Properties

Label 49.10.c.g.18.4
Level $49$
Weight $10$
Character 49.18
Analytic conductor $25.237$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [49,10,Mod(18,49)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("49.18"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(49, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 49 = 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 49.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,-18,-161] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.2367559720\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 430 x^{8} + 61 x^{7} + 146753 x^{6} + 23608 x^{5} + 16136944 x^{4} + 30575648 x^{3} + \cdots + 761760000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{3}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 18.4
Root \(5.89912 - 10.2176i\) of defining polynomial
Character \(\chi\) \(=\) 49.18
Dual form 49.10.c.g.30.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(9.79824 + 16.9710i) q^{2} +(-104.977 + 181.826i) q^{3} +(63.9892 - 110.832i) q^{4} +(-983.791 - 1703.98i) q^{5} -4114.37 q^{6} +12541.3 q^{8} +(-12198.9 - 21129.2i) q^{9} +(19278.8 - 33391.9i) q^{10} +(-15898.9 + 27537.7i) q^{11} +(13434.8 + 23269.8i) q^{12} +100188. q^{13} +413103. q^{15} +(90120.3 + 156093. i) q^{16} +(169129. - 292940. i) q^{17} +(239056. - 414058. i) q^{18} +(130759. + 226480. i) q^{19} -251808. q^{20} -623124. q^{22} +(272337. + 471702. i) q^{23} +(-1.31655e6 + 2.28034e6i) q^{24} +(-959125. + 1.66125e6i) q^{25} +(981664. + 1.70029e6i) q^{26} +989914. q^{27} +2.32128e6 q^{29} +(4.04768e6 + 7.01078e6i) q^{30} +(-2.53535e6 + 4.39136e6i) q^{31} +(1.44454e6 - 2.50201e6i) q^{32} +(-3.33804e6 - 5.78166e6i) q^{33} +6.62867e6 q^{34} -3.12240e6 q^{36} +(-2.93235e6 - 5.07897e6i) q^{37} +(-2.56241e6 + 4.43822e6i) q^{38} +(-1.05174e7 + 1.82167e7i) q^{39} +(-1.23380e7 - 2.13701e7i) q^{40} +2.81312e7 q^{41} +3.88522e7 q^{43} +(2.03471e6 + 3.52423e6i) q^{44} +(-2.40024e7 + 4.15734e7i) q^{45} +(-5.33685e6 + 9.24370e6i) q^{46} +(1.26741e7 + 2.19521e7i) q^{47} -3.78423e7 q^{48} -3.75909e7 q^{50} +(3.55094e7 + 6.15041e7i) q^{51} +(6.41094e6 - 1.11041e7i) q^{52} +(2.26489e7 - 3.92291e7i) q^{53} +(9.69941e6 + 1.67999e7i) q^{54} +6.25647e7 q^{55} -5.49067e7 q^{57} +(2.27445e7 + 3.93946e7i) q^{58} +(9.44557e6 - 1.63602e7i) q^{59} +(2.64341e7 - 4.57852e7i) q^{60} +(5.08255e7 + 8.80323e7i) q^{61} -9.93680e7 q^{62} +1.48899e8 q^{64} +(-9.85638e7 - 1.70718e8i) q^{65} +(6.54138e7 - 1.13300e8i) q^{66} +(-6.55496e7 + 1.13535e8i) q^{67} +(-2.16449e7 - 3.74900e7i) q^{68} -1.14357e8 q^{69} +9.51959e7 q^{71} +(-1.52991e8 - 2.64988e8i) q^{72} +(1.19056e8 - 2.06211e8i) q^{73} +(5.74636e7 - 9.95299e7i) q^{74} +(-2.01373e8 - 3.48788e8i) q^{75} +3.34685e7 q^{76} -4.12210e8 q^{78} +(-9.42601e7 - 1.63263e8i) q^{79} +(1.77319e8 - 3.07126e8i) q^{80} +(1.36193e8 - 2.35894e8i) q^{81} +(2.75636e8 + 4.77416e8i) q^{82} +1.76014e8 q^{83} -6.65551e8 q^{85} +(3.80683e8 + 6.59362e8i) q^{86} +(-2.43682e8 + 4.22070e8i) q^{87} +(-1.99393e8 + 3.45359e8i) q^{88} +(-2.41517e8 - 4.18319e8i) q^{89} -9.40725e8 q^{90} +6.97066e7 q^{92} +(-5.32309e8 - 9.21986e8i) q^{93} +(-2.48367e8 + 4.30184e8i) q^{94} +(2.57278e8 - 4.45619e8i) q^{95} +(3.03287e8 + 5.25309e8i) q^{96} +2.28821e7 q^{97} +7.75799e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 18 q^{2} - 161 q^{3} - 940 q^{4} - 1533 q^{5} + 8708 q^{6} + 34272 q^{8} - 35734 q^{9} - 4298 q^{10} + 42213 q^{11} - 135604 q^{12} + 319676 q^{13} + 151394 q^{15} + 322064 q^{16} - 324681 q^{17}+ \cdots - 1900777180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/49\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.79824 + 16.9710i 0.433025 + 0.750021i 0.997132 0.0756804i \(-0.0241129\pi\)
−0.564107 + 0.825702i \(0.690780\pi\)
\(3\) −104.977 + 181.826i −0.748255 + 1.29602i 0.200404 + 0.979713i \(0.435775\pi\)
−0.948659 + 0.316302i \(0.897559\pi\)
\(4\) 63.9892 110.832i 0.124979 0.216470i
\(5\) −983.791 1703.98i −0.703943 1.21927i −0.967072 0.254505i \(-0.918088\pi\)
0.263128 0.964761i \(-0.415246\pi\)
\(6\) −4114.37 −1.29605
\(7\) 0 0
\(8\) 12541.3 1.08253
\(9\) −12198.9 21129.2i −0.619771 1.07347i
\(10\) 19278.8 33391.9i 0.609650 1.05594i
\(11\) −15898.9 + 27537.7i −0.327416 + 0.567101i −0.981998 0.188890i \(-0.939511\pi\)
0.654583 + 0.755991i \(0.272844\pi\)
\(12\) 13434.8 + 23269.8i 0.187032 + 0.323949i
\(13\) 100188. 0.972904 0.486452 0.873707i \(-0.338291\pi\)
0.486452 + 0.873707i \(0.338291\pi\)
\(14\) 0 0
\(15\) 413103. 2.10692
\(16\) 90120.3 + 156093.i 0.343782 + 0.595447i
\(17\) 169129. 292940.i 0.491132 0.850666i −0.508816 0.860875i \(-0.669917\pi\)
0.999948 + 0.0102097i \(0.00324991\pi\)
\(18\) 239056. 414058.i 0.536752 0.929682i
\(19\) 130759. + 226480.i 0.230186 + 0.398694i 0.957863 0.287226i \(-0.0927332\pi\)
−0.727677 + 0.685920i \(0.759400\pi\)
\(20\) −251808. −0.351912
\(21\) 0 0
\(22\) −623124. −0.567117
\(23\) 272337. + 471702.i 0.202923 + 0.351474i 0.949469 0.313860i \(-0.101622\pi\)
−0.746546 + 0.665334i \(0.768289\pi\)
\(24\) −1.31655e6 + 2.28034e6i −0.810005 + 1.40297i
\(25\) −959125. + 1.66125e6i −0.491072 + 0.850562i
\(26\) 981664. + 1.70029e6i 0.421292 + 0.729698i
\(27\) 989914. 0.358476
\(28\) 0 0
\(29\) 2.32128e6 0.609449 0.304724 0.952441i \(-0.401436\pi\)
0.304724 + 0.952441i \(0.401436\pi\)
\(30\) 4.04768e6 + 7.01078e6i 0.912347 + 1.58023i
\(31\) −2.53535e6 + 4.39136e6i −0.493073 + 0.854027i −0.999968 0.00798051i \(-0.997460\pi\)
0.506895 + 0.862008i \(0.330793\pi\)
\(32\) 1.44454e6 2.50201e6i 0.243531 0.421808i
\(33\) −3.33804e6 5.78166e6i −0.489981 0.848672i
\(34\) 6.62867e6 0.850690
\(35\) 0 0
\(36\) −3.12240e6 −0.309833
\(37\) −2.93235e6 5.07897e6i −0.257222 0.445521i 0.708275 0.705937i \(-0.249474\pi\)
−0.965497 + 0.260416i \(0.916140\pi\)
\(38\) −2.56241e6 + 4.43822e6i −0.199353 + 0.345289i
\(39\) −1.05174e7 + 1.82167e7i −0.727980 + 1.26090i
\(40\) −1.23380e7 2.13701e7i −0.762037 1.31989i
\(41\) 2.81312e7 1.55475 0.777376 0.629036i \(-0.216550\pi\)
0.777376 + 0.629036i \(0.216550\pi\)
\(42\) 0 0
\(43\) 3.88522e7 1.73304 0.866518 0.499147i \(-0.166353\pi\)
0.866518 + 0.499147i \(0.166353\pi\)
\(44\) 2.03471e6 + 3.52423e6i 0.0818401 + 0.141751i
\(45\) −2.40024e7 + 4.15734e7i −0.872567 + 1.51133i
\(46\) −5.33685e6 + 9.24370e6i −0.175742 + 0.304394i
\(47\) 1.26741e7 + 2.19521e7i 0.378857 + 0.656199i 0.990896 0.134628i \(-0.0429839\pi\)
−0.612039 + 0.790827i \(0.709651\pi\)
\(48\) −3.78423e7 −1.02895
\(49\) 0 0
\(50\) −3.75909e7 −0.850586
\(51\) 3.55094e7 + 6.15041e7i 0.734984 + 1.27303i
\(52\) 6.41094e6 1.11041e7i 0.121592 0.210604i
\(53\) 2.26489e7 3.92291e7i 0.394281 0.682915i −0.598728 0.800953i \(-0.704327\pi\)
0.993009 + 0.118037i \(0.0376602\pi\)
\(54\) 9.69941e6 + 1.67999e7i 0.155229 + 0.268865i
\(55\) 6.25647e7 0.921928
\(56\) 0 0
\(57\) −5.49067e7 −0.688951
\(58\) 2.27445e7 + 3.93946e7i 0.263907 + 0.457099i
\(59\) 9.44557e6 1.63602e7i 0.101483 0.175774i −0.810813 0.585306i \(-0.800975\pi\)
0.912296 + 0.409532i \(0.134308\pi\)
\(60\) 2.64341e7 4.57852e7i 0.263320 0.456083i
\(61\) 5.08255e7 + 8.80323e7i 0.469999 + 0.814062i 0.999412 0.0343023i \(-0.0109209\pi\)
