Properties

Label 112.10.i.b.81.3
Level $112$
Weight $10$
Character 112.81
Analytic conductor $57.684$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(65,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.65"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,233] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 1116x^{4} - 3085x^{3} + 1245325x^{2} - 2341500x + 4410000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6}\cdot 3\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 81.3
Root \(16.4632 + 28.5151i\) of defining polynomial
Character \(\chi\) \(=\) 112.81
Dual form 112.10.i.b.65.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(135.410 - 234.536i) q^{3} +(-684.785 - 1186.08i) q^{5} +(-6327.81 + 558.972i) q^{7} +(-26830.1 - 46471.0i) q^{9} +(-5462.17 + 9460.75i) q^{11} -7968.27 q^{13} -370906. q^{15} +(162006. - 280602. i) q^{17} +(-115939. - 200812. i) q^{19} +(-725747. + 1.55979e6i) q^{21} +(1.05331e6 + 1.82439e6i) q^{23} +(38701.4 - 67032.7i) q^{25} -9.20167e6 q^{27} -5.46332e6 q^{29} +(-989336. + 1.71358e6i) q^{31} +(1.47926e6 + 2.56215e6i) q^{33} +(4.99618e6 + 7.12253e6i) q^{35} +(-2.38266e6 - 4.12689e6i) q^{37} +(-1.07898e6 + 1.86885e6i) q^{39} +5.57398e6 q^{41} +3.11341e7 q^{43} +(-3.67457e7 + 6.36454e7i) q^{45} +(2.15595e6 + 3.73422e6i) q^{47} +(3.97287e7 - 7.07414e6i) q^{49} +(-4.38743e7 - 7.59926e7i) q^{51} +(4.51452e7 - 7.81937e7i) q^{53} +1.49616e7 q^{55} -6.27970e7 q^{57} +(-3.64555e7 + 6.31429e7i) q^{59} +(3.71748e6 + 6.43887e6i) q^{61} +(1.95752e8 + 2.79063e8i) q^{63} +(5.45655e6 + 9.45102e6i) q^{65} +(5.28936e7 - 9.16144e7i) q^{67} +5.70514e8 q^{69} -1.10248e8 q^{71} +(-1.02225e8 + 1.77058e8i) q^{73} +(-1.04811e7 - 1.81538e7i) q^{75} +(2.92752e7 - 6.29190e7i) q^{77} +(4.43923e7 + 7.68897e7i) q^{79} +(-7.17899e8 + 1.24344e9i) q^{81} -2.41708e8 q^{83} -4.43757e8 q^{85} +(-7.39786e8 + 1.28135e9i) q^{87} +(-2.74345e8 - 4.75180e8i) q^{89} +(5.04217e7 - 4.45404e6i) q^{91} +(2.67931e8 + 4.64071e8i) q^{93} +(-1.58787e8 + 2.75026e8i) q^{95} -1.16746e9 q^{97} +5.86201e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 233 q^{3} - 733 q^{5} - 5012 q^{7} - 15058 q^{9} - 7339 q^{11} + 197036 q^{13} - 738238 q^{15} - 306665 q^{17} + 377991 q^{19} - 1585927 q^{21} + 2267255 q^{23} - 142612 q^{25} - 21348358 q^{27} - 13085956 q^{29}+ \cdots + 1256218868 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 135.410 234.536i 0.965171 1.67172i 0.256015 0.966673i \(-0.417590\pi\)
0.709156 0.705052i \(-0.249076\pi\)
\(4\) 0 0
\(5\) −684.785 1186.08i −0.489992 0.848692i 0.509941 0.860209i \(-0.329667\pi\)
−0.999934 + 0.0115176i \(0.996334\pi\)
\(6\) 0 0
\(7\) −6327.81 + 558.972i −0.996121 + 0.0879932i
\(8\) 0 0
\(9\) −26830.1 46471.0i −1.36311 2.36097i
\(10\) 0 0
\(11\) −5462.17 + 9460.75i −0.112486 + 0.194831i −0.916772 0.399411i \(-0.869215\pi\)
0.804286 + 0.594242i \(0.202548\pi\)
\(12\) 0 0
\(13\) −7968.27 −0.0773783 −0.0386891 0.999251i \(-0.512318\pi\)
−0.0386891 + 0.999251i \(0.512318\pi\)
\(14\) 0 0
\(15\) −370906. −1.89170
\(16\) 0 0
\(17\) 162006. 280602.i 0.470447 0.814838i −0.528982 0.848633i \(-0.677426\pi\)
0.999429 + 0.0337953i \(0.0107594\pi\)
\(18\) 0 0
\(19\) −115939. 200812.i −0.204098 0.353508i 0.745747 0.666229i \(-0.232093\pi\)
−0.949845 + 0.312721i \(0.898759\pi\)
\(20\) 0 0
\(21\) −725747. + 1.55979e6i −0.814326 + 1.75017i
\(22\) 0 0
\(23\) 1.05331e6 + 1.82439e6i 0.784841 + 1.35938i 0.929094 + 0.369843i \(0.120589\pi\)
−0.144253 + 0.989541i \(0.546078\pi\)
\(24\) 0 0
\(25\) 38701.4 67032.7i 0.0198151 0.0343208i
\(26\) 0 0
\(27\) −9.20167e6 −3.33219
\(28\) 0 0
\(29\) −5.46332e6 −1.43438 −0.717192 0.696876i \(-0.754573\pi\)
−0.717192 + 0.696876i \(0.754573\pi\)
\(30\) 0 0
\(31\) −989336. + 1.71358e6i −0.192405 + 0.333255i −0.946047 0.324030i \(-0.894962\pi\)
0.753642 + 0.657285i \(0.228295\pi\)
\(32\) 0 0
\(33\) 1.47926e6 + 2.56215e6i 0.217136 + 0.376091i
\(34\) 0 0
\(35\) 4.99618e6 + 7.12253e6i 0.562771 + 0.802284i
\(36\) 0 0
\(37\) −2.38266e6 4.12689e6i −0.209004 0.362006i 0.742397 0.669960i \(-0.233689\pi\)
−0.951401 + 0.307955i \(0.900356\pi\)
\(38\) 0 0
\(39\) −1.07898e6 + 1.86885e6i −0.0746832 + 0.129355i
\(40\) 0 0
\(41\) 5.57398e6 0.308062 0.154031 0.988066i \(-0.450774\pi\)
0.154031 + 0.988066i \(0.450774\pi\)
\(42\) 0 0
\(43\) 3.11341e7 1.38876 0.694382 0.719607i \(-0.255678\pi\)
0.694382 + 0.719607i \(0.255678\pi\)
\(44\) 0 0
\(45\) −3.67457e7 + 6.36454e7i −1.33583 + 2.31372i
\(46\) 0 0
\(47\) 2.15595e6 + 3.73422e6i 0.0644464 + 0.111624i 0.896448 0.443148i \(-0.146139\pi\)
−0.832002 + 0.554773i \(0.812805\pi\)
\(48\) 0 0
\(49\) 3.97287e7 7.07414e6i 0.984514 0.175304i
\(50\) 0 0
\(51\) −4.38743e7 7.59926e7i −0.908123 1.57291i
\(52\) 0 0
\(53\) 4.51452e7 7.81937e7i 0.785905 1.36123i −0.142553 0.989787i \(-0.545531\pi\)
0.928457 0.371439i \(-0.121136\pi\)
\(54\) 0 0
\(55\) 1.49616e7 0.220469
\(56\) 0 0
\(57\) −6.27970e7 −0.787957
\(58\) 0 0
\(59\) −3.64555e7 + 6.31429e7i −0.391678 + 0.678407i −0.992671 0.120848i \(-0.961439\pi\)
0.600993 + 0.799255i \(0.294772\pi\)
\(60\) 0 0
\(61\) 3.71748e6 + 6.43887e6i 0.0343768 + 0.0595423i 0.882702 0.469933i \(-0.155722\pi\)
−0.848325 + 0.529476i \(0.822389\pi\)
\(62\) 0 0
\(63\) 1.95752e8 + 2.79063e8i 1.56557 + 2.23187i
\(64\) 0 0
\(65\) 5.45655e6 + 9.45102e6i 0.0379147 + 0.0656703i
\(66\) 0 0
\(67\) 5.28936e7 9.16144e7i 0.320676 0.555427i −0.659952 0.751308i \(-0.729423\pi\)
0.980628 + 0.195881i \(0.0627566\pi\)
\(68\) 0 0
\(69\) 5.70514e8 3.03002
\(70\) 0 0
\(71\) −1.10248e8 −0.514884 −0.257442 0.966294i \(-0.582880\pi\)
