\(8\) 0 0
\(9\) −12198.9 + 21129.2i −0.619771 + 1.07347i
\(10\) 0 0
\(11\) 15898.9 + 27537.7i 0.327416 + 0.567101i 0.981998 0.188890i \(-0.0604889\pi\)
−0.654583 + 0.755991i \(0.727156\pi\)
\(12\) 0 0
\(13\) −100188. −0.972904 −0.486452 0.873707i \(-0.661709\pi\)
−0.486452 + 0.873707i \(0.661709\pi\)
\(14\) 0 0
\(15\) −413103. −2.10692
\(16\) 0 0
\(17\) −169129. 292940.i −0.491132 0.850666i 0.508816 0.860875i \(-0.330083\pi\)
−0.999948 + 0.0102097i \(0.996750\pi\)
\(18\) 0 0
\(19\) 130759. 226480.i 0.230186 0.398694i −0.727677 0.685920i \(-0.759400\pi\)
0.957863 + 0.287226i \(0.0927332\pi\)
\(20\) 0 0
\(21\) −1.08930e6 769584.i −1.22225 0.863514i
\(22\) 0 0
\(23\) −272337. + 471702.i −0.202923 + 0.351474i −0.949469 0.313860i \(-0.898378\pi\)
0.746546 + 0.665334i \(0.231711\pi\)
\(24\) 0 0
\(25\) −959125. 1.66125e6i −0.491072 0.850562i
\(26\) 0 0
\(27\) 989914. 0.358476
\(28\) 0 0
\(29\) 2.32128e6 0.609449 0.304724 0.952441i \(-0.401436\pi\)
0.304724 + 0.952441i \(0.401436\pi\)
\(30\) 0 0
\(31\) −2.53535e6 4.39136e6i −0.493073 0.854027i 0.506895 0.862008i \(-0.330793\pi\)
−0.999968 + 0.00798051i \(0.997460\pi\)
\(32\) 0 0
\(33\) 3.33804e6 5.78166e6i 0.489981 0.848672i
\(34\) 0 0
\(35\) 1.14174e6 1.24467e7i 0.128606 1.40200i
\(36\) 0 0
\(37\) −2.93235e6 + 5.07897e6i −0.257222 + 0.445521i −0.965497 0.260416i \(-0.916140\pi\)
0.708275 + 0.705937i \(0.249474\pi\)
\(38\) 0 0
\(39\) 1.05174e7 + 1.82167e7i 0.727980 + 1.26090i
\(40\) 0 0
\(41\) −2.81312e7 −1.55475 −0.777376 0.629036i \(-0.783450\pi\)
−0.777376 + 0.629036i \(0.783450\pi\)
\(42\) 0 0
\(43\) −3.88522e7 −1.73304 −0.866518 0.499147i \(-0.833647\pi\)
−0.866518 + 0.499147i \(0.833647\pi\)
\(44\) 0 0
\(45\) 2.40024e7 + 4.15734e7i 0.872567 + 1.51133i
\(46\) 0 0
\(47\) 1.26741e7 2.19521e7i 0.378857 0.656199i −0.612039 0.790827i \(-0.709651\pi\)
0.990896 + 0.134628i \(0.0429839\pi\)
\(48\) 0 0
\(49\) 2.61980e7 3.06933e7i 0.649212 0.760608i
\(50\) 0 0
\(51\) −3.55094e7 + 6.15041e7i −0.734984 + 1.27303i
\(52\) 0 0
\(53\) 2.26489e7 + 3.92291e7i 0.394281 + 0.682915i 0.993009 0.118037i \(-0.0376602\pi\)
−0.598728 + 0.800953i \(0.704327\pi\)
\(54\) 0 0
\(55\) 6.25647e7 0.921928
\(56\) 0 0
\(57\) −5.49067e7 −0.688951
\(58\) 0 0
\(59\) 9.44557e6 + 1.63602e7i 0.101483 + 0.175774i 0.912296 0.409532i \(-0.134308\pi\)
−0.810813 + 0.585306i \(0.800975\pi\)
\(60\) 0 0
\(61\) −5.08255e7 + 8.80323e7i −0.469999 + 0.814062i −0.999412 0.0343023i \(-0.989079\pi\)
0.529412 + 0.848365i \(0.322412\pi\)
\(62\) 0 0
\(63\) −1.41575e7 + 1.54338e8i −0.113228 + 1.23436i
\(64\) 0 0
\(65\) −9.85638e7 + 1.70718e8i −0.684869 + 1.18623i
\(66\) 0 0
\(67\) 6.55496e7 + 1.13535e8i 0.397405 + 0.688326i 0.993405 0.114659i \(-0.0365774\pi\)
−0.596000 + 0.802985i \(0.703244\pi\)
\(68\) 0 0
\(69\) 1.14357e8 0.607354
\(70\) 0 0
\(71\) −9.51959e7 −0.444586 −0.222293 0.974980i \(-0.571354\pi\)
−0.222293 + 0.974980i \(0.571354\pi\)
\(72\) 0 0
\(73\) −1.19056e8 2.06211e8i −0.490679 0.849881i 0.509264 0.860611i \(-0.329918\pi\)
−0.999942 + 0.0107300i \(0.996584\pi\)
\(74\) 0 0
\(75\) −2.01373e8 + 3.48788e8i −0.734894 + 1.27287i
\(76\) 0 0
\(77\) 1.64975e8 + 1.16554e8i 0.534821 + 0.377850i
\(78\) 0 0
\(79\) 9.42601e7 1.63263e8i 0.272274 0.471592i −0.697170 0.716906i \(-0.745558\pi\)
0.969444 + 0.245314i \(0.0788910\pi\)
\(80\) 0 0
\(81\) 1.36193e8 + 2.35894e8i 0.351539 + 0.608884i
\(82\) 0 0
\(83\) 1.76014e8 0.407095 0.203547 0.979065i \(-0.434753\pi\)
0.203547 + 0.979065i \(0.434753\pi\)
\(84\) 0 0
\(85\) −6.65551e8 −1.38292
\(86\) 0 0
\(87\) −2.43682e8 4.22070e8i −0.456023 0.789855i
\(88\) 0 0
\(89\) 2.41517e8 4.18319e8i 0.408030 0.706729i −0.586639 0.809849i \(-0.699549\pi\)
0.994669 + 0.103120i \(0.0328824\pi\)
\(90\) 0 0
\(91\) −5.77936e8 + 2.66541e8i −0.883473 + 0.407453i
\(92\) 0 0
\(93\) −5.32309e8 + 9.21986e8i −0.737888 + 1.27806i
\(94\) 0 0
\(95\) −2.57278e8 4.45619e8i −0.324076 0.561316i
\(96\) 0 0
\(97\) −2.28821e7 −0.0262436 −0.0131218 0.999914i \(-0.504177\pi\)
−0.0131218 + 0.999914i \(0.504177\pi\)
\(98\) 0 0
\(99\) −7.75799e8 −0.811691
\(100\) 0 0
\(101\) −1.03216e8 1.78776e8i −0.0986966 0.170948i 0.812449 0.583033i \(-0.198134\pi\)
−0.911145 + 0.412085i \(0.864801\pi\)
\(102\) 0 0
\(103\) −1.47590e8 + 2.55634e8i −0.129208 + 0.223795i −0.923370 0.383911i \(-0.874577\pi\)
0.794162 + 0.607706i \(0.207910\pi\)
\(104\) 0 0
\(105\) −2.38299e9 + 1.09902e9i −1.91324 + 0.882378i
\(106\) 0 0
\(107\) −1.22501e9 + 2.12179e9i −0.903471 + 1.56486i −0.0805150 + 0.996753i \(0.525656\pi\)
−0.822956 + 0.568105i \(0.807677\pi\)
\(108\) 0 0
\(109\) 1.02280e9 + 1.77153e9i 0.694016 + 1.20207i 0.970511 + 0.241056i \(0.0774937\pi\)
−0.276495 + 0.961015i \(0.589173\pi\)
\(110\) 0 0
\(111\) 1.23132e9 0.769869
\(112\) 0 0
\(113\) 1.59772e8 0.0921822 0.0460911 0.998937i \(-0.485324\pi\)
0.0460911 + 0.998937i \(0.485324\pi\)
\(114\) 0 0
\(115\) 5.35846e8 + 9.28113e8i 0.285693 + 0.494835i
\(116\) 0 0
\(117\) 1.22219e9 2.11689e9i 0.602977 1.04439i
\(118\) 0 0
\(119\) −1.75497e9 1.23988e9i −0.802246 0.566784i
\(120\) 0 0
\(121\) 6.73425e8 1.16641e9i 0.285598 0.494670i
\(122\) 0 0
\(123\) 2.95314e9 + 5.11499e9i 1.16335 + 2.01498i
\(124\) 0 0
\(125\) 6.86192e7 0.0251392
\(126\) 0 0