−0.529412 + 0.848365i \(0.677588\pi\)
\(62\) −9.93680e7 −0.854051
\(63\) 0 0
\(64\) 1.48899e8 1.10938
\(65\) −9.85638e7 1.70718e8i −0.684869 1.18623i
\(66\) 6.54138e7 1.13300e8i 0.424348 0.734992i
\(67\) −6.55496e7 + 1.13535e8i −0.397405 + 0.688326i −0.993405 0.114659i \(-0.963423\pi\)
0.596000 + 0.802985i \(0.296756\pi\)
\(68\) −2.16449e7 3.74900e7i −0.122762 0.212630i
\(69\) −1.14357e8 −0.607354
\(70\) 0 0
\(71\) 9.51959e7 0.444586 0.222293 0.974980i \(-0.428646\pi\)
0.222293 + 0.974980i \(0.428646\pi\)
\(72\) −1.52991e8 2.64988e8i −0.670918 1.16206i
\(73\) 1.19056e8 2.06211e8i 0.490679 0.849881i −0.509264 0.860611i \(-0.670082\pi\)
0.999942 + 0.0107300i \(0.00341552\pi\)
\(74\) 5.74636e7 9.95299e7i 0.222767 0.385843i
\(75\) −2.01373e8 3.48788e8i −0.734894 1.27287i
\(76\) 3.34685e7 0.115074
\(77\) 0 0
\(78\) −4.12210e8 −1.26093
\(79\) −9.42601e7 1.63263e8i −0.272274 0.471592i 0.697170 0.716906i \(-0.254442\pi\)
−0.969444 + 0.245314i \(0.921109\pi\)
\(80\) 1.77319e8 3.07126e8i 0.484006 0.838322i
\(81\) 1.36193e8 2.35894e8i 0.351539 0.608884i
\(82\) 2.75636e8 + 4.77416e8i 0.673247 + 1.16610i
\(83\) 1.76014e8 0.407095 0.203547 0.979065i \(-0.434753\pi\)
0.203547 + 0.979065i \(0.434753\pi\)
\(84\) 0 0
\(85\) −6.65551e8 −1.38292
\(86\) 3.80683e8 + 6.59362e8i 0.750447 + 1.29981i
\(87\) −2.43682e8 + 4.22070e8i −0.456023 + 0.789855i
\(88\) −1.99393e8 + 3.45359e8i −0.354436 + 0.613901i
\(89\) −2.41517e8 4.18319e8i −0.408030 0.706729i 0.586639 0.809849i \(-0.300451\pi\)
−0.994669 + 0.103120i \(0.967118\pi\)
\(90\) −9.40725e8 −1.51137
\(91\) 0 0
\(92\) 6.97066e7 0.101445
\(93\) −5.32309e8 9.21986e8i −0.737888 1.27806i
\(94\) −2.48367e8 + 4.30184e8i −0.328109 + 0.568301i
\(95\) 2.57278e8 4.45619e8i 0.324076 0.561316i
\(96\) 3.03287e8 + 5.25309e8i 0.364446 + 0.631239i
\(97\) 2.28821e7 0.0262436 0.0131218 0.999914i \(-0.495823\pi\)
0.0131218 + 0.999914i \(0.495823\pi\)
\(98\) 0 0
\(99\) 7.75799e8 0.811691
\(100\) 1.22747e8 + 2.12604e8i 0.122747 + 0.212604i
\(101\) 1.03216e8 1.78776e8i 0.0986966 0.170948i −0.812449 0.583033i \(-0.801866\pi\)
0.911145 + 0.412085i \(0.135199\pi\)
\(102\) −6.95859e8 + 1.20526e9i −0.636533 + 1.10251i
\(103\) −1.47590e8 2.55634e8i −0.129208 0.223795i 0.794162 0.607706i \(-0.207910\pi\)
−0.923370 + 0.383911i \(0.874577\pi\)
\(104\) 1.25649e9 1.05319
\(105\) 0 0
\(106\) 8.87678e8 0.682935
\(107\) 1.22501e9 + 2.12179e9i 0.903471 + 1.56486i 0.822956 + 0.568105i \(0.192323\pi\)
0.0805150 + 0.996753i \(0.474344\pi\)
\(108\) 6.33438e7 1.09715e8i 0.0448020 0.0775993i
\(109\) 1.02280e9 1.77153e9i 0.694016 1.20207i −0.276495 0.961015i \(-0.589173\pi\)
0.970511 0.241056i \(-0.0774937\pi\)
\(110\) 6.13023e8 + 1.06179e9i 0.399218 + 0.691466i
\(111\) 1.23132e9 0.769869
\(112\) 0 0
\(113\) 1.59772e8 0.0921822 0.0460911 0.998937i \(-0.485324\pi\)
0.0460911 + 0.998937i \(0.485324\pi\)
\(114\) −5.37989e8 9.31824e8i −0.298333 0.516728i
\(115\) 5.35846e8 9.28113e8i 0.285693 0.494835i
\(116\) 1.48537e8 2.57274e8i 0.0761682 0.131927i
\(117\) −1.22219e9 2.11689e9i −0.602977 1.04439i
\(118\) 3.70200e8 0.175779
\(119\) 0 0
\(120\) 5.18085e9 2.28079
\(121\) 6.73425e8 + 1.16641e9i 0.285598 + 0.494670i
\(122\) −9.96000e8 + 1.72512e9i −0.407043 + 0.705019i
\(123\) −2.95314e9 + 5.11499e9i −1.16335 + 2.01498i
\(124\) 3.24470e8 + 5.61999e8i 0.123247 + 0.213471i
\(125\) −6.86192e7 −0.0251392
\(126\) 0 0
\(127\) −5.15074e9 −1.75692 −0.878462 0.477813i \(-0.841430\pi\)
−0.878462 + 0.477813i \(0.841430\pi\)
\(128\) 7.19343e8 + 1.24594e9i 0.236860 + 0.410253i
\(129\) −4.07860e9 + 7.06433e9i −1.29675 + 2.24604i
\(130\) 1.93150e9 3.34546e9i 0.593131 1.02733i
\(131\) 5.08431e8 + 8.80628e8i 0.150838 + 0.261259i 0.931536 0.363650i \(-0.118469\pi\)
−0.780698 + 0.624909i \(0.785136\pi\)
\(132\) −8.54394e8 −0.244949
\(133\) 0 0
\(134\) −2.56908e9 −0.688345
\(135\) −9.73868e8 1.68679e9i −0.252347 0.437078i
\(136\) 2.12110e9 3.67386e9i 0.531663 0.920867i
\(137\) −1.60440e9 + 2.77891e9i −0.389108 + 0.673956i −0.992330 0.123618i \(-0.960550\pi\)
0.603221 + 0.797574i \(0.293884\pi\)
\(138\) −1.12050e9 1.94076e9i −0.262999 0.455528i
\(139\) −6.36396e8 −0.144598 −0.0722988 0.997383i \(-0.523034\pi\)
−0.0722988 + 0.997383i \(0.523034\pi\)
\(140\) 0 0
\(141\) −5.32195e9 −1.13393
\(142\) 9.32752e8 + 1.61557e9i 0.192517 + 0.333449i
\(143\) −1.59287e9 + 2.75894e9i −0.318544 + 0.551734i
\(144\) 2.19875e9 3.80834e9i 0.426132 0.738082i
\(145\) −2.28366e9 3.95541e9i −0.429017 0.743080i
\(146\) 4.66614e9 0.849905
\(147\) 0 0
\(148\) −7.50554e8 −0.128589
\(149\) −2.50376e9 4.33664e9i −0.416154 0.720800i 0.579395 0.815047i \(-0.303289\pi\)
−0.995549 + 0.0942469i \(0.969956\pi\)
\(150\) 3.94619e9 6.83501e9i 0.636455 1.10237i
\(151\) 1.27205e9 2.20326e9i 0.199118 0.344882i −0.749125 0.662429i \(-0.769526\pi\)
0.948243 + 0.317547i \(0.102859\pi\)
\(152\) 1.63988e9 + 2.84036e9i 0.249182 + 0.431596i
\(153\) −8.25279e9 −1.21756
\(154\) 0 0
\(155\) 9.97703e9 1.38838
\(156\) 1.34600e9 + 2.33135e9i 0.181964 + 0.315171i
\(157\) 5.71100e9 9.89174e9i 0.750177 1.29934i −0.197560 0.980291i \(-0.563302\pi\)
0.947737 0.319053i \(-0.103365\pi\)
\(158\) 1.84716e9 3.19938e9i 0.235803 0.408422i
\(159\) 4.75524e9 + 8.23632e9i 0.590046 + 1.02199i
\(160\) −5.68449e9 −0.685727
\(161\) 0 0
\(162\) 5.33782e9 0.608901
\(163\) −5.67212e9 9.82441e9i −0.629364 1.09009i −0.987680 0.156489i \(-0.949982\pi\)
0.358316 0.933600i \(-0.383351\pi\)
\(164\) 1.80009e9 3.11785e9i 0.194311 0.336557i
\(165\) −6.56787e9 + 1.13759e10i −0.689837 + 1.19483i
\(166\) 1.72462e9 + 2.98714e9i 0.176282 + 0.305330i
\(167\) 1.04555e10 1.04021 0.520103 0.854104i \(-0.325894\pi\)
0.520103 + 0.854104i \(0.325894\pi\)
\(168\) 0 0
\(169\) −5.66897e8 −0.0534582
\(170\) −6.52122e9 1.12951e10i −0.598837 1.03722i
\(171\) 3.19023e9 5.52565e9i 0.285325 0.494198i
\(172\) 2.48612e9 4.30608e9i 0.216593 0.375150i
\(173\) −5.63685e9 9.76331e9i −0.478442 0.828685i 0.521253 0.853402i \(-0.325465\pi\)
−0.999694 + 0.0247172i \(0.992131\pi\)
\(174\) −9.55061e9 −0.789877
\(175\) 0 0
\(176\) −5.73125e9 −0.450238
\(177\) 1.98314e9 + 3.43490e9i 0.151871 + 0.263048i
\(178\) 4.73288e9 8.19759e9i 0.353375 0.612063i
\(179\) 6.78310e9 1.17487e10i 0.493844 0.855363i −0.506131 0.862457i \(-0.668925\pi\)
0.999975 + 0.00709392i \(0.00225808\pi\)
\(180\) 3.07179e9 + 5.32050e9i 0.218105 + 0.377769i
\(181\) −2.03119e10 −1.40668 −0.703342 0.710851i \(-0.748310\pi\)
−0.703342 + 0.710851i \(0.748310\pi\)
\(182\) 0 0
\(183\) −2.13421e10 −1.40672
\(184\) 3.41547e9 + 5.91577e9i 0.219670 + 0.380479i
\(185\) −5.76963e9 + 9.99329e9i −0.362139 + 0.627243i
\(186\) 1.04314e10 1.80677e10i 0.639048 1.10686i
\(187\) 5.37793e9 + 9.31485e9i 0.321609 + 0.557043i
\(188\) 3.24401e9 0.189396
\(189\) 0 0
\(190\) 1.00835e10 0.561331
\(191\) 1.71927e10 + 2.97787e10i 0.934748 + 1.61903i 0.775083 + 0.631859i \(0.217708\pi\)
0.159664 + 0.987171i \(0.448959\pi\)
\(192\) −1.56310e10 + 2.70737e10i −0.830101 + 1.43778i
\(193\) −1.36102e10 + 2.35735e10i −0.706084 + 1.22297i 0.260215 + 0.965551i \(0.416207\pi\)
−0.966299 + 0.257422i \(0.917127\pi\)