−0.257442 + 0.966294i \(0.582880\pi\)
\(72\) 0 0
\(73\) −1.02225e8 + 1.77058e8i −0.421311 + 0.729731i −0.996068 0.0885924i \(-0.971763\pi\)
0.574757 + 0.818324i \(0.305096\pi\)
\(74\) 0 0
\(75\) −1.04811e7 1.81538e7i −0.0382499 0.0662508i
\(76\) 0 0
\(77\) 2.92752e7 6.29190e7i 0.0949057 0.203973i
\(78\) 0 0
\(79\) 4.43923e7 + 7.68897e7i 0.128229 + 0.222099i 0.922990 0.384823i \(-0.125737\pi\)
−0.794762 + 0.606922i \(0.792404\pi\)
\(80\) 0 0
\(81\) −7.17899e8 + 1.24344e9i −1.85302 + 3.20953i
\(82\) 0 0
\(83\) −2.41708e8 −0.559035 −0.279517 0.960141i \(-0.590174\pi\)
−0.279517 + 0.960141i \(0.590174\pi\)
\(84\) 0 0
\(85\) −4.43757e8 −0.922061
\(86\) 0 0
\(87\) −7.39786e8 + 1.28135e9i −1.38443 + 2.39790i
\(88\) 0 0
\(89\) −2.74345e8 4.75180e8i −0.463492 0.802792i 0.535640 0.844446i \(-0.320070\pi\)
−0.999132 + 0.0416548i \(0.986737\pi\)
\(90\) 0 0
\(91\) 5.04217e7 4.45404e6i 0.0770781 0.00680876i
\(92\) 0 0
\(93\) 2.67931e8 + 4.64071e8i 0.371407 + 0.643296i
\(94\) 0 0
\(95\) −1.58787e8 + 2.75026e8i −0.200013 + 0.346432i
\(96\) 0 0
\(97\) −1.16746e9 −1.33897 −0.669483 0.742828i \(-0.733484\pi\)
−0.669483 + 0.742828i \(0.733484\pi\)
\(98\) 0 0
\(99\) 5.86201e8 0.613322
\(100\) 0 0
\(101\) −6.94928e8 + 1.20365e9i −0.664498 + 1.15094i 0.314924 + 0.949117i \(0.398021\pi\)
−0.979421 + 0.201827i \(0.935312\pi\)
\(102\) 0 0
\(103\) 4.69404e8 + 8.13031e8i 0.410941 + 0.711770i 0.994993 0.0999461i \(-0.0318670\pi\)
−0.584052 + 0.811716i \(0.698534\pi\)
\(104\) 0 0
\(105\) 2.34702e9 2.07326e8i 1.88437 0.166457i
\(106\) 0 0
\(107\) 1.29644e8 + 2.24550e8i 0.0956149 + 0.165610i 0.909865 0.414904i \(-0.136185\pi\)
−0.814250 + 0.580514i \(0.802852\pi\)
\(108\) 0 0
\(109\) 4.12893e7 7.15152e7i 0.0280168 0.0485265i −0.851677 0.524067i \(-0.824414\pi\)
0.879694 + 0.475540i \(0.157747\pi\)
\(110\) 0 0
\(111\) −1.29054e9 −0.806899
\(112\) 0 0
\(113\) 1.17279e9 0.676654 0.338327 0.941029i \(-0.390139\pi\)
0.338327 + 0.941029i \(0.390139\pi\)
\(114\) 0 0
\(115\) 1.44258e9 2.49863e9i 0.769132 1.33218i
\(116\) 0 0
\(117\) 2.13789e8 + 3.70294e8i 0.105475 + 0.182688i
\(118\) 0 0
\(119\) −8.68293e8 + 1.86615e9i −0.396922 + 0.853073i
\(120\) 0 0
\(121\) 1.11930e9 + 1.93869e9i 0.474694 + 0.822194i
\(122\) 0 0
\(123\) 7.54770e8 1.30730e9i 0.297332 0.514994i
\(124\) 0 0
\(125\) −2.78095e9 −1.01882
\(126\) 0 0
\(127\) 2.85883e9 0.975150 0.487575 0.873081i \(-0.337882\pi\)
0.487575 + 0.873081i \(0.337882\pi\)
\(128\) 0 0
\(129\) 4.21586e9 7.30208e9i 1.34039 2.32163i
\(130\) 0 0
\(131\) −2.58550e9 4.47822e9i −0.767050 1.32857i −0.939156 0.343492i \(-0.888390\pi\)
0.172105 0.985079i \(-0.444943\pi\)
\(132\) 0 0
\(133\) 8.45888e8 + 1.20589e9i 0.234412 + 0.334177i
\(134\) 0 0
\(135\) 6.30116e9 + 1.09139e10i 1.63275 + 2.82800i
\(136\) 0 0
\(137\) 8.48240e8 1.46920e9i 0.205720 0.356317i −0.744642 0.667464i \(-0.767380\pi\)
0.950362 + 0.311147i \(0.100713\pi\)
\(138\) 0 0
\(139\) −5.00914e9 −1.13814 −0.569071 0.822288i \(-0.692697\pi\)
−0.569071 + 0.822288i \(0.692697\pi\)
\(140\) 0 0
\(141\) 1.16775e9 0.248807
\(142\) 0 0
\(143\) 4.35240e7 7.53858e7i 0.00870396 0.0150757i
\(144\) 0 0
\(145\) 3.74120e9 + 6.47995e9i 0.702837 + 1.21735i
\(146\) 0 0
\(147\) 3.72051e9 1.02757e10i 0.657165 1.81503i
\(148\) 0 0
\(149\) −8.39970e8 1.45487e9i −0.139613 0.241817i 0.787737 0.616011i \(-0.211252\pi\)
−0.927350 + 0.374195i \(0.877919\pi\)
\(150\) 0 0
\(151\) −3.40730e9 + 5.90162e9i −0.533353 + 0.923794i 0.465889 + 0.884843i \(0.345735\pi\)
−0.999241 + 0.0389503i \(0.987599\pi\)
\(152\) 0 0
\(153\) −1.73865e10 −2.56508
\(154\) 0 0
\(155\) 2.70993e9 0.377108
\(156\) 0 0
\(157\) −4.78331e8 + 8.28493e8i −0.0628318 + 0.108828i −0.895730 0.444598i \(-0.853347\pi\)
0.832898 + 0.553426i \(0.186680\pi\)
\(158\) 0 0
\(159\) −1.22262e10 2.11764e10i −1.51706 2.62763i
\(160\) 0 0
\(161\) −7.68494e9 1.09556e10i −0.901413 1.28505i
\(162\) 0 0
\(163\) −3.10977e9 5.38627e9i −0.345051 0.597646i 0.640312 0.768115i \(-0.278805\pi\)
−0.985363 + 0.170469i \(0.945472\pi\)
\(164\) 0 0
\(165\) 2.02595e9 3.50905e9i 0.212790 0.368563i
\(166\) 0 0
\(167\) 3.33475e9 0.331771 0.165886 0.986145i \(-0.446952\pi\)
0.165886 + 0.986145i \(0.446952\pi\)
\(168\) 0 0
\(169\) −1.05410e10 −0.994013
\(170\) 0 0
\(171\) −6.22130e9 + 1.07756e10i −0.556415 + 0.963739i
\(172\) 0 0
\(173\) −5.65009e9 9.78625e9i −0.479566 0.830632i 0.520160 0.854069i \(-0.325872\pi\)
−0.999725 + 0.0234370i \(0.992539\pi\)
\(174\) 0 0
\(175\) −2.07425e8 + 4.45803e8i −0.0167182 + 0.0359312i
\(176\) 0 0
\(177\) 9.87287e9 + 1.71003e10i 0.756073 + 1.30956i
\(178\) 0 0
\(179\) 9.27568e8 1.60660e9i 0.0675316 0.116968i −0.830283 0.557343i \(-0.811821\pi\)
0.897814 + 0.440374i \(0.145154\pi\)
\(180\) 0 0
\(181\) 1.64314e9 0.113794 0.0568972 0.998380i \(-0.481879\pi\)
0.0568972 + 0.998380i \(0.481879\pi\)
\(182\) 0 0
\(183\) 2.01353e9 0.132718
\(184\) 0 0
\(185\) −3.26322e9 + 5.65207e9i −0.204821 + 0.354760i
\(186\) 0 0
\(187\) 1.76981e9 + 3.06539e9i 0.105837 + 0.183315i
\(188\) 0 0
\(189\) 5.82264e10 5.14348e9i 3.31926 0.293210i
\(190\) 0 0
\(191\) 5.68436e9 + 9.84559e9i 0.309052 + 0.535293i 0.978155 0.207876i \(-0.0666551\pi\)
−0.669104 + 0.743169i \(0.733322\pi\)
\(192\) 0 0
\(193\) 1.90511e10 3.29975e10i 0.988354 1.71188i 0.362389 0.932027i \(-0.381961\pi\)
0.625964 0.779852i \(-0.284705\pi\)
\(194\) 0 0
\(195\) 2.95548e9 0.146377
\(196\) 0 0
\(197\) −1.71349e10 −0.810558 −0.405279 0.914193i \(-0.632826\pi\)
−0.405279 + 0.914193i \(0.632826\pi\)
\(198\) 0 0