\(127\) 5.15074e9 1.75692 0.878462 0.477813i \(-0.158570\pi\)
0.878462 + 0.477813i \(0.158570\pi\)
\(128\) 0 0
\(129\) 4.07860e9 + 7.06433e9i 1.29675 + 2.24604i
\(130\) 0 0
\(131\) 5.08431e8 8.80628e8i 0.150838 0.261259i −0.780698 0.624909i \(-0.785136\pi\)
0.931536 + 0.363650i \(0.118469\pi\)
\(132\) 0 0
\(133\) 1.51752e8 1.65433e9i 0.0420536 0.458447i
\(134\) 0 0
\(135\) 9.73868e8 1.68679e9i 0.252347 0.437078i
\(136\) 0 0
\(137\) −1.60440e9 2.77891e9i −0.389108 0.673956i 0.603221 0.797574i \(-0.293884\pi\)
−0.992330 + 0.123618i \(0.960550\pi\)
\(138\) 0 0
\(139\) −6.36396e8 −0.144598 −0.0722988 0.997383i \(-0.523034\pi\)
−0.0722988 + 0.997383i \(0.523034\pi\)
\(140\) 0 0
\(141\) −5.32195e9 −1.13393
\(142\) 0 0
\(143\) −1.59287e9 2.75894e9i −0.318544 0.551734i
\(144\) 0 0
\(145\) 2.28366e9 3.95541e9i 0.429017 0.743080i
\(146\) 0 0
\(147\) −8.33103e9 1.54139e9i −1.47154 0.272260i
\(148\) 0 0
\(149\) −2.50376e9 + 4.33664e9i −0.416154 + 0.720800i −0.995549 0.0942469i \(-0.969956\pi\)
0.579395 + 0.815047i \(0.303289\pi\)
\(150\) 0 0
\(151\) −1.27205e9 2.20326e9i −0.199118 0.344882i 0.749125 0.662429i \(-0.230474\pi\)
−0.948243 + 0.317547i \(0.897141\pi\)
\(152\) 0 0
\(153\) 8.25279e9 1.21756
\(154\) 0 0
\(155\) −9.97703e9 −1.38838
\(156\) 0 0
\(157\) −5.71100e9 9.89174e9i −0.750177 1.29934i −0.947737 0.319053i \(-0.896635\pi\)
0.197560 0.980291i \(-0.436698\pi\)
\(158\) 0 0
\(159\) 4.75524e9 8.23632e9i 0.590046 1.02199i
\(160\) 0 0
\(161\) −3.16062e8 + 3.44555e9i −0.0370729 + 0.404150i
\(162\) 0 0
\(163\) 5.67212e9 9.82441e9i 0.629364 1.09009i −0.358316 0.933600i \(-0.616649\pi\)
0.987680 0.156489i \(-0.0500177\pi\)
\(164\) 0 0
\(165\) −6.56787e9 1.13759e10i −0.689837 1.19483i
\(166\) 0 0
\(167\) 1.04555e10 1.04021 0.520103 0.854104i \(-0.325894\pi\)
0.520103 + 0.854104i \(0.325894\pi\)
\(168\) 0 0
\(169\) −5.66897e8 −0.0534582
\(170\) 0 0
\(171\) 3.19023e9 + 5.52565e9i 0.285325 + 0.494198i
\(172\) 0 0
\(173\) 5.63685e9 9.76331e9i 0.478442 0.828685i −0.521253 0.853402i \(-0.674535\pi\)
0.999694 + 0.0247172i \(0.00786852\pi\)
\(174\) 0 0
\(175\) −9.95235e9 7.03131e9i −0.802148 0.566715i
\(176\) 0 0
\(177\) 1.98314e9 3.43490e9i 0.151871 0.263048i
\(178\) 0 0
\(179\) −6.78310e9 1.17487e10i −0.493844 0.855363i 0.506131 0.862457i \(-0.331075\pi\)
−0.999975 + 0.00709392i \(0.997742\pi\)
\(180\) 0 0
\(181\) 2.03119e10 1.40668 0.703342 0.710851i \(-0.251690\pi\)
0.703342 + 0.710851i \(0.251690\pi\)
\(182\) 0 0
\(183\) 2.13421e10 1.40672
\(184\) 0 0
\(185\) 5.76963e9 + 9.99329e9i 0.362139 + 0.627243i
\(186\) 0 0
\(187\) 5.37793e9 9.31485e9i 0.321609 0.557043i
\(188\) 0 0
\(189\) 5.71034e9 2.63358e9i 0.325525 0.150130i
\(190\) 0 0
\(191\) −1.71927e10 + 2.97787e10i −0.934748 + 1.61903i −0.159664 + 0.987171i \(0.551041\pi\)
−0.775083 + 0.631859i \(0.782292\pi\)
\(192\) 0 0
\(193\) −1.36102e10 2.35735e10i −0.706084 1.22297i −0.966299 0.257422i \(-0.917127\pi\)
0.260215 0.965551i \(-0.416207\pi\)
\(194\) 0 0
\(195\) 4.13878e10 2.04983
\(196\) 0 0
\(197\) −1.52311e9 −0.0720499 −0.0360249 0.999351i \(-0.511470\pi\)
−0.0360249 + 0.999351i \(0.511470\pi\)
\(198\) 0 0
\(199\) −6.15674e9 1.06638e10i −0.278299 0.482028i 0.692663 0.721261i \(-0.256437\pi\)
−0.970962 + 0.239233i \(0.923104\pi\)
\(200\) 0 0
\(201\) 1.37624e10 2.38372e10i 0.594721 1.03009i
\(202\) 0 0
\(203\) 1.33904e10 6.17557e9i 0.553427 0.255238i
\(204\) 0 0
\(205\) −2.76752e10 + 4.79349e10i −1.09446 + 1.89566i
\(206\) 0 0
\(207\) −6.64446e9 1.15085e10i −0.251532 0.435666i
\(208\) 0 0
\(209\) 8.31566e9 0.301466
\(210\) 0 0
\(211\) 2.60114e10 0.903426 0.451713 0.892163i \(-0.350813\pi\)
0.451713 + 0.892163i \(0.350813\pi\)
\(212\) 0 0
\(213\) 9.99341e9 + 1.73091e10i 0.332664 + 0.576190i
\(214\) 0 0
\(215\) −3.82224e10 + 6.62031e10i −1.21996 + 2.11303i
\(216\) 0 0
\(217\) −2.63081e10 1.85866e10i −0.805416 0.569024i
\(218\) 0 0
\(219\) −2.49963e10 + 4.32948e10i −0.734306 + 1.27185i
\(220\) 0 0
\(221\) 1.69447e10 + 2.93491e10i 0.477824 + 0.827616i
\(222\) 0 0
\(223\) −1.83087e10 −0.495777 −0.247889 0.968789i \(-0.579737\pi\)
−0.247889 + 0.968789i \(0.579737\pi\)
\(224\) 0 0
\(225\) 4.68013e10 1.21741
\(226\) 0 0
\(227\) −1.19844e10 2.07575e10i −0.299570 0.518871i 0.676467 0.736473i \(-0.263510\pi\)
−0.976038 + 0.217602i \(0.930177\pi\)
\(228\) 0 0
\(229\) −1.50424e10 + 2.60541e10i −0.361457 + 0.626061i −0.988201 0.153164i \(-0.951054\pi\)
0.626744 + 0.779225i \(0.284387\pi\)
\(230\) 0 0
\(231\) 3.87398e9 4.22322e10i 0.0895166 0.975865i
\(232\) 0 0
\(233\) −6.75130e9 + 1.16936e10i −0.150067 + 0.259924i −0.931252 0.364376i \(-0.881282\pi\)
0.781185 + 0.624300i \(0.214616\pi\)
\(234\) 0 0
\(235\) −2.49372e10 4.31926e10i −0.533388 0.923854i
\(236\) 0 0
\(237\) −3.95806e10 −0.814921
\(238\) 0 0
\(239\) 3.75005e9 0.0743440 0.0371720 0.999309i \(-0.488165\pi\)
0.0371720 + 0.999309i \(0.488165\pi\)
\(240\) 0 0
\(241\) 1.34568e10 + 2.33078e10i 0.256960 + 0.445067i 0.965426 0.260678i \(-0.0839459\pi\)
−0.708466 + 0.705745i \(0.750613\pi\)
\(242\) 0 0
\(243\) 3.83367e10 6.64011e10i 0.705320 1.22165i
\(244\) 0 0
\(245\) −2.65272e10 7.48365e10i −0.470374 1.32699i
\(246\) 0 0
\(247\) −1.31004e10 + 2.26906e10i −0.223949 + 0.387891i
\(248\) 0 0