\(194\) 2.24204e8 + 3.88333e8i 0.0113641 + 0.0196833i
\(195\) 4.13878e10 2.04983
\(196\) 0 0
\(197\) −1.52311e9 −0.0720499 −0.0360249 0.999351i \(-0.511470\pi\)
−0.0360249 + 0.999351i \(0.511470\pi\)
\(198\) 7.60146e9 + 1.31661e10i 0.351482 + 0.608785i
\(199\) −6.15674e9 + 1.06638e10i −0.278299 + 0.482028i −0.970962 0.239233i \(-0.923104\pi\)
0.692663 + 0.721261i \(0.256437\pi\)
\(200\) −1.20287e10 + 2.08343e10i −0.531598 + 0.920755i
\(201\) −1.37624e10 2.38372e10i −0.594721 1.03009i
\(202\) 4.04535e9 0.170952
\(203\) 0 0
\(204\) 9.08887e9 0.367430
\(205\) −2.76752e10 4.79349e10i −1.09446 1.89566i
\(206\) 2.89225e9 5.00952e9i 0.111901 0.193818i
\(207\) 6.64446e9 1.15085e10i 0.251532 0.435666i
\(208\) 9.02896e9 + 1.56386e10i 0.334467 + 0.579313i
\(209\) −8.31566e9 −0.301466
\(210\) 0 0
\(211\) −2.60114e10 −0.903426 −0.451713 0.892163i \(-0.649187\pi\)
−0.451713 + 0.892163i \(0.649187\pi\)
\(212\) −2.89857e9 5.02047e9i −0.0985536 0.170700i
\(213\) −9.99341e9 + 1.73091e10i −0.332664 + 0.576190i
\(214\) −2.40060e10 + 4.15796e10i −0.782451 + 1.35525i
\(215\) −3.82224e10 6.62031e10i −1.21996 2.11303i
\(216\) 1.24148e10 0.388060
\(217\) 0 0
\(218\) 4.00864e10 1.20210
\(219\) 2.49963e10 + 4.32948e10i 0.734306 + 1.27185i
\(220\) 4.00346e9 6.93420e9i 0.115222 0.199570i
\(221\) 1.69447e10 2.93491e10i 0.477824 0.827616i
\(222\) 1.20648e10 + 2.08968e10i 0.333373 + 0.577418i
\(223\) −1.83087e10 −0.495777 −0.247889 0.968789i \(-0.579737\pi\)
−0.247889 + 0.968789i \(0.579737\pi\)
\(224\) 0 0
\(225\) 4.68013e10 1.21741
\(226\) 1.56548e9 + 2.71149e9i 0.0399172 + 0.0691386i
\(227\) −1.19844e10 + 2.07575e10i −0.299570 + 0.518871i −0.976038 0.217602i \(-0.930177\pi\)
0.676467 + 0.736473i \(0.263510\pi\)
\(228\) −3.51343e9 + 6.08545e9i −0.0861043 + 0.149137i
\(229\) 1.50424e10 + 2.60541e10i 0.361457 + 0.626061i 0.988201 0.153164i \(-0.0489462\pi\)
−0.626744 + 0.779225i \(0.715613\pi\)
\(230\) 2.10014e10 0.494849
\(231\) 0 0
\(232\) 2.91120e10 0.659744
\(233\) −6.75130e9 1.16936e10i −0.150067 0.259924i 0.781185 0.624300i \(-0.214616\pi\)
−0.931252 + 0.364376i \(0.881282\pi\)
\(234\) 2.39505e10 4.14835e10i 0.522208 0.904492i
\(235\) 2.49372e10 4.31926e10i 0.533388 0.923854i
\(236\) −1.20883e9 2.09375e9i −0.0253665 0.0439361i
\(237\) 3.95806e10 0.814921
\(238\) 0 0
\(239\) −3.75005e9 −0.0743440 −0.0371720 0.999309i \(-0.511835\pi\)
−0.0371720 + 0.999309i \(0.511835\pi\)
\(240\) 3.72289e10 + 6.44824e10i 0.724319 + 1.25456i
\(241\) −1.34568e10 + 2.33078e10i −0.256960 + 0.445067i −0.965426 0.260678i \(-0.916054\pi\)
0.708466 + 0.705745i \(0.249387\pi\)
\(242\) −1.31968e10 + 2.28574e10i −0.247342 + 0.428409i
\(243\) 3.83367e10 + 6.64011e10i 0.705320 + 1.22165i
\(244\) 1.30091e10 0.234960
\(245\) 0 0
\(246\) −1.15742e11 −2.01504
\(247\) 1.31004e10 + 2.26906e10i 0.223949 + 0.387891i
\(248\) −3.17967e10 + 5.50735e10i −0.533764 + 0.924506i
\(249\) −1.84774e10 + 3.20039e10i −0.304610 + 0.527601i
\(250\) −6.72347e8 1.16454e9i −0.0108859 0.0188549i
\(251\) −1.56458e10 −0.248810 −0.124405 0.992232i \(-0.539702\pi\)
−0.124405 + 0.992232i \(0.539702\pi\)
\(252\) 0 0
\(253\) −1.73194e10 −0.265761
\(254\) −5.04681e10 8.74134e10i −0.760791 1.31773i
\(255\) 6.98677e10 1.21014e11i 1.03477 1.79228i
\(256\) 2.40215e10 4.16065e10i 0.349559 0.605454i
\(257\) 3.63435e10 + 6.29487e10i 0.519670 + 0.900094i 0.999739 + 0.0228635i \(0.00727831\pi\)
−0.480069 + 0.877231i \(0.659388\pi\)
\(258\) −1.59852e11 −2.24610
\(259\) 0 0
\(260\) −2.52281e10 −0.342377
\(261\) −2.83172e10 4.90469e10i −0.377719 0.654228i
\(262\) −9.96345e9 + 1.72572e10i −0.130633 + 0.226264i
\(263\) 4.11041e10 7.11943e10i 0.529766 0.917581i −0.469631 0.882863i \(-0.655613\pi\)
0.999397 0.0347186i \(-0.0110535\pi\)
\(264\) −4.18634e10 7.25096e10i −0.530417 0.918709i
\(265\) −8.91272e10 −1.11021
\(266\) 0 0
\(267\) 1.01415e11 1.22124
\(268\) 8.38893e9 + 1.45301e10i 0.0993345 + 0.172052i
\(269\) 1.64537e10 2.84986e10i 0.191592 0.331847i −0.754186 0.656661i \(-0.771968\pi\)
0.945778 + 0.324814i \(0.105302\pi\)
\(270\) 1.90844e10 3.30551e10i 0.218545 0.378531i
\(271\) −6.71241e10 1.16262e11i −0.755991 1.30941i −0.944880 0.327416i \(-0.893822\pi\)
0.188889 0.981998i \(-0.439511\pi\)
\(272\) 6.09679e10 0.675369
\(273\) 0 0
\(274\) −6.28812e10 −0.673975
\(275\) −3.04980e10 5.28241e10i −0.321569 0.556975i
\(276\) −7.31761e9 + 1.26745e10i −0.0759064 + 0.131474i
\(277\) −9.65495e10 + 1.67229e11i −0.985351 + 1.70668i −0.344986 + 0.938608i \(0.612116\pi\)
−0.640365 + 0.768071i \(0.721217\pi\)
\(278\) −6.23556e9 1.08003e10i −0.0626143 0.108451i
\(279\) 1.23715e11 1.22237
\(280\) 0 0
\(281\) 1.81503e10 0.173663 0.0868313 0.996223i \(-0.472326\pi\)
0.0868313 + 0.996223i \(0.472326\pi\)
\(282\) −5.21457e10 9.03190e10i −0.491018 0.850469i
\(283\) 6.52307e10 1.12983e11i 0.604523 1.04707i −0.387603 0.921826i \(-0.626697\pi\)
0.992127 0.125239i \(-0.0399697\pi\)
\(284\) 6.09151e9 1.05508e10i 0.0555638 0.0962394i
\(285\) 5.40167e10 + 9.35596e10i 0.484982 + 0.840014i
\(286\) −6.24294e10 −0.551750
\(287\) 0 0
\(288\) −7.04873e10 −0.603733
\(289\) 2.08461e9 + 3.61064e9i 0.0175786 + 0.0304470i
\(290\) 4.47516e10 7.75121e10i 0.371550 0.643544i
\(291\) −2.40210e9 + 4.16056e9i −0.0196369 + 0.0340121i
\(292\) −1.52365e10 2.63905e10i −0.122649 0.212434i
\(293\) 1.61941e11 1.28367 0.641834 0.766843i \(-0.278174\pi\)
0.641834 + 0.766843i \(0.278174\pi\)
\(294\) 0 0
\(295\) −3.71699e10 −0.285754
\(296\) −3.67755e10 6.36970e10i −0.278449 0.482288i
\(297\) −1.57385e10 + 2.72599e10i −0.117371 + 0.203292i
\(298\) 4.90648e10 8.49828e10i 0.360410 0.624249i
\(299\) 2.72849e10 + 4.72588e10i 0.197425 + 0.341950i
\(300\) −5.15427e10 −0.367385
\(301\) 0 0
\(302\) 4.98556e10 0.344891
\(303\) 2.16707e10 + 3.75348e10i 0.147700 + 0.255825i
\(304\) −2.35680e10 + 4.08210e10i −0.158267 + 0.274127i
\(305\) 1.00003e11 1.73211e11i 0.661705 1.14611i
\(306\) −8.08628e10 1.40058e11i −0.527233 0.913194i
\(307\) −2.13521e11 −1.37188 −0.685942 0.727656i \(-0.740610\pi\)
−0.685942 + 0.727656i \(0.740610\pi\)
\(308\) 0 0
\(309\) 6.19745e10 0.386723
\(310\) 9.77573e10 + 1.69321e11i 0.601203 + 1.04132i
\(311\) −6.44473e10 + 1.11626e11i −0.390646 + 0.676618i −0.992535 0.121961i \(-0.961082\pi\)
0.601889 + 0.798580i \(0.294415\pi\)
\(312\) −1.31903e11 + 2.28462e11i −0.788057 + 1.36495i
\(313\) 8.90227e10 + 1.54192e11i 0.524265 + 0.908054i 0.999601 + 0.0282496i \(0.00899332\pi\)
−0.475336 + 0.879805i \(0.657673\pi\)
\(314\) 2.23831e11 1.29938
\(315\) 0 0
\(316\) −2.41265e10 −0.136114
\(317\) 7.34098e10 + 1.27149e11i 0.408307 + 0.707209i 0.994700 0.102818i \(-0.0327858\pi\)
−0.586393 + 0.810027i \(0.699452\pi\)
\(318\) −9.31860e10 + 1.61403e11i −0.511009 + 0.885094i
\(319\) −3.69058e10 + 6.39227e10i −0.199543 + 0.345619i
\(320\) −1.46485e11 2.53720e11i −0.780943 1.35263i
\(321\) −5.14395e11 −2.70411
\(322\) 0 0
\(323\) 8.84603e10 0.452207
\(324\) −1.74298e10 3.01893e10i −0.0878699 0.152195i
\(325\) −9.60927e10 + 1.66437e11i −0.477766 + 0.827515i
\(326\) 1.11154e11 1.92524e11i 0.545060 0.944072i
\(327\) 2.14740e11 + 3.71941e11i 1.03860 + 1.79891i
\(328\) 3.52803e11 1.68306
\(329\) 0 0