\(199\) −1.15090e10 + 1.99341e10i −0.520232 + 0.901069i 0.479491 + 0.877547i \(0.340821\pi\)
−0.999723 + 0.0235222i \(0.992512\pi\)
\(200\) 0 0
\(201\) −1.43246e10 2.48110e10i −0.619014 1.07216i
\(202\) 0 0
\(203\) 3.45708e10 3.05384e9i 1.42882 0.126216i
\(204\) 0 0
\(205\) −3.81698e9 6.61119e9i −0.150948 0.261449i
\(206\) 0 0
\(207\) 5.65208e10 9.78970e10i 2.13965 3.70598i
\(208\) 0 0
\(209\) 2.53311e9 0.0918324
\(210\) 0 0
\(211\) −4.95907e10 −1.72238 −0.861190 0.508283i \(-0.830280\pi\)
−0.861190 + 0.508283i \(0.830280\pi\)
\(212\) 0 0
\(213\) −1.49287e10 + 2.58572e10i −0.496951 + 0.860744i
\(214\) 0 0
\(215\) −2.13202e10 3.69276e10i −0.680483 1.17863i
\(216\) 0 0
\(217\) 5.30248e9 1.13962e10i 0.162334 0.348893i
\(218\) 0 0
\(219\) 2.76844e10 + 4.79508e10i 0.813273 + 1.40863i
\(220\) 0 0
\(221\) −1.29091e9 + 2.23591e9i −0.0364024 + 0.0630507i
\(222\) 0 0
\(223\) −5.54434e10 −1.50134 −0.750669 0.660679i \(-0.770269\pi\)
−0.750669 + 0.660679i \(0.770269\pi\)
\(224\) 0 0
\(225\) −4.15344e9 −0.108041
\(226\) 0 0
\(227\) −1.76917e9 + 3.06430e9i −0.0442236 + 0.0765974i −0.887290 0.461212i \(-0.847415\pi\)
0.843066 + 0.537810i \(0.180748\pi\)
\(228\) 0 0
\(229\) 1.52164e10 + 2.63556e10i 0.365639 + 0.633305i 0.988878 0.148726i \(-0.0475171\pi\)
−0.623239 + 0.782031i \(0.714184\pi\)
\(230\) 0 0
\(231\) −1.07927e10 1.53860e10i −0.249387 0.355525i
\(232\) 0 0
\(233\) −3.08048e9 5.33554e9i −0.0684725 0.118598i 0.829757 0.558125i \(-0.188479\pi\)
−0.898229 + 0.439528i \(0.855146\pi\)
\(234\) 0 0
\(235\) 2.95273e9 5.11427e9i 0.0631565 0.109390i
\(236\) 0 0
\(237\) 2.40446e10 0.495051
\(238\) 0 0
\(239\) 6.33526e10 1.25595 0.627977 0.778232i \(-0.283883\pi\)
0.627977 + 0.778232i \(0.283883\pi\)
\(240\) 0 0
\(241\) −3.75764e10 + 6.50842e10i −0.717528 + 1.24279i 0.244449 + 0.969662i \(0.421393\pi\)
−0.961977 + 0.273132i \(0.911940\pi\)
\(242\) 0 0
\(243\) 1.03863e11 + 1.79895e11i 1.91087 + 3.30973i
\(244\) 0 0
\(245\) −3.55961e10 4.22773e10i −0.631183 0.749652i
\(246\) 0 0
\(247\) 9.23833e8 + 1.60013e9i 0.0157927 + 0.0273538i
\(248\) 0 0
\(249\) −3.27296e10 + 5.66892e10i −0.539564 + 0.934552i
\(250\) 0 0
\(251\) −1.01701e11 −1.61731 −0.808653 0.588286i \(-0.799803\pi\)
−0.808653 + 0.588286i \(0.799803\pi\)
\(252\) 0 0
\(253\) −2.30135e10 −0.353134
\(254\) 0 0
\(255\) −6.00890e10 + 1.04077e11i −0.889946 + 1.54143i
\(256\) 0 0
\(257\) −2.75846e10 4.77780e10i −0.394429 0.683170i 0.598600 0.801048i \(-0.295724\pi\)
−0.993028 + 0.117878i \(0.962391\pi\)
\(258\) 0 0
\(259\) 1.73839e10 + 2.47823e10i 0.240047 + 0.342211i
\(260\) 0 0
\(261\) 1.46581e11 + 2.53886e11i 1.95522 + 3.38654i
\(262\) 0 0
\(263\) −1.12230e10 + 1.94389e10i −0.144647 + 0.250536i −0.929241 0.369474i \(-0.879538\pi\)
0.784594 + 0.620010i \(0.212871\pi\)
\(264\) 0 0
\(265\) −1.23659e11 −1.54035
\(266\) 0 0
\(267\) −1.48596e11 −1.78940
\(268\) 0 0
\(269\) −1.17607e9 + 2.03702e9i −0.0136946 + 0.0237198i −0.872791 0.488093i \(-0.837693\pi\)
0.859097 + 0.511813i \(0.171026\pi\)
\(270\) 0 0
\(271\) −7.47028e10 1.29389e11i −0.841346 1.45725i −0.888757 0.458379i \(-0.848430\pi\)
0.0474103 0.998875i \(-0.484903\pi\)
\(272\) 0 0
\(273\) 5.78295e9 1.24288e10i 0.0630112 0.135425i
\(274\) 0 0
\(275\) 4.22787e8 + 7.32288e8i 0.00445784 + 0.00772120i
\(276\) 0 0
\(277\) 7.21993e10 1.25053e11i 0.736842 1.27625i −0.217069 0.976156i \(-0.569650\pi\)
0.953911 0.300091i \(-0.0970170\pi\)
\(278\) 0 0
\(279\) 1.06176e11 1.04908
\(280\) 0 0
\(281\) −7.04301e10 −0.673876 −0.336938 0.941527i \(-0.609391\pi\)
−0.336938 + 0.941527i \(0.609391\pi\)
\(282\) 0 0
\(283\) 1.02279e11 1.77152e11i 0.947868 1.64175i 0.197962 0.980210i \(-0.436568\pi\)
0.749905 0.661545i \(-0.230099\pi\)
\(284\) 0 0
\(285\) 4.30025e10 + 7.44825e10i 0.386093 + 0.668732i
\(286\) 0 0
\(287\) −3.52710e10 + 3.11570e9i −0.306867 + 0.0271073i
\(288\) 0 0
\(289\) 6.80216e9 + 1.17817e10i 0.0573596 + 0.0993498i
\(290\) 0 0
\(291\) −1.58085e11 + 2.73812e11i −1.29233 + 2.23838i
\(292\) 0 0
\(293\) 1.08283e11 0.858335 0.429168 0.903225i \(-0.358807\pi\)
0.429168 + 0.903225i \(0.358807\pi\)
\(294\) 0 0
\(295\) 9.98569e10 0.767677
\(296\) 0 0
\(297\) 5.02610e10 8.70547e10i 0.374824 0.649214i
\(298\) 0 0
\(299\) −8.39307e9 1.45372e10i −0.0607296 0.105187i
\(300\) 0 0
\(301\) −1.97011e11 + 1.74031e10i −1.38338 + 0.122202i
\(302\) 0 0
\(303\) 1.88200e11 + 3.25972e11i 1.28271 + 2.22171i
\(304\) 0 0
\(305\) 5.09136e9 8.81849e9i 0.0336887 0.0583505i
\(306\) 0 0
\(307\) 1.17650e11 0.755912 0.377956 0.925824i \(-0.376627\pi\)
0.377956 + 0.925824i \(0.376627\pi\)
\(308\) 0 0
\(309\) 2.54247e11 1.58651
\(310\) 0 0
\(311\) −8.86373e9 + 1.53524e10i −0.0537273 + 0.0930584i −0.891638 0.452749i \(-0.850443\pi\)
0.837911 + 0.545807i \(0.183777\pi\)
\(312\) 0 0
\(313\) −5.33183e10 9.23500e10i −0.313998 0.543861i 0.665226 0.746642i \(-0.268335\pi\)
−0.979224 + 0.202781i \(0.935002\pi\)
\(314\) 0 0
\(315\) 1.96944e11 4.23275e11i 1.12705 2.42229i
\(316\) 0 0
\(317\) 1.65551e10 + 2.86742e10i 0.0920797 + 0.159487i 0.908386 0.418132i \(-0.137315\pi\)
−0.816306 + 0.577619i \(0.803982\pi\)
\(318\) 0 0
\(319\) 2.98416e10 5.16871e10i 0.161348 0.279463i
\(320\) 0 0
\(321\) 7.02203e10 0.369139
\(322\) 0 0
\(323\) −7.51311e10 −0.384068
\(324\) 0 0
\(325\) −3.08383e8 + 5.34135e8i −0.00153326 + 0.00265568i
\(326\) 0 0
\(327\) −1.11819e10 1.93677e10i −0.0540819 0.0936727i
\(328\) 0 0
\(329\) −1.57298e10 2.24243e10i −0.0740186 0.105521i
\(330\) 0 0
\(331\) −1.10008e11 1.90539e11i −0.503730 0.872486i −0.999991 0.00431221i \(-0.998627\pi\)
0.496261 0.868173i \(-0.334706\pi\)
\(332\) 0 0
