Properties

Label 98.10.a.j.1.3
Level $98$
Weight $10$
Character 98.1
Self dual yes
Analytic conductor $50.474$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,10,Mod(1,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,48,233] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.4735119441\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 1115x + 2100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3}\cdot 3\cdot 7 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(32.9264\) of defining polynomial
Character \(\chi\) \(=\) 98.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+16.0000 q^{2} +270.819 q^{3} +256.000 q^{4} +1369.57 q^{5} +4333.11 q^{6} +4096.00 q^{8} +53660.1 q^{9} +21913.1 q^{10} -10924.3 q^{11} +69329.8 q^{12} -7968.27 q^{13} +370906. q^{15} +65536.0 q^{16} -324012. q^{17} +858562. q^{18} -231878. q^{19} +350610. q^{20} -174789. q^{22} +2.10662e6 q^{23} +1.10928e6 q^{24} -77402.7 q^{25} -127492. q^{26} +9.20167e6 q^{27} -5.46332e6 q^{29} +5.93450e6 q^{30} -1.97867e6 q^{31} +1.04858e6 q^{32} -2.95852e6 q^{33} -5.18419e6 q^{34} +1.37370e7 q^{36} +4.76533e6 q^{37} -3.71005e6 q^{38} -2.15796e6 q^{39} +5.60976e6 q^{40} +5.57398e6 q^{41} -3.11341e7 q^{43} -2.79663e6 q^{44} +7.34913e7 q^{45} +3.37060e7 q^{46} +4.31190e6 q^{47} +1.77484e7 q^{48} -1.23844e6 q^{50} -8.77486e7 q^{51} -2.03988e6 q^{52} -9.02903e7 q^{53} +1.47227e8 q^{54} -1.49616e7 q^{55} -6.27970e7 q^{57} -8.74131e7 q^{58} -7.29111e7 q^{59} +9.49520e7 q^{60} -7.43497e6 q^{61} -3.16588e7 q^{62} +1.67772e7 q^{64} -1.09131e7 q^{65} -4.73363e7 q^{66} +1.05787e8 q^{67} -8.29470e7 q^{68} +5.70514e8 q^{69} +1.10248e8 q^{71} +2.19792e8 q^{72} +2.04449e8 q^{73} +7.62452e7 q^{74} -2.09622e7 q^{75} -5.93607e7 q^{76} -3.45274e7 q^{78} +8.87846e7 q^{79} +8.97561e7 q^{80} +1.43580e9 q^{81} +8.91836e7 q^{82} +2.41708e8 q^{83} -4.43757e8 q^{85} -4.98146e8 q^{86} -1.47957e9 q^{87} -4.47461e7 q^{88} +5.48690e8 q^{89} +1.17586e9 q^{90} +5.39295e8 q^{92} -5.35863e8 q^{93} +6.89905e7 q^{94} -3.17573e8 q^{95} +2.83975e8 q^{96} -1.16746e9 q^{97} -5.86201e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 48 q^{2} + 233 q^{3} + 768 q^{4} + 733 q^{5} + 3728 q^{6} + 12288 q^{8} + 15058 q^{9} + 11728 q^{10} - 7339 q^{11} + 59648 q^{12} + 98518 q^{13} + 369119 q^{15} + 196608 q^{16} + 306665 q^{17} + 240928 q^{18}+ \cdots - 628109434 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.0000 0.707107
\(3\) 270.819 1.93034 0.965171 0.261621i \(-0.0842571\pi\)
0.965171 + 0.261621i \(0.0842571\pi\)
\(4\) 256.000 0.500000
\(5\) 1369.57 0.979985 0.489992 0.871727i \(-0.337000\pi\)
0.489992 + 0.871727i \(0.337000\pi\)
\(6\) 4333.11 1.36496
\(7\) 0 0
\(8\) 4096.00 0.353553
\(9\) 53660.1 2.72622
\(10\) 21913.1 0.692954
\(11\) −10924.3 −0.224972 −0.112486 0.993653i \(-0.535881\pi\)