\(330\) −2.57414e11 −1.19487
\(331\) 8.55668e10 + 1.48206e11i 0.391813 + 0.678641i 0.992689 0.120702i \(-0.0385145\pi\)
−0.600875 + 0.799343i \(0.705181\pi\)
\(332\) 1.12630e10 1.95080e10i 0.0508782 0.0881236i
\(333\) −7.15431e10 + 1.23916e11i −0.318837 + 0.552242i
\(334\) 1.02445e11 + 1.77440e11i 0.450435 + 0.780176i
\(335\) 2.57948e11 1.11900
\(336\) 0 0
\(337\) 1.14022e11 0.481564 0.240782 0.970579i \(-0.422596\pi\)
0.240782 + 0.970579i \(0.422596\pi\)
\(338\) −5.55459e9 9.62084e9i −0.0231487 0.0400948i
\(339\) −1.67724e10 + 2.90506e10i −0.0689758 + 0.119470i
\(340\) −4.25880e10 + 7.37646e10i −0.172835 + 0.299359i
\(341\) −8.06186e10 1.39635e11i −0.322880 0.559244i
\(342\) 1.25035e11 0.494212
\(343\) 0 0
\(344\) 4.87257e11 1.87605
\(345\) 1.12503e11 + 1.94861e11i 0.427543 + 0.740525i
\(346\) 1.10462e11 1.91326e11i 0.414354 0.717683i
\(347\) −1.43423e10 + 2.48416e10i −0.0531051 + 0.0919808i −0.891356 0.453304i \(-0.850245\pi\)
0.838251 + 0.545285i \(0.183579\pi\)
\(348\) 3.11860e10 + 5.40158e10i 0.113986 + 0.197430i
\(349\) 3.10537e11 1.12047 0.560234 0.828334i \(-0.310711\pi\)
0.560234 + 0.828334i \(0.310711\pi\)
\(350\) 0 0
\(351\) 9.91774e10 0.348763
\(352\) 4.59330e10 + 7.95584e10i 0.159472 + 0.276213i
\(353\) 2.42567e11 4.20138e11i 0.831467 1.44014i −0.0654074 0.997859i \(-0.520835\pi\)
0.896875 0.442285i \(-0.145832\pi\)
\(354\) −3.88626e10 + 6.73119e10i −0.131528 + 0.227812i
\(355\) −9.36528e10 1.62211e11i −0.312963 0.542068i
\(356\) −6.18178e10 −0.203981
\(357\) 0 0
\(358\) 2.65850e11 0.855387
\(359\) −1.53427e11 2.65743e11i −0.487501 0.844377i 0.512395 0.858750i \(-0.328758\pi\)
−0.999897 + 0.0143725i \(0.995425\pi\)
\(360\) −3.01022e11 + 5.21385e11i −0.944576 + 1.63605i
\(361\) 1.27148e11 2.20227e11i 0.394029 0.682478i
\(362\) −1.99021e11 3.44714e11i −0.609129 1.05504i
\(363\) −2.82777e11 −0.854800
\(364\) 0 0
\(365\) −4.68503e11 −1.38164
\(366\) −2.09115e11 3.62197e11i −0.609143 1.05507i
\(367\) −2.54740e11 + 4.41223e11i −0.732993 + 1.26958i 0.222605 + 0.974909i \(0.428544\pi\)
−0.955598 + 0.294673i \(0.904789\pi\)
\(368\) −4.90863e10 + 8.50199e10i −0.139523 + 0.241660i
\(369\) −3.43171e11 5.94390e11i −0.963590 1.66899i
\(370\) −2.26129e11 −0.627261
\(371\) 0 0
\(372\) −1.36248e11 −0.368882
\(373\) 2.13628e11 + 3.70015e11i 0.571438 + 0.989759i 0.996419 + 0.0845567i \(0.0269474\pi\)
−0.424981 + 0.905202i \(0.639719\pi\)
\(374\) −1.05388e11 + 1.82538e11i −0.278529 + 0.482427i
\(375\) 7.20346e9 1.24768e10i 0.0188105 0.0325807i
\(376\) 1.58949e11 + 2.75308e11i 0.410122 + 0.710353i
\(377\) 2.32564e11 0.592935
\(378\) 0 0
\(379\) 4.28378e7 0.000106647 5.33237e−5 1.00000i \(-0.499983\pi\)
5.33237e−5 1.00000i \(0.499983\pi\)
\(380\) −3.29260e10 5.70295e10i −0.0810052 0.140305i
\(381\) 5.40710e11 9.36538e11i 1.31463 2.27700i
\(382\) −3.36917e11 + 5.83557e11i −0.809538 + 1.40216i
\(383\) 8.72269e9 + 1.51081e10i 0.0207136 + 0.0358770i 0.876196 0.481954i \(-0.160073\pi\)
−0.855483 + 0.517831i \(0.826740\pi\)
\(384\) −3.02059e11 −0.708926
\(385\) 0 0
\(386\) −5.33423e11 −1.22301
\(387\) −4.73956e11 8.20915e11i −1.07408 1.86037i
\(388\) 1.46421e9 2.53608e9i 0.00327989 0.00568094i
\(389\) 3.04707e11 5.27768e11i 0.674698 1.16861i −0.301859 0.953353i \(-0.597607\pi\)
0.976557 0.215259i \(-0.0690594\pi\)
\(390\) 4.05528e11 + 7.02395e11i 0.887626 + 1.53741i
\(391\) 1.84241e11 0.398649
\(392\) 0 0
\(393\) −2.13495e11 −0.451462
\(394\) −1.49238e10 2.58488e10i −0.0311994 0.0540389i
\(395\) −1.85464e11 + 3.21234e11i −0.383330 + 0.663948i
\(396\) 4.96427e10 8.59837e10i 0.101444 0.175706i
\(397\) 2.73104e11 + 4.73030e11i 0.551786 + 0.955721i 0.998146 + 0.0608675i \(0.0193867\pi\)
−0.446360 + 0.894853i \(0.647280\pi\)
\(398\) −2.41301e11 −0.482042
\(399\) 0 0
\(400\) −3.45747e11 −0.675286
\(401\) 2.93880e11 + 5.09014e11i 0.567570 + 0.983061i 0.996805 + 0.0798679i \(0.0254498\pi\)
−0.429235 + 0.903193i \(0.641217\pi\)
\(402\) 2.69695e11 4.67126e11i 0.515058 0.892106i
\(403\) −2.54012e11 + 4.39961e11i −0.479712 + 0.830886i
\(404\) −1.32095e10 2.28794e10i −0.0246700 0.0427296i
\(405\) −5.35943e11 −0.989854
\(406\) 0 0
\(407\) 1.86484e11 0.336874
\(408\) 4.45335e11 + 7.71343e11i 0.795639 + 1.37809i
\(409\) −2.06201e11 + 3.57151e11i −0.364365 + 0.631099i −0.988674 0.150079i \(-0.952047\pi\)
0.624309 + 0.781178i \(0.285381\pi\)
\(410\) 5.42337e11 9.39355e11i 0.947855 1.64173i
\(411\) −3.36851e11 5.83444e11i −0.582305 1.00858i
\(412\) −3.77767e10 −0.0645932
\(413\) 0 0
\(414\) 2.60416e11 0.435679
\(415\) −1.73161e11 2.99923e11i −0.286571 0.496356i
\(416\) 1.44725e11 2.50671e11i 0.236932 0.410378i
\(417\) 6.68071e10 1.15713e11i 0.108196 0.187401i
\(418\) −8.14788e10 1.41125e11i −0.130542 0.226106i
\(419\) 4.82213e11 0.764322 0.382161 0.924096i \(-0.375180\pi\)
0.382161 + 0.924096i \(0.375180\pi\)
\(420\) 0 0
\(421\) −2.29026e11 −0.355317 −0.177658 0.984092i \(-0.556852\pi\)
−0.177658 + 0.984092i \(0.556852\pi\)
\(422\) −2.54866e11 4.41440e11i −0.391206 0.677589i
\(423\) 3.09220e11 5.35585e11i 0.469609 0.813387i
\(424\) 2.84047e11 4.91984e11i 0.426820 0.739273i
\(425\) 3.24432e11 + 5.61933e11i 0.482362 + 0.835476i
\(426\) −3.91671e11 −0.576207
\(427\) 0 0
\(428\) 3.13551e11 0.451659
\(429\) −3.34431e11 5.79252e11i −0.476704 0.825676i
\(430\) 7.49024e11 1.29735e12i 1.05654 1.82999i
\(431\) 4.94384e10 8.56299e10i 0.0690108 0.119530i −0.829455 0.558573i \(-0.811349\pi\)
0.898466 + 0.439043i \(0.144682\pi\)
\(432\) 8.92114e10 + 1.54519e11i 0.123238 + 0.213454i
\(433\) −1.10144e12 −1.50580 −0.752899 0.658136i \(-0.771345\pi\)
−0.752899 + 0.658136i \(0.771345\pi\)
\(434\) 0 0
\(435\) 9.58928e11 1.28406
\(436\) −1.30896e11 2.26718e11i −0.173475 0.300467i
\(437\) −7.12209e10 + 1.23358e11i −0.0934202 + 0.161809i
\(438\) −4.89839e11 + 8.48426e11i −0.635945 + 1.10149i
\(439\) −8.29491e10 1.43672e11i −0.106591 0.184621i 0.807796 0.589462i \(-0.200660\pi\)
−0.914387 + 0.404841i \(0.867327\pi\)
\(440\) 7.84643e11 0.998011
\(441\) 0 0
\(442\) 6.64112e11 0.827639
\(443\) −7.64532e11 1.32421e12i −0.943146 1.63358i −0.759422 0.650599i \(-0.774518\pi\)
−0.183724 0.982978i \(-0.558815\pi\)
\(444\) 7.87910e10 1.36470e11i 0.0962174 0.166653i
\(445\) −4.75204e11 + 8.23077e11i −0.574460 + 0.994994i
\(446\) −1.79393e11 3.10718e11i −0.214684 0.371843i
\(447\) 1.05135e12 1.24556
\(448\) 0 0
\(449\) 1.61276e11 0.187268 0.0936338 0.995607i \(-0.470152\pi\)
0.0936338 + 0.995607i \(0.470152\pi\)
\(450\) 4.58570e11 + 7.94266e11i 0.527168 + 0.913082i
\(451\) −4.47255e11 + 7.74668e11i −0.509050 + 0.881701i
\(452\) 1.02237e10 1.77079e10i 0.0115208 0.0199546i
\(453\) 2.67074e11 + 4.62585e11i 0.297981 + 0.516119i
\(454\) −4.69702e11 −0.518885
\(455\) 0 0
\(456\) −6.88602e11 −0.745807
\(457\) 4.91038e11 + 8.50503e11i 0.526614 + 0.912122i 0.999519 + 0.0310087i \(0.00987197\pi\)
−0.472905 + 0.881113i \(0.656795\pi\)
\(458\) −2.94777e11 + 5.10569e11i −0.313040 + 0.542200i
\(459\) 1.67423e11 2.89986e11i 0.176059 0.304944i
\(460\) −6.85767e10 1.18778e11i −0.0714112 0.123688i
\(461\) 1.27083e12 1.31049 0.655245 0.755417i \(-0.272565\pi\)
0.655245 + 0.755417i \(0.272565\pi\)
\(462\) 0 0