\(333\) −1.27854e11 + 2.21450e11i −0.569791 + 0.986906i
\(334\) 0 0
\(335\) −1.44883e11 −0.628515
\(336\) 0 0
\(337\) 1.58927e11 0.671217 0.335609 0.942001i \(-0.391058\pi\)
0.335609 + 0.942001i \(0.391058\pi\)
\(338\) 0 0
\(339\) 1.58807e11 2.75061e11i 0.653086 1.13118i
\(340\) 0 0
\(341\) −1.08078e10 1.87197e10i −0.0432857 0.0749730i
\(342\) 0 0
\(343\) −2.47441e11 + 6.69710e10i −0.965270 + 0.261254i
\(344\) 0 0
\(345\) −3.90680e11 6.76677e11i −1.48469 2.57155i
\(346\) 0 0
\(347\) 4.52947e10 7.84527e10i 0.167712 0.290486i −0.769903 0.638161i \(-0.779695\pi\)
0.937615 + 0.347675i \(0.113029\pi\)
\(348\) 0 0
\(349\) −1.82702e11 −0.659219 −0.329609 0.944117i \(-0.606917\pi\)
−0.329609 + 0.944117i \(0.606917\pi\)
\(350\) 0 0
\(351\) 7.33214e10 0.257839
\(352\) 0 0
\(353\) −1.44574e11 + 2.50409e11i −0.495568 + 0.858349i −0.999987 0.00511018i \(-0.998373\pi\)
0.504419 + 0.863459i \(0.331707\pi\)
\(354\) 0 0
\(355\) 7.54963e10 + 1.30764e11i 0.252289 + 0.436977i
\(356\) 0 0
\(357\) 3.20106e11 + 4.56342e11i 1.04301 + 1.48691i
\(358\) 0 0
\(359\) −1.64524e11 2.84963e11i −0.522761 0.905449i −0.999649 0.0264852i \(-0.991569\pi\)
0.476888 0.878964i \(-0.341765\pi\)
\(360\) 0 0
\(361\) 1.34460e11 2.32892e11i 0.416688 0.721725i
\(362\) 0 0
\(363\) 6.06258e11 1.83264
\(364\) 0 0
\(365\) 2.80007e11 0.825756
\(366\) 0 0
\(367\) −2.08227e11 + 3.60660e11i −0.599156 + 1.03777i 0.393790 + 0.919200i \(0.371164\pi\)
−0.992946 + 0.118568i \(0.962170\pi\)
\(368\) 0 0
\(369\) −1.49550e11 2.59028e11i −0.419922 0.727326i
\(370\) 0 0
\(371\) −2.41962e11 + 5.20030e11i −0.663077 + 1.42510i
\(372\) 0 0
\(373\) −5.38148e10 9.32099e10i −0.143950 0.249329i 0.785031 0.619457i \(-0.212647\pi\)
−0.928981 + 0.370128i \(0.879314\pi\)
\(374\) 0 0
\(375\) −3.76568e11 + 6.52234e11i −0.983337 + 1.70319i
\(376\) 0 0
\(377\) 4.35332e10 0.110990
\(378\) 0 0
\(379\) −5.34243e11 −1.33003 −0.665016 0.746829i \(-0.731575\pi\)
−0.665016 + 0.746829i \(0.731575\pi\)
\(380\) 0 0
\(381\) 3.87113e11 6.70500e11i 0.941186 1.63018i
\(382\) 0 0
\(383\) −1.53952e11 2.66652e11i −0.365586 0.633214i 0.623284 0.781996i \(-0.285798\pi\)
−0.988870 + 0.148782i \(0.952465\pi\)
\(384\) 0 0
\(385\) −9.46744e10 + 8.36314e9i −0.219614 + 0.0193998i
\(386\) 0 0
\(387\) −8.35330e11 1.44683e12i −1.89304 3.27883i
\(388\) 0 0
\(389\) −2.93605e11 + 5.08539e11i −0.650115 + 1.12603i 0.332979 + 0.942934i \(0.391946\pi\)
−0.983095 + 0.183098i \(0.941387\pi\)
\(390\) 0 0
\(391\) 6.82570e11 1.47690
\(392\) 0 0
\(393\) −1.40041e12 −2.96134
\(394\) 0 0
\(395\) 6.07983e10 1.05306e11i 0.125662 0.217653i
\(396\) 0 0
\(397\) −2.96801e11 5.14075e11i −0.599665 1.03865i −0.992870 0.119199i \(-0.961967\pi\)
0.393205 0.919451i \(-0.371366\pi\)
\(398\) 0 0
\(399\) 3.97368e11 3.51018e10i 0.784900 0.0693348i
\(400\) 0 0
\(401\) −2.25093e11 3.89873e11i −0.434723 0.752962i 0.562550 0.826763i \(-0.309820\pi\)
−0.997273 + 0.0738012i \(0.976487\pi\)
\(402\) 0 0
\(403\) 7.88330e9 1.36543e10i 0.0148880 0.0257867i
\(404\) 0 0
\(405\) 1.96643e12 3.63187
\(406\) 0 0
\(407\) 5.20580e10 0.0940400
\(408\) 0 0
\(409\) −2.17320e11 + 3.76409e11i −0.384012 + 0.665128i −0.991632 0.129100i \(-0.958791\pi\)
0.607620 + 0.794228i \(0.292124\pi\)
\(410\) 0 0
\(411\) −2.29720e11 3.97887e11i −0.397110 0.687814i
\(412\) 0 0
\(413\) 1.95389e11 4.19934e11i 0.330464 0.710240i
\(414\) 0 0
\(415\) 1.65518e11 + 2.86685e11i 0.273923 + 0.474448i
\(416\) 0 0
\(417\) −6.78286e11 + 1.17483e12i −1.09850 + 1.90266i
\(418\) 0 0
\(419\) 4.94533e11 0.783848 0.391924 0.919998i \(-0.371810\pi\)
0.391924 + 0.919998i \(0.371810\pi\)
\(420\) 0 0
\(421\) 6.78076e11 1.05198 0.525992 0.850490i \(-0.323694\pi\)
0.525992 + 0.850490i \(0.323694\pi\)
\(422\) 0 0
\(423\) 1.15689e11 2.00379e11i 0.175695 0.304313i
\(424\) 0 0
\(425\) −1.25397e10 2.17194e10i −0.0186439 0.0322922i
\(426\) 0 0
\(427\) −2.71227e10 3.86660e10i −0.0394827 0.0562864i
\(428\) 0 0
\(429\) −1.17871e10 2.04159e10i −0.0168016 0.0291012i
\(430\) 0 0
\(431\) 5.71308e11 9.89535e11i 0.797485 1.38128i −0.123764 0.992312i \(-0.539497\pi\)
0.921249 0.388973i \(-0.127170\pi\)
\(432\) 0 0
\(433\) 9.94314e11 1.35934 0.679670 0.733518i \(-0.262123\pi\)
0.679670 + 0.733518i \(0.262123\pi\)
\(434\) 0 0
\(435\) 2.02638e12 2.71343
\(436\) 0 0
\(437\) 2.44240e11 4.23035e11i 0.320368 0.554894i
\(438\) 0 0
\(439\) 1.08471e11 + 1.87877e11i 0.139387 + 0.241426i 0.927265 0.374406i \(-0.122153\pi\)
−0.787877 + 0.615832i \(0.788820\pi\)
\(440\) 0 0
\(441\) −1.39467e12 1.65643e12i −1.75589 2.08545i
\(442\) 0 0
\(443\) 5.34760e11 + 9.26231e11i 0.659693 + 1.14262i 0.980695 + 0.195544i \(0.0626472\pi\)
−0.321002 + 0.947079i \(0.604020\pi\)
\(444\) 0 0
\(445\) −3.75735e11 + 6.50792e11i −0.454215 + 0.786723i
\(446\) 0 0
\(447\) −4.54960e11 −0.539001
\(448\) 0 0
\(449\) 1.65225e12 1.91853 0.959264 0.282510i \(-0.0911669\pi\)
0.959264 + 0.282510i \(0.0911669\pi\)
\(450\) 0 0
\(451\) −3.04460e10 + 5.27340e10i −0.0346526 + 0.0600200i
\(452\) 0 0
\(453\) 9.22763e11 + 1.59827e12i 1.02955 + 1.78324i
\(454\) 0 0
\(455\) −3.98109e10 5.67542e10i −0.0435462 0.0620793i
\(456\) 0 0
\(457\) 3.73254e10 + 6.46496e10i 0.0400297 + 0.0693334i 0.885346 0.464933i \(-0.153921\pi\)
−0.845316 + 0.534266i \(0.820588\pi\)
\(458\) 0 0
\(459\) −1.49072e12 + 2.58201e12i −1.56762 + 2.71519i
\(460\) 0 0
\(461\) 5.63966e11 0.581565 0.290783 0.956789i \(-0.406084\pi\)
0.290783 + 0.956789i \(0.406084\pi\)
\(462\) 0 0
\(463\) −9.11377e11 −0.921687 −0.460844 0.887481i \(-0.652453\pi\)
−0.460844 + 0.887481i \(0.652453\pi\)
\(464\) 0 0