\(249\) −1.84774e10 3.20039e10i −0.304610 0.527601i
\(250\) 0 0
\(251\) −1.56458e10 −0.248810 −0.124405 0.992232i \(-0.539702\pi\)
−0.124405 + 0.992232i \(0.539702\pi\)
\(252\) 0 0
\(253\) −1.73194e10 −0.265761
\(254\) 0 0
\(255\) 6.98677e10 + 1.21014e11i 1.03477 + 1.79228i
\(256\) 0 0
\(257\) −3.63435e10 + 6.29487e10i −0.519670 + 0.900094i 0.480069 + 0.877231i \(0.340612\pi\)
−0.999739 + 0.0228635i \(0.992722\pi\)
\(258\) 0 0
\(259\) −3.40315e9 + 3.70994e10i −0.0469928 + 0.512292i
\(260\) 0 0
\(261\) −2.83172e10 + 4.90469e10i −0.377719 + 0.654228i
\(262\) 0 0
\(263\) −4.11041e10 7.11943e10i −0.529766 0.917581i −0.999397 0.0347186i \(-0.988946\pi\)
0.469631 0.882863i \(-0.344387\pi\)
\(264\) 0 0
\(265\) 8.91272e10 1.11021
\(266\) 0 0
\(267\) −1.01415e11 −1.22124
\(268\) 0 0
\(269\) −1.64537e10 2.84986e10i −0.191592 0.331847i 0.754186 0.656661i \(-0.228032\pi\)
−0.945778 + 0.324814i \(0.894698\pi\)
\(270\) 0 0
\(271\) −6.71241e10 + 1.16262e11i −0.755991 + 1.30941i 0.188889 + 0.981998i \(0.439511\pi\)
−0.944880 + 0.327416i \(0.893822\pi\)
\(272\) 0 0
\(273\) 1.09134e11 + 7.71030e10i 1.18913 + 0.840116i
\(274\) 0 0
\(275\) 3.04980e10 5.28241e10i 0.321569 0.556975i
\(276\) 0 0
\(277\) −9.65495e10 1.67229e11i −0.985351 1.70668i −0.640365 0.768071i \(-0.721217\pi\)
−0.344986 0.938608i \(-0.612116\pi\)
\(278\) 0 0
\(279\) 1.23715e11 1.22237
\(280\) 0 0
\(281\) 1.81503e10 0.173663 0.0868313 0.996223i \(-0.472326\pi\)
0.0868313 + 0.996223i \(0.472326\pi\)
\(282\) 0 0
\(283\) 6.52307e10 + 1.12983e11i 0.604523 + 1.04707i 0.992127 + 0.125239i \(0.0399697\pi\)
−0.387603 + 0.921826i \(0.626697\pi\)
\(284\) 0 0
\(285\) −5.40167e10 + 9.35596e10i −0.484982 + 0.840014i
\(286\) 0 0
\(287\) −1.62276e11 + 7.48406e10i −1.41184 + 0.651132i
\(288\) 0 0
\(289\) 2.08461e9 3.61064e9i 0.0175786 0.0304470i
\(290\) 0 0
\(291\) 2.40210e9 + 4.16056e9i 0.0196369 + 0.0340121i
\(292\) 0 0
\(293\) −1.61941e11 −1.28367 −0.641834 0.766843i \(-0.721826\pi\)
−0.641834 + 0.766843i \(0.721826\pi\)
\(294\) 0 0
\(295\) 3.71699e10 0.285754
\(296\) 0 0
\(297\) 1.57385e10 + 2.72599e10i 0.117371 + 0.203292i
\(298\) 0 0
\(299\) 2.72849e10 4.72588e10i 0.197425 0.341950i
\(300\) 0 0
\(301\) −2.24120e11 + 1.03363e11i −1.57373 + 0.725796i
\(302\) 0 0
\(303\) −2.16707e10 + 3.75348e10i −0.147700 + 0.255825i
\(304\) 0 0
\(305\) 1.00003e11 + 1.73211e11i 0.661705 + 1.14611i
\(306\) 0 0
\(307\) −2.13521e11 −1.37188 −0.685942 0.727656i \(-0.740610\pi\)
−0.685942 + 0.727656i \(0.740610\pi\)
\(308\) 0 0
\(309\) 6.19745e10 0.386723
\(310\) 0 0
\(311\) −6.44473e10 1.11626e11i −0.390646 0.676618i 0.601889 0.798580i \(-0.294415\pi\)
−0.992535 + 0.121961i \(0.961082\pi\)
\(312\) 0 0
\(313\) −8.90227e10 + 1.54192e11i −0.524265 + 0.908054i 0.475336 + 0.879805i \(0.342327\pi\)
−0.999601 + 0.0282496i \(0.991007\pi\)
\(314\) 0 0
\(315\) 2.49061e11 + 1.75961e11i 1.42531 + 1.00697i
\(316\) 0 0
\(317\) 7.34098e10 1.27149e11i 0.408307 0.707209i −0.586393 0.810027i \(-0.699452\pi\)
0.994700 + 0.102818i \(0.0327858\pi\)
\(318\) 0 0
\(319\) 3.69058e10 + 6.39227e10i 0.199543 + 0.345619i
\(320\) 0 0
\(321\) 5.14395e11 2.70411
\(322\) 0 0
\(323\) −8.84603e10 −0.452207
\(324\) 0 0
\(325\) 9.60927e10 + 1.66437e11i 0.477766 + 0.827515i
\(326\) 0 0
\(327\) 2.14740e11 3.71941e11i 1.03860 1.79891i
\(328\) 0 0
\(329\) 1.47089e10 1.60349e11i 0.0692149 0.754546i
\(330\) 0 0
\(331\) −8.55668e10 + 1.48206e11i −0.391813 + 0.678641i −0.992689 0.120702i \(-0.961485\pi\)
0.600875 + 0.799343i \(0.294819\pi\)
\(332\) 0 0
\(333\) −7.15431e10 1.23916e11i −0.318837 0.552242i
\(334\) 0 0
\(335\) 2.57948e11 1.11900
\(336\) 0 0
\(337\) 1.14022e11 0.481564 0.240782 0.970579i \(-0.422596\pi\)
0.240782 + 0.970579i \(0.422596\pi\)
\(338\) 0 0
\(339\) −1.67724e10 2.90506e10i −0.0689758 0.119470i
\(340\) 0 0
\(341\) 8.06186e10 1.39635e11i 0.322880 0.559244i
\(342\) 0 0
\(343\) 6.94673e10 2.46752e11i 0.270992 0.962582i
\(344\) 0 0
\(345\) 1.12503e11 1.94861e11i 0.427543 0.740525i
\(346\) 0 0
\(347\) 1.43423e10 + 2.48416e10i 0.0531051 + 0.0919808i 0.891356 0.453304i \(-0.149755\pi\)
−0.838251 + 0.545285i \(0.816421\pi\)
\(348\) 0 0
\(349\) −3.10537e11 −1.12047 −0.560234 0.828334i \(-0.689289\pi\)
−0.560234 + 0.828334i \(0.689289\pi\)
\(350\) 0 0
\(351\) −9.91774e10 −0.348763
\(352\) 0 0
\(353\) −2.42567e11 4.20138e11i −0.831467 1.44014i −0.896875 0.442285i \(-0.854168\pi\)
0.0654074 0.997859i \(-0.479165\pi\)
\(354\) 0 0
\(355\) −9.36528e10 + 1.62211e11i −0.312963 + 0.542068i
\(356\) 0 0
\(357\) −4.12106e10 + 4.49257e11i −0.134277 + 1.46382i
\(358\) 0 0
\(359\) 1.53427e11 2.65743e11i 0.487501 0.844377i −0.512395 0.858750i \(-0.671242\pi\)
0.999897 + 0.0143725i \(0.00457505\pi\)
\(360\) 0 0
\(361\) 1.27148e11 + 2.20227e11i 0.394029 + 0.682478i
\(362\) 0 0
\(363\) −2.82777e11 −0.854800
\(364\) 0 0
\(365\) −4.68503e11 −1.38164
\(366\) 0 0
\(367\) −2.54740e11 4.41223e11i −0.732993 1.26958i −0.955598 0.294673i \(-0.904789\pi\)
0.222605 0.974909i \(-0.428544\pi\)
\(368\) 0 0
\(369\) 3.43171e11 5.94390e11i 0.963590 1.66899i
\(370\) 0 0
\(371\) 2.35016e11 + 1.66038e11i 0.644044 + 0.455015i
\(372\) 0 0
\(373\) 2.13628e11 3.70015e11i 0.571438 0.989759i −0.424981 0.905202i \(-0.639719\pi\)
0.996419 0.0845567i \(-0.0269474\pi\)