\(463\) −1.18923e12 −1.20268 −0.601342 0.798992i \(-0.705367\pi\)
−0.601342 + 0.798992i \(0.705367\pi\)
\(464\) 2.09195e11 + 3.62336e11i 0.209517 + 0.362895i
\(465\) −1.04736e12 + 1.81408e12i −1.03886 + 1.79936i
\(466\) 1.32302e11 2.29153e11i 0.129966 0.225107i
\(467\) −8.47027e11 1.46709e12i −0.824083 1.42735i −0.902618 0.430443i \(-0.858357\pi\)
0.0785347 0.996911i \(-0.474976\pi\)
\(468\) −3.12827e11 −0.301438
\(469\) 0 0
\(470\) 9.77363e11 0.923880
\(471\) 1.19905e12 + 2.07681e12i 1.12265 + 1.94448i
\(472\) 1.18460e11 2.05179e11i 0.109858 0.190280i
\(473\) −6.17706e11 + 1.06990e12i −0.567423 + 0.982805i
\(474\) 3.87820e11 + 6.71725e11i 0.352881 + 0.611208i
\(475\) −5.01655e11 −0.452152
\(476\) 0 0
\(477\) −1.10517e12 −0.977456
\(478\) −3.67438e10 6.36422e10i −0.0321928 0.0557596i
\(479\) −3.77462e11 + 6.53783e11i −0.327614 + 0.567445i −0.982038 0.188683i \(-0.939578\pi\)
0.654423 + 0.756128i \(0.272911\pi\)
\(480\) 5.96742e11 1.03359e12i 0.513099 0.888713i
\(481\) −2.93785e11 5.08851e11i −0.250252 0.433449i
\(482\) −5.27411e11 −0.445080
\(483\) 0 0
\(484\) 1.72368e11 0.142775
\(485\) −2.25112e10 3.89906e10i −0.0184740 0.0319979i
\(486\) −7.51263e11 + 1.30123e12i −0.610842 + 1.05801i
\(487\) 5.45763e11 9.45290e11i 0.439667 0.761526i −0.557997 0.829843i \(-0.688430\pi\)
0.997664 + 0.0683175i \(0.0217631\pi\)
\(488\) 6.37418e11 + 1.10404e12i 0.508786 + 0.881243i
\(489\) 2.38178e12 1.88370
\(490\) 0 0
\(491\) −6.37184e11 −0.494764 −0.247382 0.968918i \(-0.579570\pi\)
−0.247382 + 0.968918i \(0.579570\pi\)
\(492\) 3.77938e11 + 6.54607e11i 0.290789 + 0.503661i
\(493\) 3.92597e11 6.79997e11i 0.299320 0.518437i
\(494\) −2.56722e11 + 4.44655e11i −0.193951 + 0.335933i
\(495\) −7.63223e11 1.32194e12i −0.571384 0.989666i
\(496\) −9.13948e11 −0.678038
\(497\) 0 0
\(498\) −7.24185e11 −0.527616
\(499\) −7.17606e11 1.24293e12i −0.518124 0.897417i −0.999778 0.0210554i \(-0.993297\pi\)
0.481655 0.876361i \(-0.340036\pi\)
\(500\) −4.39089e9 + 7.60524e9i −0.00314186 + 0.00544187i
\(501\) −1.09759e12 + 1.90107e12i −0.778339 + 1.34812i
\(502\) −1.53302e11 2.65526e11i −0.107741 0.186612i
\(503\) −1.29165e12 −0.899683 −0.449842 0.893108i \(-0.648520\pi\)
−0.449842 + 0.893108i \(0.648520\pi\)
\(504\) 0 0
\(505\) −4.06173e11 −0.277907
\(506\) −1.69700e11 2.93929e11i −0.115081 0.199327i
\(507\) 5.95113e10 1.03077e11i 0.0400003 0.0692826i
\(508\) −3.29591e11 + 5.70869e11i −0.219578 + 0.380321i
\(509\) 1.06901e11 + 1.85158e11i 0.0705914 + 0.122268i 0.899161 0.437619i \(-0.144178\pi\)
−0.828569 + 0.559887i \(0.810845\pi\)
\(510\) 2.73832e12 1.79233
\(511\) 0 0
\(512\) 1.67808e12 1.07919
\(513\) 1.29440e11 + 2.24196e11i 0.0825163 + 0.142922i
\(514\) −7.12204e11 + 1.23357e12i −0.450060 + 0.779526i
\(515\) −2.90396e11 + 5.02981e11i −0.181911 + 0.315078i
\(516\) 5.21972e11 + 9.04082e11i 0.324133 + 0.561415i
\(517\) −8.06013e11 −0.496175
\(518\) 0 0
\(519\) 2.36696e12 1.43198
\(520\) −1.23612e12 2.14102e12i −0.741388 1.28412i
\(521\) −2.67755e11 + 4.63764e11i −0.159209 + 0.275758i −0.934584 0.355744i \(-0.884228\pi\)
0.775375 + 0.631501i \(0.217561\pi\)
\(522\) 5.54918e11 9.61145e11i 0.327123 0.566594i
\(523\) 1.84565e11 + 3.19677e11i 0.107868 + 0.186833i 0.914906 0.403666i \(-0.132264\pi\)
−0.807038 + 0.590499i \(0.798931\pi\)
\(524\) 1.30136e11 0.0754063
\(525\) 0 0
\(526\) 1.61099e12 0.917607
\(527\) 8.57605e11 + 1.48541e12i 0.484328 + 0.838880i
\(528\) 6.01651e11 1.04209e12i 0.336893 0.583516i
\(529\) 7.52241e11 1.30292e12i 0.417644 0.723381i
\(530\) −8.73289e11 1.51258e12i −0.480747 0.832678i
\(531\) −4.60904e11 −0.251585
\(532\) 0 0
\(533\) 2.81841e12 1.51262
\(534\) 9.93689e11 + 1.72112e12i 0.528829 + 0.915958i
\(535\) 2.41032e12 4.17479e12i 1.27198 2.20314i
\(536\) −8.22078e11 + 1.42388e12i −0.430201 + 0.745131i
\(537\) 1.42414e12 + 2.46669e12i 0.739042 + 1.28006i
\(538\) 6.44868e11 0.331857
\(539\) 0 0
\(540\) −2.49268e11 −0.126152
\(541\) −1.01264e12 1.75394e12i −0.508237 0.880293i −0.999955 0.00953769i \(-0.996964\pi\)
0.491717 0.870755i \(-0.336369\pi\)
\(542\) 1.31540e12 2.27833e12i 0.654726 1.13402i
\(543\) 2.13229e12 3.69323e12i 1.05256 1.82308i
\(544\) −4.88627e11 8.46326e11i −0.239211 0.414326i
\(545\) −4.02487e12 −1.95419
\(546\) 0 0
\(547\) −3.52443e12 −1.68324 −0.841621 0.540069i \(-0.818398\pi\)
−0.841621 + 0.540069i \(0.818398\pi\)
\(548\) 2.05329e11 + 3.55640e11i 0.0972606 + 0.168460i
\(549\) 1.24003e12 2.14780e12i 0.582583 1.00906i
\(550\) 5.97654e11 1.03517e12i 0.278495 0.482368i
\(551\) 3.03528e11 + 5.25725e11i 0.140287 + 0.242983i
\(552\) −1.43419e12 −0.657476
\(553\) 0 0
\(554\) −3.78406e12 −1.70673
\(555\) −1.21136e12 2.09814e12i −0.541944 0.938675i
\(556\) −4.07225e10 + 7.05334e10i −0.0180716 + 0.0313010i
\(557\) −3.55817e11 + 6.16292e11i −0.156631 + 0.271293i −0.933652 0.358182i \(-0.883397\pi\)
0.777021 + 0.629475i \(0.216730\pi\)
\(558\) 1.21219e12 + 2.09957e12i 0.529316 + 0.916802i
\(559\) 3.89252e12 1.68608
\(560\) 0 0
\(561\) −2.25824e12 −0.962581
\(562\) 1.77841e11 + 3.08030e11i 0.0752003 + 0.130251i
\(563\) −1.82812e12 + 3.16640e12i −0.766863 + 1.32825i 0.172393 + 0.985028i \(0.444850\pi\)
−0.939256 + 0.343218i \(0.888483\pi\)
\(564\) −3.40547e11 + 5.89845e11i −0.141717 + 0.245461i
\(565\) −1.57182e11 2.72247e11i −0.0648910 0.112395i
\(566\) 2.55658e12 1.04709
\(567\) 0 0
\(568\) 1.19388e12 0.481276
\(569\) 5.35022e11 + 9.26686e11i 0.213977 + 0.370619i 0.952956 0.303110i \(-0.0980250\pi\)
−0.738979 + 0.673729i \(0.764692\pi\)
\(570\) −1.05854e12 + 1.83344e12i −0.420019 + 0.727494i
\(571\) −4.09702e11 + 7.09624e11i −0.161289 + 0.279361i −0.935331 0.353773i \(-0.884899\pi\)
0.774042 + 0.633134i \(0.218232\pi\)
\(572\) 2.03853e11 + 3.53084e11i 0.0796225 + 0.137910i
\(573\) −7.21938e12 −2.79772
\(574\) 0 0
\(575\) −1.04482e12 −0.398600
\(576\) −1.81641e12 3.14611e12i −0.687563 1.19089i
\(577\) −1.30100e12 + 2.25340e12i −0.488637 + 0.846343i −0.999915 0.0130720i \(-0.995839\pi\)
0.511278 + 0.859415i \(0.329172\pi\)
\(578\) −4.08509e10 + 7.07558e10i −0.0152239 + 0.0263686i
\(579\) −2.85752e12 4.94937e12i −1.05666 1.83019i
\(580\) −5.84517e11 −0.214472
\(581\) 0 0
\(582\) −9.41455e10 −0.0340131
\(583\) 7.20185e11 + 1.24740e12i 0.258188 + 0.447194i
\(584\) 1.49312e12 2.58615e12i 0.531172 0.920018i
\(585\) −2.40475e12 + 4.16515e12i −0.848924 + 1.47038i
\(586\) 1.58674e12 + 2.74831e12i 0.555860 + 0.962779i
\(587\) 5.66219e11 0.196840 0.0984199 0.995145i \(-0.468621\pi\)
0.0984199 + 0.995145i \(0.468621\pi\)
\(588\) 0 0
\(589\) −1.32608e12 −0.453994
\(590\) −3.64199e11 6.30811e11i −0.123738 0.214321i
\(591\) 1.59892e11 2.76941e11i 0.0539117 0.0933777i
\(592\) 5.28528e11 9.15437e11i 0.176856 0.306324i
\(593\) 1.44623e12 + 2.50495e12i 0.480278 + 0.831865i 0.999744 0.0226255i \(-0.00720255\pi\)
−0.519466 + 0.854491i \(0.673869\pi\)
\(594\) −6.16839e11 −0.203298
\(595\) 0 0
\(596\) −6.40854e11 −0.208042
\(597\) −1.29263e12 2.23891e12i −0.416477 0.721360i
\(598\) −5.34688e11 + 9.26106e11i −0.170980 + 0.296146i
\(599\) 2.96101e12 5.12862e12i 0.939764 1.62772i 0.173855 0.984771i \(-0.444378\pi\)
0.765910 0.642948i \(-0.222289\pi\)