\(465\) 3.66951e11 6.35577e11i 0.363973 0.630420i
\(466\) 0 0
\(467\) −9.58921e10 1.66090e11i −0.0932946 0.161591i 0.815601 0.578615i \(-0.196407\pi\)
−0.908896 + 0.417024i \(0.863073\pi\)
\(468\) 0 0
\(469\) −2.83491e11 + 6.09285e11i −0.270558 + 0.581490i
\(470\) 0 0
\(471\) 1.29541e11 + 2.24372e11i 0.121287 + 0.210075i
\(472\) 0 0
\(473\) −1.70060e11 + 2.94552e11i −0.156216 + 0.270575i
\(474\) 0 0
\(475\) −1.79480e10 −0.0161769
\(476\) 0 0
\(477\) −4.84499e12 −4.28509
\(478\) 0 0
\(479\) 7.45288e11 1.29088e12i 0.646866 1.12040i −0.337001 0.941504i \(-0.609413\pi\)
0.983867 0.178900i \(-0.0572540\pi\)
\(480\) 0 0
\(481\) 1.89857e10 + 3.28842e10i 0.0161724 + 0.0280114i
\(482\) 0 0
\(483\) −3.61011e12 + 3.18902e11i −3.01827 + 0.266621i
\(484\) 0 0
\(485\) 7.99459e11 + 1.38470e12i 0.656083 + 1.13637i
\(486\) 0 0
\(487\) −6.34738e11 + 1.09940e12i −0.511345 + 0.885675i 0.488569 + 0.872525i \(0.337519\pi\)
−0.999914 + 0.0131499i \(0.995814\pi\)
\(488\) 0 0
\(489\) −1.68437e12 −1.33213
\(490\) 0 0
\(491\) 7.11119e11 0.552173 0.276087 0.961133i \(-0.410962\pi\)
0.276087 + 0.961133i \(0.410962\pi\)
\(492\) 0 0
\(493\) −8.85089e11 + 1.53302e12i −0.674801 + 1.16879i
\(494\) 0 0
\(495\) −4.01422e11 6.95283e11i −0.300523 0.520521i
\(496\) 0 0
\(497\) 6.97630e11 6.16257e10i 0.512886 0.0453063i
\(498\) 0 0
\(499\) 8.01313e11 + 1.38791e12i 0.578562 + 1.00210i 0.995645 + 0.0932299i \(0.0297192\pi\)
−0.417083 + 0.908868i \(0.636947\pi\)
\(500\) 0 0
\(501\) 4.51557e11 7.82120e11i 0.320216 0.554630i
\(502\) 0 0
\(503\) 6.48944e11 0.452013 0.226007 0.974126i \(-0.427433\pi\)
0.226007 + 0.974126i \(0.427433\pi\)
\(504\) 0 0
\(505\) 1.90350e12 1.30239
\(506\) 0 0
\(507\) −1.42735e12 + 2.47225e12i −0.959392 + 1.66172i
\(508\) 0 0
\(509\) 1.90962e10 + 3.30757e10i 0.0126101 + 0.0218413i 0.872262 0.489040i \(-0.162653\pi\)
−0.859652 + 0.510881i \(0.829319\pi\)
\(510\) 0 0
\(511\) 5.47887e11 1.17753e12i 0.355465 0.763973i
\(512\) 0 0
\(513\) 1.06683e12 + 1.84781e12i 0.680092 + 1.17795i
\(514\) 0 0
\(515\) 6.42881e11 1.11350e12i 0.402715 0.697524i
\(516\) 0 0
\(517\) −4.71047e10 −0.0289972
\(518\) 0 0
\(519\) −3.06031e12 −1.85145
\(520\) 0 0
\(521\) 5.84088e11 1.01167e12i 0.347303 0.601546i −0.638466 0.769650i \(-0.720431\pi\)
0.985769 + 0.168103i \(0.0537642\pi\)
\(522\) 0 0
\(523\) 7.59331e11 + 1.31520e12i 0.443786 + 0.768660i 0.997967 0.0637364i \(-0.0203017\pi\)
−0.554181 + 0.832396i \(0.686968\pi\)
\(524\) 0 0
\(525\) 7.64697e10 + 1.09015e11i 0.0439312 + 0.0626281i
\(526\) 0 0
\(527\) 3.20556e11 + 5.55220e11i 0.181033 + 0.313558i
\(528\) 0 0
\(529\) −1.31835e12 + 2.28346e12i −0.731950 + 1.26777i
\(530\) 0 0
\(531\) 3.91242e12 2.13560
\(532\) 0 0
\(533\) −4.44149e10 −0.0238373
\(534\) 0 0
\(535\) 1.77557e11 3.07537e11i 0.0937012 0.162295i
\(536\) 0 0
\(537\) −2.51203e11 4.35097e11i −0.130359 0.225789i
\(538\) 0 0
\(539\) −1.50078e11 + 4.14504e11i −0.0765893 + 0.211533i
\(540\) 0 0
\(541\) −5.97210e11 1.03440e12i −0.299736 0.519159i 0.676339 0.736590i \(-0.263565\pi\)
−0.976076 + 0.217432i \(0.930232\pi\)
\(542\) 0 0
\(543\) 2.22497e11 3.85376e11i 0.109831 0.190233i
\(544\) 0 0
\(545\) −1.13097e11 −0.0549120
\(546\) 0 0
\(547\) 3.52503e11 0.168353 0.0841764 0.996451i \(-0.473174\pi\)
0.0841764 + 0.996451i \(0.473174\pi\)
\(548\) 0 0
\(549\) 1.99481e11 3.45511e11i 0.0937185 0.162325i
\(550\) 0 0
\(551\) 6.33411e11 + 1.09710e12i 0.292755 + 0.507066i
\(552\) 0 0
\(553\) −3.23885e11 4.61729e11i −0.147275 0.209954i
\(554\) 0 0
\(555\) 8.83744e11 + 1.53069e12i 0.395374 + 0.684808i
\(556\) 0 0
\(557\) 9.05992e11 1.56922e12i 0.398819 0.690775i −0.594761 0.803902i \(-0.702753\pi\)
0.993580 + 0.113127i \(0.0360868\pi\)
\(558\) 0 0
\(559\) −2.48085e11 −0.107460
\(560\) 0 0
\(561\) 9.58595e11 0.408604
\(562\) 0 0
\(563\) −1.41540e12 + 2.45154e12i −0.593733 + 1.02838i 0.399991 + 0.916519i \(0.369013\pi\)
−0.993724 + 0.111857i \(0.964320\pi\)
\(564\) 0 0
\(565\) −8.03107e11 1.39102e12i −0.331555 0.574270i
\(566\) 0 0
\(567\) 3.84768e12 8.26952e12i 1.56342 3.36013i
\(568\) 0 0
\(569\) −1.76736e12 3.06115e12i −0.706837 1.22428i −0.966025 0.258450i \(-0.916788\pi\)
0.259188 0.965827i \(-0.416545\pi\)
\(570\) 0 0
\(571\) 5.31965e11 9.21390e11i 0.209421 0.362728i −0.742111 0.670277i \(-0.766175\pi\)
0.951532 + 0.307549i \(0.0995087\pi\)
\(572\) 0 0
\(573\) 3.07887e12 1.19315
\(574\) 0 0
\(575\) 1.63058e11 0.0622068
\(576\) 0 0
\(577\) −1.77763e12 + 3.07894e12i −0.667652 + 1.15641i 0.310907 + 0.950440i \(0.399367\pi\)
−0.978559 + 0.205966i \(0.933966\pi\)
\(578\) 0 0
\(579\) −5.15941e12 8.93636e12i −1.90786 3.30451i
\(580\) 0 0
\(581\) 1.52948e12 1.35108e11i 0.556866 0.0491913i
\(582\) 0 0
\(583\) 4.93181e11 + 8.54214e11i 0.176806 + 0.306237i
\(584\) 0 0
\(585\) 2.92799e11 5.07143e11i 0.103364 0.179031i
\(586\) 0 0
\(587\) 5.01945e12 1.74496 0.872478 0.488653i \(-0.162512\pi\)
0.872478 + 0.488653i \(0.162512\pi\)
\(588\) 0 0
\(589\) 4.58810e11 0.157078
\(590\) 0 0
\(591\) −2.32023e12 + 4.01876e12i −0.782327 + 1.35503i
\(592\) 0 0
\(593\) 1.80719e12 + 3.13014e12i 0.600146 + 1.03948i 0.992798 + 0.119797i \(0.0382243\pi\)
−0.392652 + 0.919687i \(0.628442\pi\)
\(594\) 0 0
\(595\) 2.80801e12 2.48048e11i 0.918485 0.0811351i
\(596\) 0 0
\(597\) 3.11685e12 + 5.39854e12i 1.00423 + 1.73937i
\(598\) 0 0
\(599\) −4.48277e11 + 7.76438e11i −0.142274 + 0.246426i −0.928353 0.371701i \(-0.878775\pi\)
0.786079 + 0.618127i \(0.212108\pi\)
\(600\) 0 0
\(601\) 2.12154e11 0.0663310 0.0331655 0.999450i \(-0.489441\pi\)
0.0331655 + 0.999450i \(0.489441\pi\)
\(602\) 0 0
\(603\) −5.67656e12 −1.74847