\(374\) 0 0
\(375\) −7.20346e9 1.24768e10i −0.0188105 0.0325807i
\(376\) 0 0
\(377\) −2.32564e11 −0.592935
\(378\) 0 0
\(379\) −4.28378e7 −0.000106647 −5.33237e−5 1.00000i \(-0.500017\pi\)
−5.33237e−5 1.00000i \(0.500017\pi\)
\(380\) 0 0
\(381\) −5.40710e11 9.36538e11i −1.31463 2.27700i
\(382\) 0 0
\(383\) 8.72269e9 1.51081e10i 0.0207136 0.0358770i −0.855483 0.517831i \(-0.826740\pi\)
0.876196 + 0.481954i \(0.160073\pi\)
\(384\) 0 0
\(385\) 3.60906e11 1.66448e11i 0.837183 0.386104i
\(386\) 0 0
\(387\) 4.73956e11 8.20915e11i 1.07408 1.86037i
\(388\) 0 0
\(389\) 3.04707e11 + 5.27768e11i 0.674698 + 1.16861i 0.976557 + 0.215259i \(0.0690594\pi\)
−0.301859 + 0.953353i \(0.597607\pi\)
\(390\) 0 0
\(391\) 1.84241e11 0.398649
\(392\) 0 0
\(393\) −2.13495e11 −0.451462
\(394\) 0 0
\(395\) −1.85464e11 3.21234e11i −0.383330 0.663948i
\(396\) 0 0
\(397\) −2.73104e11 + 4.73030e11i −0.551786 + 0.955721i 0.446360 + 0.894853i \(0.352720\pi\)
−0.998146 + 0.0608675i \(0.980613\pi\)
\(398\) 0 0
\(399\) −3.16730e11 + 1.46074e11i −0.625622 + 0.288533i
\(400\) 0 0
\(401\) 2.93880e11 5.09014e11i 0.567570 0.983061i −0.429235 0.903193i \(-0.641217\pi\)
0.996805 0.0798679i \(-0.0254498\pi\)
\(402\) 0 0
\(403\) 2.54012e11 + 4.39961e11i 0.479712 + 0.830886i
\(404\) 0 0
\(405\) 5.35943e11 0.989854
\(406\) 0 0
\(407\) −1.86484e11 −0.336874
\(408\) 0 0
\(409\) 2.06201e11 + 3.57151e11i 0.364365 + 0.631099i 0.988674 0.150079i \(-0.0479527\pi\)
−0.624309 + 0.781178i \(0.714619\pi\)
\(410\) 0 0
\(411\) −3.36851e11 + 5.83444e11i −0.582305 + 1.00858i
\(412\) 0 0
\(413\) 9.80118e10 + 6.92451e10i 0.165769 + 0.117115i
\(414\) 0 0
\(415\) 1.73161e11 2.99923e11i 0.286571 0.496356i
\(416\) 0 0
\(417\) 6.68071e10 + 1.15713e11i 0.108196 + 0.187401i
\(418\) 0 0
\(419\) 4.82213e11 0.764322 0.382161 0.924096i \(-0.375180\pi\)
0.382161 + 0.924096i \(0.375180\pi\)
\(420\) 0 0
\(421\) −2.29026e11 −0.355317 −0.177658 0.984092i \(-0.556852\pi\)
−0.177658 + 0.984092i \(0.556852\pi\)
\(422\) 0 0
\(423\) 3.09220e11 + 5.35585e11i 0.469609 + 0.813387i
\(424\) 0 0
\(425\) −3.24432e11 + 5.61933e11i −0.482362 + 0.835476i
\(426\) 0 0
\(427\) −5.89857e10 + 6.43032e11i −0.0858660 + 0.936068i
\(428\) 0 0
\(429\) −3.34431e11 + 5.79252e11i −0.476704 + 0.825676i
\(430\) 0 0
\(431\) −4.94384e10 8.56299e10i −0.0690108 0.119530i 0.829455 0.558573i \(-0.188651\pi\)
−0.898466 + 0.439043i \(0.855318\pi\)
\(432\) 0 0
\(433\) 1.10144e12 1.50580 0.752899 0.658136i \(-0.228655\pi\)
0.752899 + 0.658136i \(0.228655\pi\)
\(434\) 0 0
\(435\) −9.58928e11 −1.28406
\(436\) 0 0
\(437\) 7.12209e10 + 1.23358e11i 0.0934202 + 0.161809i
\(438\) 0 0
\(439\) −8.29491e10 + 1.43672e11i −0.106591 + 0.184621i −0.914387 0.404841i \(-0.867327\pi\)
0.807796 + 0.589462i \(0.200660\pi\)
\(440\) 0 0
\(441\) 3.28935e11 + 9.27969e11i 0.414130 + 1.16831i
\(442\) 0 0
\(443\) 7.64532e11 1.32421e12i 0.943146 1.63358i 0.183724 0.982978i \(-0.441185\pi\)
0.759422 0.650599i \(-0.225482\pi\)
\(444\) 0 0
\(445\) −4.75204e11 8.23077e11i −0.574460 0.994994i
\(446\) 0 0
\(447\) 1.05135e12 1.24556
\(448\) 0 0
\(449\) 1.61276e11 0.187268 0.0936338 0.995607i \(-0.470152\pi\)
0.0936338 + 0.995607i \(0.470152\pi\)
\(450\) 0 0
\(451\) −4.47255e11 7.74668e11i −0.509050 0.881701i
\(452\) 0 0
\(453\) −2.67074e11 + 4.62585e11i −0.297981 + 0.516119i
\(454\) 0 0
\(455\) −1.14389e11 + 1.24701e12i −0.125121 + 1.36401i
\(456\) 0 0
\(457\) 4.91038e11 8.50503e11i 0.526614 0.912122i −0.472905 0.881113i \(-0.656795\pi\)
0.999519 0.0310087i \(-0.00987197\pi\)
\(458\) 0 0
\(459\) −1.67423e11 2.89986e11i −0.176059 0.304944i
\(460\) 0 0
\(461\) −1.27083e12 −1.31049 −0.655245 0.755417i \(-0.727435\pi\)
−0.655245 + 0.755417i \(0.727435\pi\)
\(462\) 0 0
\(463\) 1.18923e12 1.20268 0.601342 0.798992i \(-0.294633\pi\)
0.601342 + 0.798992i \(0.294633\pi\)
\(464\) 0 0
\(465\) 1.04736e12 + 1.81408e12i 1.03886 + 1.79936i
\(466\) 0 0
\(467\) −8.47027e11 + 1.46709e12i −0.824083 + 1.42735i 0.0785347 + 0.996911i \(0.474976\pi\)
−0.902618 + 0.430443i \(0.858357\pi\)
\(468\) 0 0
\(469\) 6.80175e11 + 4.80542e11i 0.649146 + 0.458620i
\(470\) 0 0
\(471\) −1.19905e12 + 2.07681e12i −1.12265 + 1.94448i
\(472\) 0 0
\(473\) −6.17706e11 1.06990e12i −0.567423 0.982805i
\(474\) 0 0
\(475\) −5.01655e11 −0.452152
\(476\) 0 0
\(477\) −1.10517e12 −0.977456
\(478\) 0 0
\(479\) −3.77462e11 6.53783e11i −0.327614 0.567445i 0.654423 0.756128i \(-0.272911\pi\)
−0.982038 + 0.188683i \(0.939578\pi\)
\(480\) 0 0
\(481\) 2.93785e11 5.08851e11i 0.250252 0.433449i
\(482\) 0 0
\(483\) 6.59670e11 3.04236e11i 0.551525 0.254360i
\(484\) 0 0
\(485\) −2.25112e10 + 3.89906e10i −0.0184740 + 0.0319979i
\(486\) 0 0
\(487\) −5.45763e11 9.45290e11i −0.439667 0.761526i 0.557997 0.829843i \(-0.311570\pi\)
−0.997664 + 0.0683175i \(0.978237\pi\)
\(488\) 0 0
\(489\) −2.38178e12 −1.88370
\(490\) 0 0
\(491\) 6.37184e11 0.494764 0.247382 0.968918i \(-0.420430\pi\)
0.247382 + 0.968918i \(0.420430\pi\)
\(492\) 0 0
\(493\) −3.92597e11 6.79997e11i −0.299320 0.518437i
\(494\) 0 0
\(495\) −7.63223e11 + 1.32194e12i −0.571384 + 0.989666i
\(496\) 0 0
\(497\) −5.49140e11 + 2.53260e11i −0.403719 + 0.186193i
\(498\) 0 0
\(499\) 7.17606e11 1.24293e12i 0.518124 0.897417i −0.481655 0.876361i \(-0.659964\pi\)