\(600\) −2.52548e12 4.37426e12i −0.795542 1.37792i
\(601\) −2.24993e12 −0.703450 −0.351725 0.936103i \(-0.614405\pi\)
−0.351725 + 0.936103i \(0.614405\pi\)
\(602\) 0 0
\(603\) 3.19855e12 0.985201
\(604\) −1.62795e11 2.81970e11i −0.0497710 0.0862058i
\(605\) 1.32502e12 2.29500e12i 0.402089 0.696439i
\(606\) −4.24670e11 + 7.35550e11i −0.127916 + 0.221557i
\(607\) 4.72003e11 + 8.17534e11i 0.141122 + 0.244431i 0.927920 0.372780i \(-0.121596\pi\)
−0.786797 + 0.617212i \(0.788262\pi\)
\(608\) 7.55542e11 0.224229
\(609\) 0 0
\(610\) 3.91942e12 1.14614
\(611\) 1.26979e12 + 2.19933e12i 0.368591 + 0.638419i
\(612\) −5.28089e11 + 9.14677e11i −0.152169 + 0.263564i
\(613\) −9.56847e11 + 1.65731e12i −0.273697 + 0.474058i −0.969806 0.243879i \(-0.921580\pi\)
0.696108 + 0.717937i \(0.254913\pi\)
\(614\) −2.09213e12 3.62367e12i −0.594060 1.02894i
\(615\) 1.16211e13 3.27573
\(616\) 0 0
\(617\) −5.85573e12 −1.62666 −0.813332 0.581800i \(-0.802349\pi\)
−0.813332 + 0.581800i \(0.802349\pi\)
\(618\) 6.07241e11 + 1.05177e12i 0.167461 + 0.290050i
\(619\) 3.15408e11 5.46303e11i 0.0863505 0.149563i −0.819615 0.572914i \(-0.805813\pi\)
0.905966 + 0.423351i \(0.139146\pi\)
\(620\) 6.38422e11 1.10578e12i 0.173518 0.300542i
\(621\) 2.69591e11 + 4.66945e11i 0.0727433 + 0.125995i
\(622\) −2.52588e12 −0.676638
\(623\) 0 0
\(624\) −3.79134e12 −1.00107
\(625\) 1.94080e12 + 3.36156e12i 0.508769 + 0.881213i
\(626\) −1.74453e12 + 3.02162e12i −0.454040 + 0.786420i
\(627\) 8.72955e11 1.51200e12i 0.225573 0.390705i
\(628\) −7.30884e11 1.26593e12i −0.187512 0.324781i
\(629\) −1.98378e12 −0.505319
\(630\) 0 0
\(631\) 5.39720e12 1.35530 0.677652 0.735383i \(-0.262998\pi\)
0.677652 + 0.735383i \(0.262998\pi\)
\(632\) −1.18215e12 2.04754e12i −0.294743 0.510510i
\(633\) 2.73060e12 4.72955e12i 0.675993 1.17085i
\(634\) −1.43857e12 + 2.49168e12i −0.353615 + 0.612478i
\(635\) 5.06725e12 + 8.77673e12i 1.23677 + 2.14216i
\(636\) 1.21714e12 0.294973
\(637\) 0 0
\(638\) −1.44645e12 −0.345629
\(639\) −1.16129e12 2.01141e12i −0.275541 0.477252i
\(640\) 1.41537e12 2.45149e12i 0.333472 0.577590i
\(641\) −4.05089e12 + 7.01635e12i −0.947741 + 1.64154i −0.197572 + 0.980288i \(0.563306\pi\)
−0.750169 + 0.661247i \(0.770028\pi\)
\(642\) −5.04016e12 8.72982e12i −1.17095 2.02814i
\(643\) 7.06646e12 1.63024 0.815122 0.579290i \(-0.196670\pi\)
0.815122 + 0.579290i \(0.196670\pi\)
\(644\) 0 0
\(645\) 1.60499e13 3.65136
\(646\) 8.66755e11 + 1.50126e12i 0.195817 + 0.339165i
\(647\) −1.87113e12 + 3.24089e12i −0.419792 + 0.727100i −0.995918 0.0902600i \(-0.971230\pi\)
0.576127 + 0.817360i \(0.304564\pi\)
\(648\) 1.70805e12 2.95842e12i 0.380550 0.659132i
\(649\) 3.00348e11 + 5.20218e11i 0.0664544 + 0.115102i
\(650\) −3.76615e12 −0.827538
\(651\) 0 0
\(652\) −1.45182e12 −0.314628
\(653\) 2.90962e12 + 5.03961e12i 0.626220 + 1.08465i 0.988304 + 0.152500i \(0.0487323\pi\)
−0.362083 + 0.932146i \(0.617934\pi\)
\(654\) −4.20816e12 + 7.28874e12i −0.899481 + 1.55795i
\(655\) 1.00038e12 1.73271e12i 0.212363 0.367824i
\(656\) 2.53520e12 + 4.39109e12i 0.534496 + 0.925773i
\(657\) −5.80942e12 −1.21643
\(658\) 0 0
\(659\) 5.67402e12 1.17194 0.585971 0.810332i \(-0.300713\pi\)
0.585971 + 0.810332i \(0.300713\pi\)
\(660\) 8.40545e11 + 1.45587e12i 0.172430 + 0.298658i
\(661\) −3.81176e12 + 6.60217e12i −0.776640 + 1.34518i 0.157229 + 0.987562i \(0.449744\pi\)
−0.933868 + 0.357617i \(0.883589\pi\)
\(662\) −1.67681e12 + 2.90432e12i −0.339330 + 0.587737i
\(663\) 3.55761e12 + 6.16197e12i 0.715069 + 1.23854i
\(664\) 2.20744e12 0.440690
\(665\) 0 0
\(666\) −2.80398e12 −0.552257
\(667\) 6.32173e11 + 1.09495e12i 0.123671 + 0.214205i
\(668\) 6.69036e11 1.15880e12i 0.130004 0.225173i
\(669\) 1.92200e12 3.32900e12i 0.370968 0.642535i
\(670\) 2.52744e12 + 4.37765e12i 0.484556 + 0.839276i
\(671\) −3.23227e12 −0.615540
\(672\) 0 0
\(673\) −6.37901e12 −1.19863 −0.599315 0.800513i \(-0.704560\pi\)
−0.599315 + 0.800513i \(0.704560\pi\)
\(674\) 1.11721e12 + 1.93507e12i 0.208529 + 0.361183i
\(675\) −9.49451e11 + 1.64450e12i −0.176038 + 0.304906i
\(676\) −3.62753e10 + 6.28306e10i −0.00668114 + 0.0115721i
\(677\) −4.97630e12 8.61921e12i −0.910454 1.57695i −0.813425 0.581670i \(-0.802399\pi\)
−0.0970291 0.995282i \(-0.530934\pi\)
\(678\) −6.57360e11 −0.119473
\(679\) 0 0
\(680\) −8.34688e12 −1.49704
\(681\) −2.51617e12 4.35814e12i −0.448310 0.776495i
\(682\) 1.57984e12 2.73636e12i 0.279630 0.484333i
\(683\) 1.37743e12 2.38579e12i 0.242202 0.419506i −0.719139 0.694866i \(-0.755464\pi\)
0.961341 + 0.275360i \(0.0887970\pi\)
\(684\) −4.08281e11 7.07163e11i −0.0713192 0.123528i
\(685\) 6.31358e12 1.09564
\(686\) 0 0
\(687\) −6.31642e12 −1.08185
\(688\) 3.50137e12 + 6.06455e12i 0.595786 + 1.03193i
\(689\) 2.26915e12 3.93028e12i 0.383598 0.664411i
\(690\) −2.20467e12 + 3.81860e12i −0.370273 + 0.641332i
\(691\) −4.92067e12 8.52285e12i −0.821057 1.42211i −0.904896 0.425633i \(-0.860051\pi\)
0.0838390 0.996479i \(-0.473282\pi\)
\(692\) −1.44279e12 −0.239180
\(693\) 0 0
\(694\) −5.62117e11 −0.0919834
\(695\) 6.26081e11 + 1.08440e12i 0.101788 + 0.176303i
\(696\) −3.05609e12 + 5.29331e12i −0.493657 + 0.855038i
\(697\) 4.75781e12 8.24077e12i 0.763589 1.32257i
\(698\) 3.04272e12 + 5.27014e12i 0.485191 + 0.840375i
\(699\) 2.83493e12 0.449154
\(700\) 0 0
\(701\) 4.83994e12 0.757022 0.378511 0.925597i \(-0.376436\pi\)
0.378511 + 0.925597i \(0.376436\pi\)
\(702\) 9.71763e11 + 1.68314e12i 0.151023 + 0.261580i
\(703\) 7.66859e11 1.32824e12i 0.118418 0.205105i
\(704\) −2.36733e12 + 4.10033e12i −0.363229 + 0.629132i
\(705\) 5.23568e12 + 9.06847e12i 0.798220 + 1.38256i
\(706\) 9.50691e12 1.44018
\(707\) 0 0
\(708\) 5.07598e11 0.0759225
\(709\) −2.36329e12 4.09334e12i −0.351244 0.608372i 0.635224 0.772328i \(-0.280908\pi\)
−0.986468 + 0.163956i \(0.947575\pi\)
\(710\) 1.83527e12 3.17877e12i 0.271042 0.469458i
\(711\) −2.29975e12 + 3.98328e12i −0.337495 + 0.584558i
\(712\) −3.02894e12 5.24628e12i −0.441703 0.765053i
\(713\) −2.76189e12 −0.400224
\(714\) 0 0
\(715\) 6.26822e12 0.896947
\(716\) −8.68090e11 1.50358e12i −0.123440 0.213804i
\(717\) 3.93669e11 6.81855e11i 0.0556283 0.0963510i
\(718\) 3.00662e12 5.20762e12i 0.422201 0.731273i
\(719\) −3.31967e11 5.74984e11i −0.0463250 0.0802372i 0.841933 0.539582i \(-0.181418\pi\)
−0.888258 + 0.459345i \(0.848084\pi\)
\(720\) −8.65242e12 −1.19989
\(721\) 0 0
\(722\) 4.98331e12 0.682497
\(723\) −2.82531e12 4.89359e12i −0.384543 0.666047i
\(724\) −1.29974e12 + 2.25122e12i −0.175806 + 0.304505i
\(725\) −2.22640e12 + 3.85624e12i −0.299283 + 0.518374i
\(726\) −2.77072e12 4.79902e12i −0.370150 0.641118i
\(727\) −5.45701e11 −0.0724520 −0.0362260 0.999344i \(-0.511534\pi\)
−0.0362260 + 0.999344i \(0.511534\pi\)
\(728\) 0 0
\(729\) −1.07365e13 −1.40796
\(730\) −4.59051e12 7.95099e12i −0.598285 1.03626i
\(731\) 6.57104e12 1.13814e13i 0.851149 1.47423i
\(732\) −1.36566e12 + 2.36539e12i −0.175810 + 0.304511i
\(733\) −3.78254e12 6.55155e12i −0.483967 0.838255i 0.515864 0.856671i \(-0.327471\pi\)
−0.999830 + 0.0184156i \(0.994138\pi\)
\(734\) −9.98401e12 −1.26962
\(735\) 0 0
\(736\) 1.57361e12 0.197672
\(737\) −2.08433e12 3.61017e12i −0.260233 0.450737i