\(604\) 0 0
\(605\) 1.53296e12 2.65517e12i 0.465193 0.805737i
\(606\) 0 0
\(607\) 9.87826e11 + 1.71096e12i 0.295346 + 0.511554i 0.975065 0.221918i \(-0.0712317\pi\)
−0.679719 + 0.733472i \(0.737898\pi\)
\(608\) 0 0
\(609\) 3.96499e12 8.52164e12i 1.16806 2.51041i
\(610\) 0 0
\(611\) −1.71792e10 2.97553e10i −0.00498675 0.00863730i
\(612\) 0 0
\(613\) 1.92970e12 3.34235e12i 0.551974 0.956047i −0.446158 0.894954i \(-0.647208\pi\)
0.998132 0.0610931i \(-0.0194586\pi\)
\(614\) 0 0
\(615\) −2.06742e12 −0.582762
\(616\) 0 0
\(617\) −3.19932e12 −0.888738 −0.444369 0.895844i \(-0.646572\pi\)
−0.444369 + 0.895844i \(0.646572\pi\)
\(618\) 0 0
\(619\) 2.86605e12 4.96414e12i 0.784649 1.35905i −0.144560 0.989496i \(-0.546177\pi\)
0.929209 0.369556i \(-0.120490\pi\)
\(620\) 0 0
\(621\) −9.69222e12 1.67874e13i −2.61524 4.52972i
\(622\) 0 0
\(623\) 2.00162e12 + 2.85349e12i 0.532334 + 0.758894i
\(624\) 0 0
\(625\) 1.82876e12 + 3.16751e12i 0.479400 + 0.830345i
\(626\) 0 0
\(627\) 3.43008e11 5.94107e11i 0.0886340 0.153519i
\(628\) 0 0
\(629\) −1.54402e12 −0.393301
\(630\) 0 0
\(631\) −6.65474e12 −1.67109 −0.835543 0.549425i \(-0.814847\pi\)
−0.835543 + 0.549425i \(0.814847\pi\)
\(632\) 0 0
\(633\) −6.71506e12 + 1.16308e13i −1.66239 + 2.87935i
\(634\) 0 0
\(635\) −1.95768e12 3.39081e12i −0.477816 0.827602i
\(636\) 0 0
\(637\) −3.16569e11 + 5.63686e10i −0.0761800 + 0.0135647i
\(638\) 0 0
\(639\) 2.95797e12 + 5.12335e12i 0.701842 + 1.21563i
\(640\) 0 0
\(641\) 2.30160e12 3.98649e12i 0.538479 0.932673i −0.460507 0.887656i \(-0.652333\pi\)
0.998986 0.0450169i \(-0.0143342\pi\)
\(642\) 0 0
\(643\) −6.55681e12 −1.51267 −0.756333 0.654186i \(-0.773011\pi\)
−0.756333 + 0.654186i \(0.773011\pi\)
\(644\) 0 0
\(645\) −1.15478e13 −2.62713
\(646\) 0 0
\(647\) 8.97874e11 1.55516e12i 0.201440 0.348905i −0.747552 0.664203i \(-0.768771\pi\)
0.948993 + 0.315298i \(0.102104\pi\)
\(648\) 0 0
\(649\) −3.98253e11 6.89794e11i −0.0881165 0.152622i
\(650\) 0 0
\(651\) −1.95482e12 2.78678e12i −0.426572 0.608119i
\(652\) 0 0
\(653\) 3.15320e12 + 5.46151e12i 0.678645 + 1.17545i 0.975389 + 0.220491i \(0.0707659\pi\)
−0.296744 + 0.954957i \(0.595901\pi\)
\(654\) 0 0
\(655\) −3.54102e12 + 6.13323e12i −0.751697 + 1.30198i
\(656\) 0 0
\(657\) 1.09708e13 2.29717
\(658\) 0 0
\(659\) 6.63478e12 1.37038 0.685191 0.728363i \(-0.259719\pi\)
0.685191 + 0.728363i \(0.259719\pi\)
\(660\) 0 0
\(661\) 1.19222e11 2.06499e11i 0.0242913 0.0420737i −0.853624 0.520889i \(-0.825600\pi\)
0.877915 + 0.478816i \(0.158934\pi\)
\(662\) 0 0
\(663\) 3.49602e11 + 6.05529e11i 0.0702690 + 0.121709i
\(664\) 0 0
\(665\) 8.51039e11 1.82907e12i 0.168753 0.362688i
\(666\) 0 0
\(667\) −5.75457e12 9.96722e12i −1.12576 1.94988i
\(668\) 0 0
\(669\) −7.50758e12 + 1.30035e13i −1.44905 + 2.50982i
\(670\) 0 0
\(671\) −8.12221e10 −0.0154676
\(672\) 0 0
\(673\) 7.84956e12 1.47495 0.737475 0.675374i \(-0.236018\pi\)
0.737475 + 0.675374i \(0.236018\pi\)
\(674\) 0 0
\(675\) −3.56117e11 + 6.16813e11i −0.0660277 + 0.114363i
\(676\) 0 0
\(677\) 3.63691e11 + 6.29932e11i 0.0665401 + 0.115251i 0.897376 0.441266i \(-0.145471\pi\)
−0.830836 + 0.556517i \(0.812137\pi\)
\(678\) 0 0
\(679\) 7.38747e12 6.52578e11i 1.33377 0.117820i
\(680\) 0 0
\(681\) 4.79126e11 + 8.29871e11i 0.0853666 + 0.147859i
\(682\) 0 0
\(683\) −1.01626e11 + 1.76022e11i −0.0178695 + 0.0309509i −0.874822 0.484445i \(-0.839022\pi\)
0.856952 + 0.515396i \(0.172355\pi\)
\(684\) 0 0
\(685\) −2.32345e12 −0.403205
\(686\) 0 0
\(687\) 8.24180e12 1.41162
\(688\) 0 0
\(689\) −3.59729e11 + 6.23069e11i −0.0608119 + 0.105329i
\(690\) 0 0
\(691\) 2.33350e12 + 4.04173e12i 0.389364 + 0.674398i 0.992364 0.123343i \(-0.0393614\pi\)
−0.603000 + 0.797741i \(0.706028\pi\)
\(692\) 0 0
\(693\) −3.70937e12 + 3.27670e11i −0.610943 + 0.0539681i
\(694\) 0 0
\(695\) 3.43018e12 + 5.94125e12i 0.557681 + 0.965932i
\(696\) 0 0
\(697\) 9.03017e11 1.56407e12i 0.144927 0.251020i
\(698\) 0 0
\(699\) −1.66851e12 −0.264351
\(700\) 0 0
\(701\) −1.00377e12 −0.157001 −0.0785003 0.996914i \(-0.525013\pi\)
−0.0785003 + 0.996914i \(0.525013\pi\)
\(702\) 0 0
\(703\) −5.52487e11 + 9.56935e11i −0.0853145 + 0.147769i
\(704\) 0 0
\(705\) −7.99656e11 1.38504e12i −0.121914 0.211160i
\(706\) 0 0
\(707\) 3.72456e12 8.00491e12i 0.560645 1.20495i
\(708\) 0 0
\(709\) −1.51043e12 2.61615e12i −0.224488 0.388825i 0.731678 0.681651i \(-0.238738\pi\)
−0.956166 + 0.292826i \(0.905404\pi\)
\(710\) 0 0
\(711\) 2.38210e12 4.12591e12i 0.349580 0.605490i
\(712\) 0 0
\(713\) −4.16832e12 −0.604029
\(714\) 0 0
\(715\) −1.19218e11 −0.0170595
\(716\) 0 0
\(717\) 8.57855e12 1.48585e13i 1.21221 2.09961i
\(718\) 0 0
\(719\) −5.47763e12 9.48754e12i −0.764386 1.32396i −0.940570 0.339599i \(-0.889709\pi\)
0.176184 0.984357i \(-0.443625\pi\)
\(720\) 0 0
\(721\) −3.42476e12 4.88232e12i −0.471978 0.672849i
\(722\) 0 0
\(723\) 1.01764e13 + 1.76261e13i 1.38507 + 2.39902i
\(724\) 0 0
\(725\) −2.11438e11 + 3.66221e11i −0.0284225 + 0.0492292i
\(726\) 0 0
\(727\) −1.28144e13 −1.70135 −0.850674 0.525694i \(-0.823806\pi\)
−0.850674 + 0.525694i \(0.823806\pi\)
\(728\) 0 0
\(729\) 2.79953e13 3.67122
\(730\) 0 0
\(731\) 5.04391e12 8.73630e12i 0.653339 1.13162i
\(732\) 0 0
\(733\) −3.56009e12 6.16625e12i −0.455505 0.788957i 0.543212 0.839595i \(-0.317208\pi\)
−0.998717 + 0.0506382i \(0.983874\pi\)
\(734\) 0 0
\(735\) −1.47356e13 + 2.62384e12i −1.86241 + 0.331623i
\(736\) 0 0
\(737\) 5.77828e11 + 1.00083e12i 0.0721431 + 0.124955i
\(738\) 0 0
\(739\) −2.76680e12 + 4.79224e12i −0.341254 + 0.591070i −0.984666 0.174451i \(-0.944185\pi\)