0.999778 0.0210554i \(-0.00670263\pi\)
\(500\) 0 0
\(501\) −1.09759e12 1.90107e12i −0.778339 1.34812i
\(502\) 0 0
\(503\) −1.29165e12 −0.899683 −0.449842 0.893108i \(-0.648520\pi\)
−0.449842 + 0.893108i \(0.648520\pi\)
\(504\) 0 0
\(505\) −4.06173e11 −0.277907
\(506\) 0 0
\(507\) 5.95113e10 + 1.03077e11i 0.0400003 + 0.0692826i
\(508\) 0 0
\(509\) −1.06901e11 + 1.85158e11i −0.0705914 + 0.122268i −0.899161 0.437619i \(-0.855822\pi\)
0.828569 + 0.559887i \(0.189155\pi\)
\(510\) 0 0
\(511\) −1.23538e12 8.72792e11i −0.801505 0.566261i
\(512\) 0 0
\(513\) 1.29440e11 2.24196e11i 0.0825163 0.142922i
\(514\) 0 0
\(515\) 2.90396e11 + 5.02981e11i 0.181911 + 0.315078i
\(516\) 0 0
\(517\) 8.06013e11 0.496175
\(518\) 0 0
\(519\) −2.36696e12 −1.43198
\(520\) 0 0
\(521\) 2.67755e11 + 4.63764e11i 0.159209 + 0.275758i 0.934584 0.355744i \(-0.115772\pi\)
−0.775375 + 0.631501i \(0.782439\pi\)
\(522\) 0 0
\(523\) 1.84565e11 3.19677e11i 0.107868 0.186833i −0.807038 0.590499i \(-0.798931\pi\)
0.914906 + 0.403666i \(0.132264\pi\)
\(524\) 0 0
\(525\) −2.33704e11 + 2.54772e12i −0.134261 + 1.46364i
\(526\) 0 0
\(527\) −8.57605e11 + 1.48541e12i −0.484328 + 0.838880i
\(528\) 0 0
\(529\) 7.52241e11 + 1.30292e12i 0.417644 + 0.723381i
\(530\) 0 0
\(531\) −4.60904e11 −0.251585
\(532\) 0 0
\(533\) 2.81841e12 1.51262
\(534\) 0 0
\(535\) 2.41032e12 + 4.17479e12i 1.27198 + 2.20314i
\(536\) 0 0
\(537\) −1.42414e12 + 2.46669e12i −0.739042 + 1.28006i
\(538\) 0 0
\(539\) 1.26174e12 + 2.33445e11i 0.643903 + 0.119134i
\(540\) 0 0
\(541\) −1.01264e12 + 1.75394e12i −0.508237 + 0.880293i 0.491717 + 0.870755i \(0.336369\pi\)
−0.999955 + 0.00953769i \(0.996964\pi\)
\(542\) 0 0
\(543\) −2.13229e12 3.69323e12i −1.05256 1.82308i
\(544\) 0 0
\(545\) 4.02487e12 1.95419
\(546\) 0 0
\(547\) 3.52443e12 1.68324 0.841621 0.540069i \(-0.181602\pi\)
0.841621 + 0.540069i \(0.181602\pi\)
\(548\) 0 0
\(549\) −1.24003e12 2.14780e12i −0.582583 1.00906i
\(550\) 0 0
\(551\) 3.03528e11 5.25725e11i 0.140287 0.242983i
\(552\) 0 0
\(553\) 1.09394e11 1.19256e12i 0.0497428 0.542271i
\(554\) 0 0
\(555\) 1.21136e12 2.09814e12i 0.541944 0.938675i
\(556\) 0 0
\(557\) −3.55817e11 6.16292e11i −0.156631 0.271293i 0.777021 0.629475i \(-0.216730\pi\)
−0.933652 + 0.358182i \(0.883397\pi\)
\(558\) 0 0
\(559\) 3.89252e12 1.68608
\(560\) 0 0
\(561\) −2.25824e12 −0.962581
\(562\) 0 0
\(563\) −1.82812e12 3.16640e12i −0.766863 1.32825i −0.939256 0.343218i \(-0.888483\pi\)
0.172393 0.985028i \(-0.444850\pi\)
\(564\) 0 0
\(565\) 1.57182e11 2.72247e11i 0.0648910 0.112395i
\(566\) 0 0
\(567\) 1.41321e12 + 9.98429e11i 0.574226 + 0.405689i
\(568\) 0 0
\(569\) 5.35022e11 9.26686e11i 0.213977 0.370619i −0.738979 0.673729i \(-0.764692\pi\)
0.952956 + 0.303110i \(0.0980250\pi\)
\(570\) 0 0
\(571\) 4.09702e11 + 7.09624e11i 0.161289 + 0.279361i 0.935331 0.353773i \(-0.115101\pi\)
−0.774042 + 0.633134i \(0.781768\pi\)
\(572\) 0 0
\(573\) 7.21938e12 2.79772
\(574\) 0 0
\(575\) 1.04482e12 0.398600
\(576\) 0 0
\(577\) 1.30100e12 + 2.25340e12i 0.488637 + 0.846343i 0.999915 0.0130720i \(-0.00416107\pi\)
−0.511278 + 0.859415i \(0.670828\pi\)
\(578\) 0 0
\(579\) −2.85752e12 + 4.94937e12i −1.05666 + 1.83019i
\(580\) 0 0
\(581\) 1.01534e12 4.68269e11i 0.369674 0.170491i
\(582\) 0 0
\(583\) −7.20185e11 + 1.24740e12i −0.258188 + 0.447194i
\(584\) 0 0
\(585\) −2.40475e12 4.16515e12i −0.848924 1.47038i
\(586\) 0 0
\(587\) 5.66219e11 0.196840 0.0984199 0.995145i \(-0.468621\pi\)
0.0984199 + 0.995145i \(0.468621\pi\)
\(588\) 0 0
\(589\) −1.32608e12 −0.453994
\(590\) 0 0
\(591\) 1.59892e11 + 2.76941e11i 0.0539117 + 0.0933777i
\(592\) 0 0
\(593\) −1.44623e12 + 2.50495e12i −0.480278 + 0.831865i −0.999744 0.0226255i \(-0.992797\pi\)
0.519466 + 0.854491i \(0.326131\pi\)
\(594\) 0 0
\(595\) −3.83924e12 + 1.77064e12i −1.25580 + 0.579166i
\(596\) 0 0
\(597\) −1.29263e12 + 2.23891e12i −0.416477 + 0.721360i
\(598\) 0 0
\(599\) −2.96101e12 5.12862e12i −0.939764 1.62772i −0.765910 0.642948i \(-0.777711\pi\)
−0.173855 0.984771i \(-0.555622\pi\)
\(600\) 0 0
\(601\) 2.24993e12 0.703450 0.351725 0.936103i \(-0.385595\pi\)
0.351725 + 0.936103i \(0.385595\pi\)
\(602\) 0 0
\(603\) −3.19855e12 −0.985201
\(604\) 0 0
\(605\) −1.32502e12 2.29500e12i −0.402089 0.696439i
\(606\) 0 0
\(607\) 4.72003e11 8.17534e11i 0.141122 0.244431i −0.786797 0.617212i \(-0.788262\pi\)
0.927920 + 0.372780i \(0.121596\pi\)
\(608\) 0 0
\(609\) −2.52856e12 1.78642e12i −0.744896 0.526267i
\(610\) 0 0
\(611\) −1.26979e12 + 2.19933e12i −0.368591 + 0.638419i
\(612\) 0 0
\(613\) −9.56847e11 1.65731e12i −0.273697 0.474058i 0.696108 0.717937i \(-0.254913\pi\)
−0.969806 + 0.243879i \(0.921580\pi\)
\(614\) 0 0
\(615\) 1.16211e13 3.27573
\(616\) 0 0
\(617\) −5.85573e12 −1.62666 −0.813332 0.581800i \(-0.802349\pi\)
−0.813332 + 0.581800i \(0.802349\pi\)
\(618\) 0 0
\(619\) 3.15408e11 + 5.46303e11i 0.0863505 + 0.149563i 0.905966 0.423351i \(-0.139146\pi\)
−0.819615 + 0.572914i \(0.805813\pi\)
\(620\) 0 0
\(621\) −2.69591e11 + 4.66945e11i −0.0727433 + 0.125995i
\(622\) 0 0
\(623\) 2.80293e11 3.05562e12i 0.0745447 0.812649i
\(624\) 0 0
\(625\) 1.94080e12 3.36156e12i 0.508769 0.881213i
\(626\) 0 0