\(738\) 6.72495e12 1.16480e13i 0.834517 1.44543i
\(739\) −1.29852e11 + 2.24911e11i −0.0160158 + 0.0277402i −0.873922 0.486066i \(-0.838432\pi\)
0.857906 + 0.513806i \(0.171765\pi\)
\(740\) 7.38387e11 + 1.27892e12i 0.0905194 + 0.156784i
\(741\) −5.50098e12 −0.670283
\(742\) 0 0
\(743\) 2.96088e12 0.356427 0.178214 0.983992i \(-0.442968\pi\)
0.178214 + 0.983992i \(0.442968\pi\)
\(744\) −6.67586e12 1.15629e13i −0.798783 1.38353i
\(745\) −4.92635e12 + 8.53269e12i −0.585898 + 1.01480i
\(746\) −4.18636e12 + 7.25099e12i −0.494893 + 0.857181i
\(747\) −2.14718e12 3.71903e12i −0.252305 0.437006i
\(748\) 1.37652e12 0.160777
\(749\) 0 0
\(750\) 2.82325e11 0.0325817
\(751\) −3.27838e12 5.67833e12i −0.376080 0.651390i 0.614408 0.788988i \(-0.289395\pi\)
−0.990488 + 0.137599i \(0.956062\pi\)
\(752\) −2.28438e12 + 3.95666e12i −0.260488 + 0.451179i
\(753\) 1.64246e12 2.84482e12i 0.186173 0.322461i
\(754\) 2.27872e12 + 3.94686e12i 0.256756 + 0.444714i
\(755\) −5.00574e12 −0.560670
\(756\) 0 0
\(757\) −7.49463e12 −0.829504 −0.414752 0.909934i \(-0.636132\pi\)
−0.414752 + 0.909934i \(0.636132\pi\)
\(758\) 4.19735e8 + 7.27002e8i 4.61810e−5 + 7.99878e-5i
\(759\) 1.81815e12 3.14912e12i 0.198857 0.344431i
\(760\) 3.22661e12 5.58864e12i 0.350820 0.607639i
\(761\) 3.14710e12 + 5.45093e12i 0.340157 + 0.589169i 0.984462 0.175600i \(-0.0561864\pi\)
−0.644305 + 0.764769i \(0.722853\pi\)
\(762\) 2.11920e13 2.27706
\(763\) 0 0
\(764\) 4.40059e12 0.467295
\(765\) 8.11902e12 + 1.40626e13i 0.857091 + 1.48453i
\(766\) −1.70934e11 + 2.96066e11i −0.0179390 + 0.0310713i
\(767\) 9.46331e11 1.63909e12i 0.0987334 0.171011i
\(768\) 5.04343e12 + 8.73547e12i 0.523119 + 0.906068i
\(769\) −1.16579e13 −1.20214 −0.601068 0.799198i \(-0.705258\pi\)
−0.601068 + 0.799198i \(0.705258\pi\)
\(770\) 0 0
\(771\) −1.52610e13 −1.55538
\(772\) 1.74181e12 + 3.01690e12i 0.176491 + 0.305691i
\(773\) 8.64199e12 1.49684e13i 0.870574 1.50788i 0.00917093 0.999958i \(-0.497081\pi\)
0.861404 0.507921i \(-0.169586\pi\)
\(774\) 9.28786e12 1.60870e13i 0.930211 1.61117i
\(775\) −4.86344e12 8.42373e12i −0.484268 0.838778i
\(776\) 2.86972e11 0.0284094
\(777\) 0 0
\(778\) 1.19424e13 1.16864
\(779\) 3.67840e12 + 6.37117e12i 0.357882 + 0.619870i
\(780\) 2.64837e12 4.58712e12i 0.256185 0.443725i
\(781\) −1.51351e12 + 2.62147e12i −0.145564 + 0.252125i
\(782\) 1.80523e12 + 3.12676e12i 0.172625 + 0.298995i
\(783\) 2.29787e12 0.218473
\(784\) 0 0
\(785\) −2.24737e13 −2.11233
\(786\) −2.09187e12 3.62323e12i −0.195494 0.338606i
\(787\) −1.92920e12 + 3.34147e12i −0.179263 + 0.310492i −0.941628 0.336654i \(-0.890705\pi\)
0.762365 + 0.647147i \(0.224038\pi\)
\(788\) −9.74625e10 + 1.68810e11i −0.00900471 + 0.0155966i
\(789\) 8.62998e12 + 1.49476e13i 0.792800 + 1.37317i
\(790\) −7.26889e12 −0.663967
\(791\) 0 0
\(792\) 9.72954e12 0.878676
\(793\) 5.09209e12 + 8.81976e12i 0.457264 + 0.792004i
\(794\) −5.35187e12 + 9.26971e12i −0.477874 + 0.827702i
\(795\) 9.35633e12 1.62056e13i 0.830717 1.43884i
\(796\) 7.87929e11 + 1.36473e12i 0.0695630 + 0.120487i
\(797\) −1.07296e12 −0.0941935 −0.0470967 0.998890i \(-0.514997\pi\)
−0.0470967 + 0.998890i \(0.514997\pi\)
\(798\) 0 0
\(799\) 8.57421e12 0.744275
\(800\) 2.77098e12 + 4.79948e12i 0.239182 + 0.414276i
\(801\) −5.89250e12 + 1.02061e13i −0.505771 + 0.876020i
\(802\) −5.75900e12 + 9.97488e12i −0.491544 + 0.851380i
\(803\) 3.78570e12 + 6.55703e12i 0.321312 + 0.556528i
\(804\) −3.52259e12 −0.297310
\(805\) 0 0
\(806\) −9.95546e12 −0.830910
\(807\) 3.45452e12 + 5.98341e12i 0.286719 + 0.496613i
\(808\) 1.29447e12 2.24209e12i 0.106842 0.185055i
\(809\) −4.81093e12 + 8.33277e12i −0.394876 + 0.683945i −0.993085 0.117395i \(-0.962546\pi\)
0.598210 + 0.801340i \(0.295879\pi\)
\(810\) −5.25130e12 9.09552e12i −0.428632 0.742412i
\(811\) 1.42997e12 0.116074 0.0580369 0.998314i \(-0.481516\pi\)
0.0580369 + 0.998314i \(0.481516\pi\)
\(812\) 0 0
\(813\) 2.81860e13 2.26270
\(814\) 1.82722e12 + 3.16483e12i 0.145875 + 0.252662i
\(815\) −1.11604e13 + 1.93303e13i −0.886072 + 1.53472i
\(816\) −6.40024e12 + 1.10855e13i −0.505348 + 0.875289i
\(817\) 5.08025e12 + 8.79926e12i 0.398920 + 0.690950i
\(818\) −8.08164e12 −0.631117
\(819\) 0 0
\(820\) −7.08366e12 −0.547136
\(821\) −8.91175e12 1.54356e13i −0.684571 1.18571i −0.973571 0.228383i \(-0.926656\pi\)
0.289000 0.957329i \(-0.406677\pi\)
\(822\) 6.60110e12 1.14334e13i 0.504305 0.873482i
\(823\) −6.67366e12 + 1.15591e13i −0.507066 + 0.878264i 0.492900 + 0.870086i \(0.335937\pi\)
−0.999967 + 0.00817863i \(0.997397\pi\)
\(824\) −1.85098e12 3.20599e12i −0.139871 0.242264i
\(825\) 1.28064e13 0.962463
\(826\) 0 0
\(827\) 1.34978e13 1.00344 0.501718 0.865031i \(-0.332702\pi\)
0.501718 + 0.865031i \(0.332702\pi\)
\(828\) −8.50347e11 1.47284e12i −0.0628724 0.108898i
\(829\) 4.99503e12 8.65164e12i 0.367318 0.636214i −0.621827 0.783155i \(-0.713609\pi\)
0.989145 + 0.146941i \(0.0469427\pi\)
\(830\) 3.39334e12 5.87743e12i 0.248185 0.429869i
\(831\) −2.02710e13 3.51104e13i −1.47459 2.55406i
\(832\) 1.49179e13 1.07932
\(833\) 0 0
\(834\) 2.61837e12 0.187406
\(835\) −1.02860e13 1.78158e13i −0.732245 1.26829i
\(836\) −5.32112e11 + 9.21645e11i −0.0376769 + 0.0652583i
\(837\) −2.50978e12 + 4.34707e12i −0.176755 + 0.306149i
\(838\) 4.72484e12 + 8.18366e12i 0.330970 + 0.573257i
\(839\) 4.86136e12 0.338711 0.169355 0.985555i \(-0.445831\pi\)
0.169355 + 0.985555i \(0.445831\pi\)
\(840\) 0 0
\(841\) −9.11879e12 −0.628572
\(842\) −2.24405e12 3.88681e12i −0.153861 0.266495i
\(843\) −1.90537e12 + 3.30020e12i −0.129944 + 0.225069i
\(844\) −1.66445e12 + 2.88291e12i −0.112909 + 0.195564i
\(845\) 5.57708e11 + 9.65979e11i 0.0376315 + 0.0651797i
\(846\) 1.21193e13 0.813410
\(847\) 0 0
\(848\) 8.16451e12 0.542187
\(849\) 1.36955e13 + 2.37213e13i 0.904675 + 1.56694i
\(850\) −6.35772e12 + 1.10119e13i −0.417750 + 0.723564i
\(851\) 1.59718e12 2.76639e12i 0.104393 0.180813i
\(852\) 1.27894e12 + 2.21519e12i 0.0831518 + 0.144023i
\(853\) 2.85346e12 0.184544 0.0922722 0.995734i \(-0.470587\pi\)
0.0922722 + 0.995734i \(0.470587\pi\)
\(854\) 0 0
\(855\) −1.25541e13 −0.803411
\(856\) 1.53633e13 + 2.66100e13i 0.978031 + 1.69400i
\(857\) −6.98986e12 + 1.21068e13i −0.442644 + 0.766682i −0.997885 0.0650077i \(-0.979293\pi\)
0.555241 + 0.831690i \(0.312626\pi\)
\(858\) 6.55367e12 1.13513e13i 0.412850 0.715076i
\(859\) −5.05054e12 8.74780e12i −0.316496 0.548188i 0.663258 0.748391i \(-0.269173\pi\)
−0.979754 + 0.200203i \(0.935840\pi\)
\(860\) −9.78328e12 −0.609876
\(861\) 0 0
\(862\) 1.93764e12 0.119534
\(863\) −1.00407e13 1.73910e13i −0.616190 1.06727i −0.990174 0.139838i \(-0.955342\pi\)
0.373984 0.927435i \(-0.377991\pi\)
\(864\) 1.42997e12 2.47678e12i 0.0873000 0.151208i
\(865\) −1.10910e13 + 1.92101e13i −0.673591 + 1.16669i
\(866\) −1.07922e13 1.86926e13i −0.652048 1.12938i
\(867\) −8.75345e11 −0.0526130
\(868\) 0 0
\(869\) 5.99452e12 0.356587
\(870\) 9.39580e12 + 1.62740e13i 0.556029 + 0.963070i
\(871\) −6.56727e12 + 1.13749e13i −0.386637 + 0.669675i
\(872\) 1.28272e13 2.22174e13i 0.751290 1.30127i
\(873\) −2.79138e11 4.83481e11i −0.0162650 0.0281718i
\(874\) −2.79136e12 −0.161813