0.643412 + 0.765520i \(0.277518\pi\)
\(740\) 0 0
\(741\) 5.00384e11 0.0609707
\(742\) 0 0
\(743\) −2.58825e12 −0.311571 −0.155785 0.987791i \(-0.549791\pi\)
−0.155785 + 0.987791i \(0.549791\pi\)
\(744\) 0 0
\(745\) −1.15040e12 + 1.99255e12i −0.136819 + 0.236977i
\(746\) 0 0
\(747\) 6.48503e12 + 1.12324e13i 0.762025 + 1.31987i
\(748\) 0 0
\(749\) −9.45880e11 1.34844e12i −0.109817 0.156554i
\(750\) 0 0
\(751\) −2.82166e12 4.88725e12i −0.323686 0.560641i 0.657559 0.753403i \(-0.271589\pi\)
−0.981246 + 0.192762i \(0.938256\pi\)
\(752\) 0 0
\(753\) −1.37713e13 + 2.38525e13i −1.56098 + 2.70369i
\(754\) 0 0
\(755\) 9.33308e12 1.04535
\(756\) 0 0
\(757\) −1.51570e13 −1.67757 −0.838786 0.544462i \(-0.816734\pi\)
−0.838786 + 0.544462i \(0.816734\pi\)
\(758\) 0 0
\(759\) −3.11624e12 + 5.39749e12i −0.340834 + 0.590343i
\(760\) 0 0
\(761\) 4.02856e12 + 6.97767e12i 0.435430 + 0.754187i 0.997331 0.0730176i \(-0.0232629\pi\)
−0.561900 + 0.827205i \(0.689930\pi\)
\(762\) 0 0
\(763\) −2.21296e11 + 4.75614e11i −0.0236381 + 0.0508035i
\(764\) 0 0
\(765\) 1.19060e13 + 2.06218e13i 1.25687 + 2.17696i
\(766\) 0 0
\(767\) 2.90488e11 5.03139e11i 0.0303074 0.0524939i
\(768\) 0 0
\(769\) −2.31836e12 −0.239063 −0.119531 0.992830i \(-0.538139\pi\)
−0.119531 + 0.992830i \(0.538139\pi\)
\(770\) 0 0
\(771\) −1.49409e13 −1.52276
\(772\) 0 0
\(773\) 8.54611e12 1.48023e13i 0.860916 1.49115i −0.0101300 0.999949i \(-0.503225\pi\)
0.871046 0.491201i \(-0.163442\pi\)
\(774\) 0 0
\(775\) 7.65773e10 + 1.32636e11i 0.00762505 + 0.0132070i
\(776\) 0 0
\(777\) 8.16631e12 7.21378e11i 0.803769 0.0710016i
\(778\) 0 0
\(779\) −6.46241e11 1.11932e12i −0.0628747 0.108902i
\(780\) 0 0
\(781\) 6.02194e11 1.04303e12i 0.0579171 0.100315i
\(782\) 0 0
\(783\) 5.02716e13 4.77964
\(784\) 0 0
\(785\) 1.31021e12 0.123148
\(786\) 0 0
\(787\) −2.09412e12 + 3.62713e12i −0.194588 + 0.337036i −0.946765 0.321925i \(-0.895670\pi\)
0.752178 + 0.658961i \(0.229004\pi\)
\(788\) 0 0
\(789\) 3.03942e12 + 5.26442e12i 0.279218 + 0.483620i
\(790\) 0 0
\(791\) −7.42118e12 + 6.55556e11i −0.674029 + 0.0595409i
\(792\) 0 0
\(793\) −2.96219e10 5.13067e10i −0.00266001 0.00460728i
\(794\) 0 0
\(795\) −1.67446e13 + 2.90025e13i −1.48670 + 2.57504i
\(796\) 0 0
\(797\) 1.78707e13 1.56884 0.784421 0.620229i \(-0.212960\pi\)
0.784421 + 0.620229i \(0.212960\pi\)
\(798\) 0 0
\(799\) 1.39711e12 0.121274
\(800\) 0 0
\(801\) −1.47214e13 + 2.54982e13i −1.26358 + 2.18858i
\(802\) 0 0
\(803\) −1.11674e12 1.93424e12i −0.0947830 0.164169i
\(804\) 0 0
\(805\) −7.73173e12 + 1.66172e13i −0.648926 + 1.39469i
\(806\) 0 0
\(807\) 3.18504e11 + 5.51665e11i 0.0264353 + 0.0457872i
\(808\) 0 0
\(809\) 1.59521e12 2.76299e12i 0.130934 0.226783i −0.793103 0.609087i \(-0.791536\pi\)
0.924037 + 0.382304i \(0.124869\pi\)
\(810\) 0 0
\(811\) 1.37637e12 0.111722 0.0558612 0.998439i \(-0.482210\pi\)
0.0558612 + 0.998439i \(0.482210\pi\)
\(812\) 0 0
\(813\) −4.04619e13 −3.24817
\(814\) 0 0
\(815\) −4.25904e12 + 7.37688e12i −0.338145 + 0.585684i
\(816\) 0 0
\(817\) −3.60966e12 6.25211e12i −0.283444 0.490939i
\(818\) 0 0
\(819\) −1.55980e12 2.22365e12i −0.121141 0.172698i
\(820\) 0 0
\(821\) −1.05084e13 1.82011e13i −0.807223 1.39815i −0.914780 0.403952i \(-0.867636\pi\)
0.107557 0.994199i \(-0.465697\pi\)
\(822\) 0 0
\(823\) −6.80472e12 + 1.17861e13i −0.517024 + 0.895512i 0.482781 + 0.875741i \(0.339627\pi\)
−0.999805 + 0.0197705i \(0.993706\pi\)
\(824\) 0 0
\(825\) 2.28998e11 0.0172103
\(826\) 0 0
\(827\) −1.02944e13 −0.765288 −0.382644 0.923896i \(-0.624986\pi\)
−0.382644 + 0.923896i \(0.624986\pi\)
\(828\) 0 0
\(829\) −1.29564e13 + 2.24411e13i −0.952769 + 1.65024i −0.213377 + 0.976970i \(0.568446\pi\)
−0.739392 + 0.673275i \(0.764887\pi\)
\(830\) 0 0
\(831\) −1.95530e13 3.38667e13i −1.42236 2.46359i
\(832\) 0 0
\(833\) 4.45126e12 1.22940e13i 0.320318 0.884691i
\(834\) 0 0
\(835\) −2.28359e12 3.95529e12i −0.162565 0.281572i
\(836\) 0 0
\(837\) 9.10354e12 1.57678e13i 0.641130 1.11047i
\(838\) 0 0
\(839\) 5.20978e12 0.362986 0.181493 0.983392i \(-0.441907\pi\)
0.181493 + 0.983392i \(0.441907\pi\)
\(840\) 0 0
\(841\) 1.53407e13 1.05746
\(842\) 0 0
\(843\) −9.53692e12 + 1.65184e13i −0.650405 + 1.12653i
\(844\) 0 0
\(845\) 7.21832e12 + 1.25025e13i 0.487059 + 0.843610i
\(846\) 0 0
\(847\) −8.16641e12 1.16420e13i −0.545200 0.777235i
\(848\) 0 0
\(849\) −2.76991e13 4.79763e13i −1.82971 3.16915i
\(850\) 0 0
\(851\) 5.01937e12 8.69381e12i 0.328070 0.568234i
\(852\) 0 0
\(853\) −2.58714e12 −0.167321 −0.0836604 0.996494i \(-0.526661\pi\)
−0.0836604 + 0.996494i \(0.526661\pi\)
\(854\) 0 0
\(855\) 1.70410e13 1.09056
\(856\) 0 0
\(857\) 9.56688e12 1.65703e13i 0.605838 1.04934i −0.386080 0.922465i \(-0.626171\pi\)
0.991918 0.126877i \(-0.0404954\pi\)
\(858\) 0 0
\(859\) 1.33238e13 + 2.30774e13i 0.834945 + 1.44617i 0.894075 + 0.447917i \(0.147834\pi\)
−0.0591305 + 0.998250i \(0.518833\pi\)
\(860\) 0 0
\(861\) −4.04530e12 + 8.69424e12i −0.250863 + 0.539160i
\(862\) 0 0
\(863\) −1.24167e13 2.15063e13i −0.762003 1.31983i −0.941817 0.336127i \(-0.890883\pi\)
0.179814 0.983701i \(-0.442450\pi\)
\(864\) 0 0
\(865\) −7.73820e12 + 1.34030e13i −0.469967 + 0.814007i
\(866\) 0 0
\(867\) 3.68431e12 0.221447
\(868\) 0 0
\(869\) −9.69912e11 −0.0576957
\(870\) 0 0
\(871\) −4.21471e11 + 7.30008e11i −0.0248134 + 0.0429780i
\(872\) 0 0
\(873\) 3.13230e13 + 5.42531e13i 1.82516 + 3.16126i
\(874\) 0 0
\(875\) 1.75973e13 1.55447e12i 1.01487 0.0896494i
\(876\) 0 0
\(877\) −5.91911e12 1.02522e13i −0.337876 0.585219i 0.646157 0.763205i \(-0.276375\pi\)