\(627\) −8.72955e11 1.51200e12i −0.225573 0.390705i
\(628\) 0 0
\(629\) 1.98378e12 0.505319
\(630\) 0 0
\(631\) −5.39720e12 −1.35530 −0.677652 0.735383i \(-0.737002\pi\)
−0.677652 + 0.735383i \(0.737002\pi\)
\(632\) 0 0
\(633\) −2.73060e12 4.72955e12i −0.675993 1.17085i
\(634\) 0 0
\(635\) 5.06725e12 8.77673e12i 1.23677 2.14216i
\(636\) 0 0
\(637\) −2.62472e12 + 3.07509e12i −0.631621 + 0.739998i
\(638\) 0 0
\(639\) 1.16129e12 2.01141e12i 0.275541 0.477252i
\(640\) 0 0
\(641\) −4.05089e12 7.01635e12i −0.947741 1.64154i −0.750169 0.661247i \(-0.770028\pi\)
−0.197572 0.980288i \(-0.563306\pi\)
\(642\) 0 0
\(643\) 7.06646e12 1.63024 0.815122 0.579290i \(-0.196670\pi\)
0.815122 + 0.579290i \(0.196670\pi\)
\(644\) 0 0
\(645\) 1.60499e13 3.65136
\(646\) 0 0
\(647\) −1.87113e12 3.24089e12i −0.419792 0.727100i 0.576127 0.817360i \(-0.304564\pi\)
−0.995918 + 0.0902600i \(0.971230\pi\)
\(648\) 0 0
\(649\) −3.00348e11 + 5.20218e11i −0.0664544 + 0.115102i
\(650\) 0 0
\(651\) −6.17774e11 + 6.73466e12i −0.134808 + 1.46961i
\(652\) 0 0
\(653\) 2.90962e12 5.03961e12i 0.626220 1.08465i −0.362083 0.932146i \(-0.617934\pi\)
0.988304 0.152500i \(-0.0487323\pi\)
\(654\) 0 0
\(655\) −1.00038e12 1.73271e12i −0.212363 0.367824i
\(656\) 0 0
\(657\) 5.80942e12 1.21643
\(658\) 0 0
\(659\) −5.67402e12 −1.17194 −0.585971 0.810332i \(-0.699287\pi\)
−0.585971 + 0.810332i \(0.699287\pi\)
\(660\) 0 0
\(661\) 3.81176e12 + 6.60217e12i 0.776640 + 1.34518i 0.933868 + 0.357617i \(0.116411\pi\)
−0.157229 + 0.987562i \(0.550256\pi\)
\(662\) 0 0
\(663\) 3.55761e12 6.16197e12i 0.715069 1.23854i
\(664\) 0 0
\(665\) −2.66964e12 1.88609e12i −0.529365 0.373995i
\(666\) 0 0
\(667\) −6.32173e11 + 1.09495e12i −0.123671 + 0.214205i
\(668\) 0 0
\(669\) 1.92200e12 + 3.32900e12i 0.370968 + 0.642535i
\(670\) 0 0
\(671\) −3.23227e12 −0.615540
\(672\) 0 0
\(673\) −6.37901e12 −1.19863 −0.599315 0.800513i \(-0.704560\pi\)
−0.599315 + 0.800513i \(0.704560\pi\)
\(674\) 0 0
\(675\) −9.49451e11 1.64450e12i −0.176038 0.304906i
\(676\) 0 0
\(677\) 4.97630e12 8.61921e12i 0.910454 1.57695i 0.0970291 0.995282i \(-0.469066\pi\)
0.813425 0.581670i \(-0.197601\pi\)
\(678\) 0 0
\(679\) −1.31996e11 + 6.08758e10i −0.0238312 + 0.0109908i
\(680\) 0 0
\(681\) −2.51617e12 + 4.35814e12i −0.448310 + 0.776495i
\(682\) 0 0
\(683\) −1.37743e12 2.38579e12i −0.242202 0.419506i 0.719139 0.694866i \(-0.244536\pi\)
−0.961341 + 0.275360i \(0.911203\pi\)
\(684\) 0 0
\(685\) −6.31358e12 −1.09564
\(686\) 0 0
\(687\) 6.31642e12 1.08185
\(688\) 0 0
\(689\) −2.26915e12 3.93028e12i −0.383598 0.664411i
\(690\) 0 0
\(691\) −4.92067e12 + 8.52285e12i −0.821057 + 1.42211i 0.0838390 + 0.996479i \(0.473282\pi\)
−0.904896 + 0.425633i \(0.860051\pi\)
\(692\) 0 0
\(693\) −4.47521e12 + 2.06394e12i −0.737079 + 0.339937i
\(694\) 0 0
\(695\) −6.26081e11 + 1.08440e12i −0.101788 + 0.176303i
\(696\) 0 0
\(697\) 4.75781e12 + 8.24077e12i 0.763589 + 1.32257i
\(698\) 0 0
\(699\) 2.83493e12 0.449154
\(700\) 0 0
\(701\) 4.83994e12 0.757022 0.378511 0.925597i \(-0.376436\pi\)
0.378511 + 0.925597i \(0.376436\pi\)
\(702\) 0 0
\(703\) 7.66859e11 + 1.32824e12i 0.118418 + 0.205105i
\(704\) 0 0
\(705\) −5.23568e12 + 9.06847e12i −0.798220 + 1.38256i
\(706\) 0 0
\(707\) −1.07102e12 7.56675e11i −0.161217 0.113900i
\(708\) 0 0
\(709\) −2.36329e12 + 4.09334e12i −0.351244 + 0.608372i −0.986468 0.163956i \(-0.947575\pi\)
0.635224 + 0.772328i \(0.280908\pi\)
\(710\) 0 0
\(711\) 2.29975e12 + 3.98328e12i 0.337495 + 0.584558i
\(712\) 0 0
\(713\) 2.76189e12 0.400224
\(714\) 0 0
\(715\) −6.26822e12 −0.896947
\(716\) 0 0
\(717\) −3.93669e11 6.81855e11i −0.0556283 0.0963510i
\(718\) 0 0
\(719\) −3.31967e11 + 5.74984e11i −0.0463250 + 0.0802372i −0.888258 0.459345i \(-0.848084\pi\)
0.841933 + 0.539582i \(0.181418\pi\)
\(720\) 0 0
\(721\) −1.71287e11 + 1.86728e12i −0.0236056 + 0.257336i
\(722\) 0 0
\(723\) 2.82531e12 4.89359e12i 0.384543 0.666047i
\(724\) 0 0
\(725\) −2.22640e12 3.85624e12i −0.299283 0.518374i
\(726\) 0 0
\(727\) −5.45701e11 −0.0724520 −0.0362260 0.999344i \(-0.511534\pi\)
−0.0362260 + 0.999344i \(0.511534\pi\)
\(728\) 0 0
\(729\) −1.07365e13 −1.40796
\(730\) 0 0
\(731\) 6.57104e12 + 1.13814e13i 0.851149 + 1.47423i
\(732\) 0 0
\(733\) 3.78254e12 6.55155e12i 0.483967 0.838255i −0.515864 0.856671i \(-0.672529\pi\)
0.999830 + 0.0184156i \(0.00586221\pi\)
\(734\) 0 0
\(735\) −1.08225e13 + 1.26795e13i −1.36783 + 1.60254i
\(736\) 0 0
\(737\) −2.08433e12 + 3.61017e12i −0.260233 + 0.450737i
\(738\) 0 0
\(739\) 1.29852e11 + 2.24911e11i 0.0160158 + 0.0277402i 0.873922 0.486066i \(-0.161568\pi\)
−0.857906 + 0.513806i \(0.828235\pi\)
\(740\) 0 0
\(741\) 5.50098e12 0.670283
\(742\) 0 0
\(743\) −2.96088e12 −0.356427 −0.178214 0.983992i \(-0.557032\pi\)
−0.178214 + 0.983992i \(0.557032\pi\)
\(744\) 0 0
\(745\) 4.92635e12 + 8.53269e12i 0.585898 + 1.01480i
\(746\) 0 0
\(747\) −2.14718e12 + 3.71903e12i −0.252305 + 0.437006i
\(748\) 0 0
\(749\) −1.42170e12 + 1.54986e13i −0.165059 + 1.79939i
\(750\) 0 0
\(751\) 3.27838e12 5.67833e12i 0.376080 0.651390i −0.614408 0.788988i \(-0.710605\pi\)
0.990488 + 0.137599i \(0.0439385\pi\)
\(752\) 0 0
\(753\) 1.64246e12 + 2.84482e12i 0.186173 + 0.322461i
\(754\) 0 0
\(755\) −5.00574e12 −0.560670
\(756\) 0 0