\(875\) 0 0
\(876\) 6.39796e12 0.367091
\(877\) −1.07426e13 1.86068e13i −0.613215 1.06212i −0.990695 0.136102i \(-0.956542\pi\)
0.377480 0.926018i \(-0.376791\pi\)
\(878\) 1.62551e12 2.81547e12i 0.0923133 0.159891i
\(879\) −1.70001e13 + 2.94451e13i −0.960511 + 1.66365i
\(880\) 5.63835e12 + 9.76591e12i 0.316942 + 0.548960i
\(881\) 2.78108e13 1.55533 0.777664 0.628680i \(-0.216404\pi\)
0.777664 + 0.628680i \(0.216404\pi\)
\(882\) 0 0
\(883\) 3.49281e12 0.193353 0.0966767 0.995316i \(-0.469179\pi\)
0.0966767 + 0.995316i \(0.469179\pi\)
\(884\) −2.16855e12 3.75604e12i −0.119436 0.206869i
\(885\) 3.90199e12 6.75844e12i 0.213817 0.370341i
\(886\) 1.49821e13 2.59498e13i 0.816811 1.41476i
\(887\) −1.49021e12 2.58112e12i −0.0808336 0.140008i 0.822775 0.568368i \(-0.192425\pi\)
−0.903608 + 0.428360i \(0.859092\pi\)
\(888\) 1.54424e13 0.833403
\(889\) 0 0
\(890\) −1.86246e13 −0.995023
\(891\) 4.33065e12 + 7.50090e12i 0.230199 + 0.398716i
\(892\) −1.17156e12 + 2.02920e12i −0.0619616 + 0.107321i
\(893\) −3.31448e12 + 5.74085e12i −0.174415 + 0.302096i
\(894\) 1.03014e13 + 1.78425e13i 0.539358 + 0.934195i
\(895\) −2.66926e13 −1.39055
\(896\) 0 0
\(897\) −1.14572e13 −0.590897
\(898\) 1.58023e12 + 2.73703e12i 0.0810915 + 0.140455i
\(899\) −5.88528e12 + 1.01936e13i −0.300503 + 0.520486i
\(900\) 2.99477e12 5.18710e12i 0.152150 0.263532i
\(901\) −7.66119e12 1.32696e13i −0.387288 0.670803i
\(902\) −1.75292e13 −0.881726
\(903\) 0 0
\(904\) 2.00375e12 0.0997896
\(905\) 1.99826e13 + 3.46110e13i 0.990226 + 1.71512i
\(906\) −5.23370e12 + 9.06504e12i −0.258067 + 0.446985i
\(907\) −1.17327e13 + 2.03217e13i −0.575661 + 0.997075i 0.420308 + 0.907381i \(0.361922\pi\)
−0.995969 + 0.0896931i \(0.971411\pi\)
\(908\) 1.53374e12 + 2.65651e12i 0.0748799 + 0.129696i
\(909\) −5.03652e12 −0.244677
\(910\) 0 0
\(911\) −1.39221e13 −0.669688 −0.334844 0.942274i \(-0.608684\pi\)
−0.334844 + 0.942274i \(0.608684\pi\)
\(912\) −4.94821e12 8.57055e12i −0.236849 0.410234i
\(913\) −2.79842e12 + 4.84701e12i −0.133289 + 0.230864i
\(914\) −9.62261e12 + 1.66669e13i −0.456074 + 0.789943i
\(915\) 2.09961e13 + 3.63664e13i 0.990248 + 1.71516i
\(916\) 3.85019e12 0.180698
\(917\) 0 0
\(918\) 6.56181e12 0.304952
\(919\) −8.05476e12 1.39513e13i −0.372506 0.645199i 0.617445 0.786614i \(-0.288168\pi\)
−0.989950 + 0.141416i \(0.954835\pi\)
\(920\) 6.72021e12 1.16398e13i 0.309270 0.535672i
\(921\) 2.24148e13 3.88236e13i 1.02652 1.77798i
\(922\) 1.24519e13 + 2.15673e13i 0.567475 + 0.982895i
\(923\) 9.53747e12 0.432539
\(924\) 0 0
\(925\) 1.12499e13 0.505257
\(926\) −1.16524e13 2.01825e13i −0.520792 0.902038i
\(927\) −3.60089e12 + 6.23693e12i −0.160159 + 0.277404i
\(928\) 3.35318e12 5.80788e12i 0.148419 0.257070i
\(929\) −3.96121e12 6.86101e12i −0.174485 0.302216i 0.765498 0.643438i \(-0.222493\pi\)
−0.939983 + 0.341222i \(0.889159\pi\)
\(930\) −4.10492e13 −1.79941
\(931\) 0 0
\(932\) −1.72804e12 −0.0750209
\(933\) −1.35310e13 2.34364e13i −0.584605 1.01257i
\(934\) 1.65987e13 2.87498e13i 0.713697 1.23616i
\(935\) 1.05815e13 1.83277e13i 0.452789 0.784253i
\(936\) −1.53278e13 2.65486e13i −0.652738 1.13058i
\(937\) −8.84621e12 −0.374912 −0.187456 0.982273i \(-0.560024\pi\)
−0.187456 + 0.982273i \(0.560024\pi\)
\(938\) 0 0
\(939\) −3.73814e13 −1.56914
\(940\) −3.19143e12 5.52771e12i −0.133324 0.230924i
\(941\) 1.75672e13 3.04272e13i 0.730379 1.26505i −0.226342 0.974048i \(-0.572677\pi\)
0.956721 0.291006i \(-0.0939900\pi\)
\(942\) −2.34971e13 + 4.06982e13i −0.972268 + 1.68402i
\(943\) 7.66119e12 + 1.32696e13i 0.315496 + 0.546455i
\(944\) 3.40495e12 0.139552
\(945\) 0 0
\(946\) −2.42097e13 −0.982833
\(947\) 1.08238e13 + 1.87474e13i 0.437325 + 0.757470i 0.997482 0.0709167i \(-0.0225924\pi\)
−0.560157 + 0.828387i \(0.689259\pi\)
\(948\) 2.53273e12 4.38682e12i 0.101848 0.176406i
\(949\) 1.19279e13 2.06598e13i 0.477383 0.826852i
\(950\) −4.91534e12 8.51361e12i −0.195793 0.339123i
\(951\) −3.08254e13 −1.22207
\(952\) 0 0
\(953\) 4.63945e13 1.82200 0.911001 0.412404i \(-0.135311\pi\)
0.911001 + 0.412404i \(0.135311\pi\)
\(954\) −1.08287e13 1.87559e13i −0.423263 0.733113i
\(955\) 3.38281e13 5.85919e13i 1.31602 2.27941i
\(956\) −2.39962e11 + 4.15627e11i −0.00929143 + 0.0160932i
\(957\) −7.74854e12 1.34209e13i −0.298618 0.517222i
\(958\) −1.47938e13 −0.567461
\(959\) 0 0
\(960\) 6.15105e13 2.33738
\(961\) 3.63770e11 + 6.30068e11i 0.0137585 + 0.0238305i
\(962\) 5.75716e12 9.97169e12i 0.216731 0.375388i
\(963\) 2.98878e13 5.17672e13i 1.11989 1.93971i
\(964\) 1.72218e12 + 2.98290e12i 0.0642290 + 0.111248i
\(965\) 5.35583e13 1.98817
\(966\) 0 0
\(967\) 2.17411e12 0.0799581 0.0399791 0.999201i \(-0.487271\pi\)
0.0399791 + 0.999201i \(0.487271\pi\)
\(968\) 8.44564e12 + 1.46283e13i 0.309167 + 0.535493i
\(969\) −9.28632e12 + 1.60844e13i −0.338366 + 0.586067i
\(970\) 4.41140e11 7.64077e11i 0.0159994 0.0277118i
\(971\) −8.88797e12 1.53944e13i −0.320860 0.555746i 0.659805 0.751436i \(-0.270639\pi\)
−0.980666 + 0.195690i \(0.937305\pi\)
\(972\) 9.81253e12 0.352600
\(973\) 0 0
\(974\) 2.13901e13 0.761547
\(975\) −2.01751e13 3.49443e13i −0.714981 1.23838i
\(976\) −9.16081e12 + 1.58670e13i −0.323154 + 0.559720i
\(977\) −6.14244e12 + 1.06390e13i −0.215683 + 0.373574i −0.953484 0.301445i \(-0.902531\pi\)
0.737801 + 0.675019i \(0.235864\pi\)
\(978\) 2.33372e13 + 4.04212e13i 0.815688 + 1.41281i
\(979\) 1.53594e13 0.534382
\(980\) 0 0
\(981\) −4.99081e13 −1.72052
\(982\) −6.24328e12 1.08137e13i −0.214245 0.371083i
\(983\) −1.38063e13 + 2.39131e13i −0.471612 + 0.816856i −0.999473 0.0324748i \(-0.989661\pi\)
0.527860 + 0.849331i \(0.322994\pi\)
\(984\) −3.70362e13 + 6.41487e13i −1.25936 + 2.18127i
\(985\) 1.49842e12 + 2.59534e12i 0.0507190 + 0.0878479i
\(986\) 1.53870e13 0.518452
\(987\) 0 0
\(988\) 3.35314e12 0.111955
\(989\) 1.05809e13 + 1.83267e13i 0.351673 + 0.609116i
\(990\) 1.49565e13 2.59054e13i 0.494847 0.857100i
\(991\) 1.44913e13 2.50997e13i 0.477284 0.826680i −0.522377 0.852714i \(-0.674955\pi\)
0.999661 + 0.0260347i \(0.00828804\pi\)
\(992\) 7.32482e12 + 1.26870e13i 0.240157 + 0.415964i
\(993\) −3.59303e13 −1.17271
\(994\) 0 0
\(995\) 2.42278e13 0.783627
\(996\) 2.36471e12 + 4.09580e12i 0.0761397 + 0.131878i
\(997\) 7.66674e12 1.32792e13i 0.245744 0.425641i −0.716597 0.697488i \(-0.754301\pi\)
0.962340 + 0.271847i \(0.0876345\pi\)
\(998\) 1.40625e13 2.43570e13i 0.448721 0.777207i
\(999\) −2.90277e12 5.02775e12i −0.0922079 0.159709i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 49.10.c.g.18.4 10
7.2 even 3 inner 49.10.c.g.30.4 10
7.3 odd 6 49.10.a.e.1.2 5
7.4 even 3 49.10.a.f.1.2 5
7.5 odd 6 7.10.c.a.2.4 10
7.6 odd 2 7.10.c.a.4.4 yes 10
21.5 even 6 63.10.e.b.37.2 10
21.20 even 2 63.10.e.b.46.2 10
28.19 even 6 112.10.i.c.65.2 10
28.27 even 2 112.10.i.c.81.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.10.c.a.2.4 10 7.5 odd 6
7.10.c.a.4.4 yes 10 7.6 odd 2
49.10.a.e.1.2 5 7.3 odd 6
49.10.a.f.1.2 5 7.4 even 3
49.10.c.g.18.4 10 1.1 even 1 trivial
49.10.c.g.30.4 10 7.2 even 3 inner
63.10.e.b.37.2 10 21.5 even 6
63.10.e.b.46.2 10 21.20 even 2
112.10.i.c.65.2 10 28.19 even 6
112.10.i.c.81.2 10 28.27 even 2