−0.984033 + 0.177986i \(0.943042\pi\)
\(878\) 0 0
\(879\) 1.46626e13 2.53964e13i 0.828440 1.43490i
\(880\) 0 0
\(881\) 2.57086e13 1.43776 0.718882 0.695133i \(-0.244654\pi\)
0.718882 + 0.695133i \(0.244654\pi\)
\(882\) 0 0
\(883\) 1.32530e13 0.733656 0.366828 0.930289i \(-0.380444\pi\)
0.366828 + 0.930289i \(0.380444\pi\)
\(884\) 0 0
\(885\) 1.35216e13 2.34201e13i 0.740940 1.28335i
\(886\) 0 0
\(887\) −1.57245e11 2.72355e11i −0.00852941 0.0147734i 0.861729 0.507369i \(-0.169382\pi\)
−0.870259 + 0.492595i \(0.836048\pi\)
\(888\) 0 0
\(889\) −1.80901e13 + 1.59801e12i −0.971367 + 0.0858066i
\(890\) 0 0
\(891\) −7.84257e12 1.35837e13i −0.416878 0.722053i
\(892\) 0 0
\(893\) 4.99918e11 8.65883e11i 0.0263067 0.0455646i
\(894\) 0 0
\(895\) −2.54074e12 −0.132360
\(896\) 0 0
\(897\) −4.54601e12 −0.234458
\(898\) 0 0
\(899\) 5.40506e12 9.36183e12i 0.275983 0.478016i
\(900\) 0 0
\(901\) −1.46276e13 2.53357e13i −0.739453 1.28077i
\(902\) 0 0
\(903\) −2.25955e13 + 4.85627e13i −1.13091 + 2.43057i
\(904\) 0 0
\(905\) −1.12520e12 1.94890e12i −0.0557583 0.0965763i
\(906\) 0 0
\(907\) 1.84071e12 3.18820e12i 0.0903133 0.156427i −0.817330 0.576170i \(-0.804546\pi\)
0.907643 + 0.419743i \(0.137880\pi\)
\(908\) 0 0
\(909\) 7.45798e13 3.62313
\(910\) 0 0
\(911\) 2.58776e13 1.24478 0.622388 0.782709i \(-0.286163\pi\)
0.622388 + 0.782709i \(0.286163\pi\)
\(912\) 0 0
\(913\) 1.32025e12 2.28674e12i 0.0628835 0.108917i
\(914\) 0 0
\(915\) −1.37884e12 2.38822e12i −0.0650307 0.112636i
\(916\) 0 0
\(917\) 1.88638e13 + 2.68921e13i 0.880980 + 1.25592i
\(918\) 0 0
\(919\) −6.11222e12 1.05867e13i −0.282670 0.489598i 0.689372 0.724408i \(-0.257887\pi\)
−0.972041 + 0.234809i \(0.924553\pi\)
\(920\) 0 0
\(921\) 1.59310e13 2.75933e13i 0.729584 1.26368i
\(922\) 0 0
\(923\) 8.78488e11 0.0398408
\(924\) 0 0
\(925\) −3.68849e11 −0.0165657
\(926\) 0 0
\(927\) 2.51883e13 4.36274e13i 1.12031 1.94044i
\(928\) 0 0
\(929\) −1.39115e13 2.40955e13i −0.612780 1.06137i −0.990770 0.135556i \(-0.956718\pi\)
0.377990 0.925810i \(-0.376615\pi\)
\(930\) 0 0
\(931\) −6.02668e12 7.15784e12i −0.262908 0.312254i
\(932\) 0 0
\(933\) 2.40047e12 + 4.15774e12i 0.103712 + 0.179634i
\(934\) 0 0
\(935\) 2.42387e12 4.19827e12i 0.103719 0.179646i
\(936\) 0 0
\(937\) −3.45042e13 −1.46232 −0.731162 0.682204i \(-0.761022\pi\)
−0.731162 + 0.682204i \(0.761022\pi\)
\(938\) 0 0
\(939\) −2.88793e13 −1.21225
\(940\) 0 0
\(941\) 2.09282e13 3.62487e13i 0.870119 1.50709i 0.00824588 0.999966i \(-0.497375\pi\)
0.861873 0.507124i \(-0.169291\pi\)
\(942\) 0 0
\(943\) 5.87113e12 + 1.01691e13i 0.241779 + 0.418774i
\(944\) 0 0
\(945\) −4.59731e13 6.55391e13i −1.87526 2.67336i
\(946\) 0 0
\(947\) −8.29779e12 1.43722e13i −0.335265 0.580695i 0.648271 0.761410i \(-0.275492\pi\)
−0.983536 + 0.180714i \(0.942159\pi\)
\(948\) 0 0
\(949\) 8.14553e11 1.41085e12i 0.0326003 0.0564653i
\(950\) 0 0
\(951\) 8.96686e12 0.355491
\(952\) 0 0
\(953\) 1.49663e13 0.587756 0.293878 0.955843i \(-0.405054\pi\)
0.293878 + 0.955843i \(0.405054\pi\)
\(954\) 0 0
\(955\) 7.78512e12 1.34842e13i 0.302866 0.524579i
\(956\) 0 0
\(957\) −8.08167e12 1.39979e13i −0.311457 0.539459i
\(958\) 0 0
\(959\) −4.54626e12 + 9.77093e12i −0.173568 + 0.373037i
\(960\) 0 0
\(961\) 1.12622e13 + 1.95068e13i 0.425961 + 0.737786i
\(962\) 0 0
\(963\) 6.95672e12 1.20494e13i 0.260667 0.451489i
\(964\) 0 0
\(965\) −5.21837e13 −1.93714
\(966\) 0 0
\(967\) −2.21214e13 −0.813568 −0.406784 0.913524i \(-0.633350\pi\)
−0.406784 + 0.913524i \(0.633350\pi\)
\(968\) 0 0
\(969\) −1.01735e13 + 1.76210e13i −0.370692 + 0.642057i
\(970\) 0 0
\(971\) −5.86828e12 1.01642e13i −0.211848 0.366931i 0.740445 0.672117i \(-0.234615\pi\)
−0.952293 + 0.305186i \(0.901281\pi\)
\(972\) 0 0
\(973\) 3.16969e13 2.79997e12i 1.13373 0.100149i
\(974\) 0 0
\(975\) 8.35161e10 + 1.44654e11i 0.00295971 + 0.00512637i
\(976\) 0 0
\(977\) −2.79376e13 + 4.83894e13i −0.980989 + 1.69912i −0.322429 + 0.946594i \(0.604499\pi\)
−0.658560 + 0.752528i \(0.728834\pi\)
\(978\) 0 0
\(979\) 5.99408e12 0.208545
\(980\) 0 0
\(981\) −4.43118e12 −0.152760
\(982\) 0 0
\(983\) −1.93378e13 + 3.34941e13i −0.660567 + 1.14414i 0.319899 + 0.947452i \(0.396351\pi\)
−0.980467 + 0.196685i \(0.936982\pi\)
\(984\) 0 0
\(985\) 1.17337e13 + 2.03234e13i 0.397167 + 0.687914i
\(986\) 0 0
\(987\) −7.38928e12 + 6.52738e11i −0.247842 + 0.0218933i
\(988\) 0 0
\(989\) 3.27939e13 + 5.68007e13i 1.08996 + 1.88786i
\(990\) 0 0
\(991\) −1.24956e13 + 2.16430e13i −0.411553 + 0.712831i −0.995060 0.0992775i \(-0.968347\pi\)
0.583507 + 0.812108i \(0.301680\pi\)
\(992\) 0 0
\(993\) −5.95845e13 −1.94474
\(994\) 0 0
\(995\) 3.15247e13 1.01964
\(996\) 0 0
\(997\) −6.76021e12 + 1.17090e13i −0.216687 + 0.375312i −0.953793 0.300464i \(-0.902858\pi\)
0.737106 + 0.675777i \(0.236192\pi\)
\(998\) 0 0
\(999\) 2.19245e13 + 3.79743e13i 0.696441 + 1.20627i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.i.b.81.3 6
4.3 odd 2 14.10.c.a.11.1 yes 6
7.2 even 3 inner 112.10.i.b.65.3 6
12.11 even 2 126.10.g.f.109.3 6
28.3 even 6 98.10.a.i.1.1 3
28.11 odd 6 98.10.a.j.1.3 3
28.19 even 6 98.10.c.k.79.3 6
28.23 odd 6 14.10.c.a.9.1 6
28.27 even 2 98.10.c.k.67.3 6
84.23 even 6 126.10.g.f.37.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.10.c.a.9.1 6 28.23 odd 6
14.10.c.a.11.1 yes 6 4.3 odd 2
98.10.a.i.1.1 3 28.3 even 6
98.10.a.j.1.3 3 28.11 odd 6
98.10.c.k.67.3 6 28.27 even 2
98.10.c.k.79.3 6 28.19 even 6
112.10.i.b.65.3 6 7.2 even 3 inner
112.10.i.b.81.3 6 1.1 even 1 trivial
126.10.g.f.37.3 6 84.23 even 6
126.10.g.f.109.3 6 12.11 even 2