\(757\) −7.49463e12 −0.829504 −0.414752 0.909934i \(-0.636132\pi\)
−0.414752 + 0.909934i \(0.636132\pi\)
\(758\) 0 0
\(759\) 1.81815e12 + 3.14912e12i 0.198857 + 0.344431i
\(760\) 0 0
\(761\) −3.14710e12 + 5.45093e12i −0.340157 + 0.589169i −0.984462 0.175600i \(-0.943814\pi\)
0.644305 + 0.764769i \(0.277147\pi\)
\(762\) 0 0
\(763\) 1.06130e13 + 7.49807e12i 1.13365 + 0.800920i
\(764\) 0 0
\(765\) 8.11902e12 1.40626e13i 0.857091 1.48453i
\(766\) 0 0
\(767\) −9.46331e11 1.63909e12i −0.0987334 0.171011i
\(768\) 0 0
\(769\) 1.16579e13 1.20214 0.601068 0.799198i \(-0.294742\pi\)
0.601068 + 0.799198i \(0.294742\pi\)
\(770\) 0 0
\(771\) 1.52610e13 1.55538
\(772\) 0 0
\(773\) −8.64199e12 1.49684e13i −0.870574 1.50788i −0.861404 0.507921i \(-0.830414\pi\)
−0.00917093 0.999958i \(-0.502919\pi\)
\(774\) 0 0
\(775\) −4.86344e12 + 8.42373e12i −0.484268 + 0.838778i
\(776\) 0 0
\(777\) 7.10289e12 3.27581e12i 0.699102 0.322422i
\(778\) 0 0
\(779\) −3.67840e12 + 6.37117e12i −0.357882 + 0.619870i
\(780\) 0 0
\(781\) −1.51351e12 2.62147e12i −0.145564 0.252125i
\(782\) 0 0
\(783\) 2.29787e12 0.218473
\(784\) 0 0
\(785\) −2.24737e13 −2.11233
\(786\) 0 0
\(787\) −1.92920e12 3.34147e12i −0.179263 0.310492i 0.762365 0.647147i \(-0.224038\pi\)
−0.941628 + 0.336654i \(0.890705\pi\)
\(788\) 0 0
\(789\) −8.62998e12 + 1.49476e13i −0.792800 + 1.37317i
\(790\) 0 0
\(791\) 9.21646e11 4.25058e11i 0.0837086 0.0386060i
\(792\) 0 0
\(793\) 5.09209e12 8.81976e12i 0.457264 0.792004i
\(794\) 0 0
\(795\) −9.35633e12 1.62056e13i −0.830717 1.43884i
\(796\) 0 0
\(797\) 1.07296e12 0.0941935 0.0470967 0.998890i \(-0.485003\pi\)
0.0470967 + 0.998890i \(0.485003\pi\)
\(798\) 0 0
\(799\) −8.57421e12 −0.744275
\(800\) 0 0
\(801\) 5.89250e12 + 1.02061e13i 0.505771 + 0.876020i
\(802\) 0 0
\(803\) 3.78570e12 6.55703e12i 0.321312 0.556528i
\(804\) 0 0
\(805\) 5.56020e12 + 3.92827e12i 0.466669 + 0.329700i
\(806\) 0 0
\(807\) −3.45452e12 + 5.98341e12i −0.286719 + 0.496613i
\(808\) 0 0
\(809\) −4.81093e12 8.33277e12i −0.394876 0.683945i 0.598210 0.801340i \(-0.295879\pi\)
−0.993085 + 0.117395i \(0.962546\pi\)
\(810\) 0 0
\(811\) 1.42997e12 0.116074 0.0580369 0.998314i \(-0.481516\pi\)
0.0580369 + 0.998314i \(0.481516\pi\)
\(812\) 0 0
\(813\) 2.81860e13 2.26270
\(814\) 0 0
\(815\) −1.11604e13 1.93303e13i −0.886072 1.53472i
\(816\) 0 0
\(817\) −5.08025e12 + 8.79926e12i −0.398920 + 0.690950i
\(818\) 0 0
\(819\) 1.41841e12 1.54628e13i 0.110160 1.20091i
\(820\) 0 0
\(821\) −8.91175e12 + 1.54356e13i −0.684571 + 1.18571i 0.289000 + 0.957329i \(0.406677\pi\)
−0.973571 + 0.228383i \(0.926656\pi\)
\(822\) 0 0
\(823\) 6.67366e12 + 1.15591e13i 0.507066 + 0.878264i 0.999967 + 0.00817863i \(0.00260337\pi\)
−0.492900 + 0.870086i \(0.664063\pi\)
\(824\) 0 0
\(825\) −1.28064e13 −0.962463
\(826\) 0 0
\(827\) −1.34978e13 −1.00344 −0.501718 0.865031i \(-0.667298\pi\)
−0.501718 + 0.865031i \(0.667298\pi\)
\(828\) 0 0
\(829\) −4.99503e12 8.65164e12i −0.367318 0.636214i 0.621827 0.783155i \(-0.286391\pi\)
−0.989145 + 0.146941i \(0.953057\pi\)
\(830\) 0 0
\(831\) −2.02710e13 + 3.51104e13i −1.47459 + 2.55406i
\(832\) 0 0
\(833\) −1.34221e13 2.48334e12i −0.965872 0.178703i
\(834\) 0 0
\(835\) 1.02860e13 1.78158e13i 0.732245 1.26829i
\(836\) 0 0
\(837\) −2.50978e12 4.34707e12i −0.176755 0.306149i
\(838\) 0 0
\(839\) 4.86136e12 0.338711 0.169355 0.985555i \(-0.445831\pi\)
0.169355 + 0.985555i \(0.445831\pi\)
\(840\) 0 0
\(841\) −9.11879e12 −0.628572
\(842\) 0 0
\(843\) −1.90537e12 3.30020e12i −0.129944 0.225069i
\(844\) 0 0
\(845\) −5.57708e11 + 9.65979e11i −0.0376315 + 0.0651797i
\(846\) 0 0
\(847\) 7.81546e11 8.52002e12i 0.0521770 0.568808i
\(848\) 0 0
\(849\) 1.36955e13 2.37213e13i 0.904675 1.56694i
\(850\) 0 0
\(851\) −1.59718e12 2.76639e12i −0.104393 0.180813i
\(852\) 0 0
\(853\) −2.85346e12 −0.184544 −0.0922722 0.995734i \(-0.529413\pi\)
−0.0922722 + 0.995734i \(0.529413\pi\)
\(854\) 0 0
\(855\) 1.25541e13 0.803411
\(856\) 0 0
\(857\) 6.98986e12 + 1.21068e13i 0.442644 + 0.766682i 0.997885 0.0650077i \(-0.0207072\pi\)
−0.555241 + 0.831690i \(0.687374\pi\)
\(858\) 0 0
\(859\) −5.05054e12 + 8.74780e12i −0.316496 + 0.548188i −0.979754 0.200203i \(-0.935840\pi\)
0.663258 + 0.748391i \(0.269173\pi\)
\(860\) 0 0
\(861\) 3.06432e13 + 2.16493e13i 1.90029 + 1.34255i
\(862\) 0 0
\(863\) 1.00407e13 1.73910e13i 0.616190 1.06727i −0.373984 0.927435i \(-0.622009\pi\)
0.990174 0.139838i \(-0.0446580\pi\)
\(864\) 0 0
\(865\) −1.10910e13 1.92101e13i −0.673591 1.16669i
\(866\) 0 0
\(867\) −8.75345e11 −0.0526130
\(868\) 0 0
\(869\) 5.99452e12 0.356587
\(870\) 0 0
\(871\) −6.56727e12 1.13749e13i −0.386637 0.669675i
\(872\) 0 0
\(873\) 2.79138e11 4.83481e11i 0.0162650 0.0281718i
\(874\) 0 0
\(875\) 3.95831e11 1.82555e11i 0.0228283 0.0105283i
\(876\) 0 0
\(877\) −1.07426e13 + 1.86068e13i −0.613215 + 1.06212i 0.377480 + 0.926018i \(0.376791\pi\)
−0.990695 + 0.136102i \(0.956542\pi\)
\(878\) 0 0
\(879\) 1.70001e13 + 2.94451e13i 0.960511 + 1.66365i
\(880\) 0 0
\(881\) −2.78108e13 −1.55533 −0.777664 0.628680i \(-0.783596\pi\)
−0.777664 + 0.628680i \(0.783596\pi\)
\(882\) 0 0
\(883\) −3.49281e12 −0.193353 −0.0966767 0.995316i \(-0.530821\pi\)
−0.0966767 + 0.995316i \(0.530821\pi\)
\(884\) 0 0
\(885\) −3.90199e12 6.75844e12i −0.213817 0.370341i
\(886\) 0 0
\(887\) −1.49021e12 + 2.58112e12i −0.0808336 + 0.140008i −0.903608 0.428360i \(-0.859092\pi\)
0.822775 + 0.568368i \(0.192425\pi\)
\(888\) 0 0
\(889\) 2.97121e13 1.37031e13i 1.59542 0.735801i
\(890\) 0 0
\(891\) −4.33065e12 + 7.50090e12i −0.230199 + 0.398716i
\(892\) 0 0
\(893\) −3.31448e12 5.74085e12i −0.174415 0.302096i
\(894\) 0 0
\(895\) −2.66926e13 −1.39055
\(896\) 0 0
\(897\) −1.14572e13 −0.590897
\(898\) 0 0
\(899\) −5.88528e12 1.01936e13i −0.300503 0.520486i
\(900\) 0 0
\(901\) 7.66119e12 1.32696e13i 0.387288 0.670803i
\(902\) 0 0
\(903\) 4.23215e13 + 2.99000e13i 2.11820 + 1.49650i
\(904\) 0 0
\(905\) 1.99826e13 3.46110e13i 0.990226 1.71512i
\(906\) 0 0
\(907\) 1.17327e13 + 2.03217e13i 0.575661 + 0.997075i 0.995969 + 0.0896931i \(0.0285886\pi\)
−0.420308 + 0.907381i \(0.638078\pi\)
\(908\) 0 0
\(909\) 5.03652e12 0.244677
\(910\) 0 0
\(911\) 1.39221e13 0.669688 0.334844 0.942274i \(-0.391316\pi\)
0.334844 + 0.942274i \(0.391316\pi\)
\(912\) 0 0
\(913\) 2.79842e12 + 4.84701e12i 0.133289 + 0.230864i
\(914\) 0 0
\(915\) 2.09961e13 3.63664e13i 0.990248 1.71516i
\(916\) 0 0
\(917\) 5.90062e11 6.43256e12i 0.0275572 0.300415i
\(918\) 0 0
\(919\) 8.05476e12 1.39513e13i 0.372506 0.645199i −0.617445 0.786614i \(-0.711832\pi\)
0.989950 + 0.141416i \(0.0451654\pi\)
\(920\) 0 0
\(921\) 2.24148e13 + 3.88236e13i 1.02652 + 1.77798i
\(922\) 0 0
\(923\) 9.53747e12 0.432539
\(924\) 0 0
\(925\) 1.12499e13 0.505257
\(926\) 0 0
\(927\) −3.60089e12 6.23693e12i −0.160159 0.277404i
\(928\) 0 0
\(929\) 3.96121e12 6.86101e12i 0.174485 0.302216i −0.765498 0.643438i \(-0.777507\pi\)
0.939983 + 0.341222i \(0.110841\pi\)
\(930\) 0 0
\(931\) −3.52581e12 9.94675e12i −0.153810 0.433918i
\(932\) 0 0
\(933\) −1.35310e13 + 2.34364e13i −0.584605 + 1.01257i
\(934\) 0 0
\(935\) −1.05815e13 1.83277e13i −0.452789 0.784253i
\(936\) 0 0
\(937\) 8.84621e12 0.374912 0.187456 0.982273i \(-0.439976\pi\)
0.187456 + 0.982273i \(0.439976\pi\)
\(938\) 0 0
\(939\) 3.73814e13 1.56914
\(940\) 0 0
\(941\) −1.75672e13 3.04272e13i −0.730379 1.26505i −0.956721 0.291006i \(-0.906010\pi\)
0.226342 0.974048i \(-0.427323\pi\)
\(942\) 0 0
\(943\) 7.66119e12 1.32696e13i 0.315496 0.546455i
\(944\) 0 0
\(945\) 1.13023e12 1.23212e13i 0.0461023 0.502584i
\(946\) 0 0
\(947\) −1.08238e13 + 1.87474e13i −0.437325 + 0.757470i −0.997482 0.0709167i \(-0.977408\pi\)
0.560157 + 0.828387i \(0.310741\pi\)
\(948\) 0 0
\(949\) 1.19279e13 + 2.06598e13i 0.477383 + 0.826852i
\(950\) 0 0
\(951\) −3.08254e13 −1.22207
\(952\) 0 0
\(953\) 4.63945e13 1.82200 0.911001 0.412404i \(-0.135311\pi\)
0.911001 + 0.412404i \(0.135311\pi\)
\(954\) 0 0
\(955\) 3.38281e13 + 5.85919e13i 1.31602 + 2.27941i
\(956\) 0 0
\(957\) 7.74854e12 1.34209e13i 0.298618 0.517222i
\(958\) 0 0
\(959\) −1.66481e13 1.17618e13i −0.635594 0.449045i
\(960\) 0 0
\(961\) 3.63770e11 6.30068e11i 0.0137585 0.0238305i
\(962\) 0 0
\(963\) −2.98878e13 5.17672e13i −1.11989 1.93971i
\(964\) 0 0
\(965\) −5.35583e13 −1.98817
\(966\) 0 0
\(967\) −2.17411e12 −0.0799581 −0.0399791 0.999201i \(-0.512729\pi\)
−0.0399791 + 0.999201i \(0.512729\pi\)
\(968\) 0 0
\(969\) 9.28632e12 + 1.60844e13i 0.338366 + 0.586067i
\(970\) 0 0
\(971\) −8.88797e12 + 1.53944e13i −0.320860 + 0.555746i −0.980666 0.195690i \(-0.937305\pi\)
0.659805 + 0.751436i \(0.270639\pi\)
\(972\) 0 0
\(973\) −3.67106e12 + 1.69307e12i −0.131306 + 0.0605576i
\(974\) 0 0
\(975\) 2.01751e13 3.49443e13i 0.714981 1.23838i
\(976\) 0 0
\(977\) −6.14244e12 1.06390e13i −0.215683 0.373574i 0.737801 0.675019i \(-0.235864\pi\)
−0.953484 + 0.301445i \(0.902531\pi\)
\(978\) 0 0
\(979\) 1.53594e13 0.534382
\(980\) 0 0
\(981\) −4.99081e13 −1.72052
\(982\) 0 0
\(983\) −1.38063e13 2.39131e13i −0.471612 0.816856i 0.527860 0.849331i \(-0.322994\pi\)
−0.999473 + 0.0324748i \(0.989661\pi\)
\(984\) 0 0
\(985\) −1.49842e12 + 2.59534e12i −0.0507190 + 0.0878479i
\(986\) 0 0
\(987\) −3.06998e13 + 1.41586e13i −1.02969 + 0.474889i
\(988\) 0 0
\(989\) 1.05809e13 1.83267e13i 0.351673 0.609116i
\(990\) 0 0
\(991\) −1.44913e13 2.50997e13i −0.477284 0.826680i 0.522377 0.852714i \(-0.325045\pi\)
−0.999661 + 0.0260347i \(0.991712\pi\)
\(992\) 0 0
\(993\) 3.59303e13 1.17271
\(994\) 0 0
\(995\) −2.42278e13 −0.783627
\(996\) 0 0
\(997\) −7.66674e12 1.32792e13i −0.245744 0.425641i 0.716597 0.697488i \(-0.245699\pi\)
−0.962340 + 0.271847i \(0.912366\pi\)
\(998\) 0 0
\(999\) −2.90277e12 + 5.02775e12i −0.0922079 + 0.159709i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.i.c.65.2 10
4.3 odd 2 7.10.c.a.2.4 10
7.4 even 3 inner 112.10.i.c.81.2 10
12.11 even 2 63.10.e.b.37.2 10
28.3 even 6 49.10.c.g.18.4 10
28.11 odd 6 7.10.c.a.4.4 yes 10
28.19 even 6 49.10.a.f.1.2 5
28.23 odd 6 49.10.a.e.1.2 5
28.27 even 2 49.10.c.g.30.4 10
84.11 even 6 63.10.e.b.46.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.10.c.a.2.4 10 4.3 odd 2
7.10.c.a.4.4 yes 10 28.11 odd 6
49.10.a.e.1.2 5 28.23 odd 6
49.10.a.f.1.2 5 28.19 even 6
49.10.c.g.18.4 10 28.3 even 6
49.10.c.g.30.4 10 28.27 even 2
63.10.e.b.37.2 10 12.11 even 2
63.10.e.b.46.2 10 84.11 even 6
112.10.i.c.65.2 10 1.1 even 1 trivial
112.10.i.c.81.2 10 7.4 even 3 inner