−0.112486 + 0.993653i \(0.535881\pi\)
\(12\) 69329.8 0.965171
\(13\) −7968.27 −0.0773783 −0.0386891 0.999251i \(-0.512318\pi\)
−0.0386891 + 0.999251i \(0.512318\pi\)
\(14\) 0 0
\(15\) 370906. 1.89170
\(16\) 65536.0 0.250000
\(17\) −324012. −0.940894 −0.470447 0.882428i \(-0.655907\pi\)
−0.470447 + 0.882428i \(0.655907\pi\)
\(18\) 858562. 1.92773
\(19\) −231878. −0.408195 −0.204098 0.978951i \(-0.565426\pi\)
−0.204098 + 0.978951i \(0.565426\pi\)
\(20\) 350610. 0.489992
\(21\) 0 0
\(22\) −174789. −0.159079
\(23\) 2.10662e6 1.56968 0.784841 0.619698i \(-0.212745\pi\)
0.784841 + 0.619698i \(0.212745\pi\)
\(24\) 1.10928e6 0.682479
\(25\) −77402.7 −0.0396302
\(26\) −127492. −0.0547147
\(27\) 9.20167e6 3.33219
\(28\) 0 0
\(29\) −5.46332e6 −1.43438 −0.717192 0.696876i \(-0.754573\pi\)
−0.717192 + 0.696876i \(0.754573\pi\)
\(30\) 5.93450e6 1.33764
\(31\) −1.97867e6 −0.384810 −0.192405 0.981316i \(-0.561629\pi\)
−0.192405 + 0.981316i \(0.561629\pi\)
\(32\) 1.04858e6 0.176777
\(33\) −2.95852e6 −0.434272
\(34\) −5.18419e6 −0.665312
\(35\) 0 0
\(36\) 1.37370e7 1.36311
\(37\) 4.76533e6 0.418008 0.209004 0.977915i \(-0.432978\pi\)
0.209004 + 0.977915i \(0.432978\pi\)
\(38\) −3.71005e6 −0.288638
\(39\) −2.15796e6 −0.149366
\(40\) 5.60976e6 0.346477
\(41\) 5.57398e6 0.308062 0.154031 0.988066i \(-0.450774\pi\)
0.154031 + 0.988066i \(0.450774\pi\)
\(42\) 0 0
\(43\) −3.11341e7 −1.38876 −0.694382 0.719607i \(-0.744322\pi\)
−0.694382 + 0.719607i \(0.744322\pi\)
\(44\) −2.79663e6 −0.112486
\(45\) 7.34913e7 2.67165
\(46\) 3.37060e7 1.10993
\(47\) 4.31190e6 0.128893 0.0644464 0.997921i \(-0.479472\pi\)
0.0644464 + 0.997921i \(0.479472\pi\)
\(48\) 1.77484e7 0.482585
\(49\) 0 0
\(50\) −1.23844e6 −0.0280228
\(51\) −8.77486e7 −1.81625
\(52\) −2.03988e6 −0.0386891
\(53\) −9.02903e7 −1.57181 −0.785905 0.618348i \(-0.787802\pi\)
−0.785905 + 0.618348i \(0.787802\pi\)
\(54\) 1.47227e8 2.35621
\(55\) −1.49616e7 −0.220469
\(56\) 0 0
\(57\) −6.27970e7 −0.787957
\(58\) −8.74131e7 −1.01426
\(59\) −7.29111e7 −0.783357 −0.391678 0.920102i \(-0.628105\pi\)
−0.391678 + 0.920102i \(0.628105\pi\)
\(60\) 9.49520e7 0.945852
\(61\) −7.43497e6 −0.0687535 −0.0343768 0.999409i \(-0.510945\pi\)
−0.0343768 + 0.999409i \(0.510945\pi\)
\(62\) −3.16588e7 −0.272102
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) −1.09131e7 −0.0758295
\(66\) −4.73363e7 −0.307077
\(67\) 1.05787e8 0.641352 0.320676 0.947189i \(-0.396090\pi\)
0.320676 + 0.947189i \(0.396090\pi\)
\(68\) −8.29470e7 −0.470447
\(69\) 5.70514e8 3.03002
\(70\) 0 0
\(71\) 1.10248e8 0.514884 0.257442 0.966294i \(-0.417120\pi\)
0.257442 + 0.966294i \(0.417120\pi\)
\(72\) 2.19792e8 0.963863
\(73\) 2.04449e8 0.842621 0.421311 0.906916i \(-0.361570\pi\)
0.421311 + 0.906916i \(0.361570\pi\)
\(74\) 7.62452e7 0.295576
\(75\) −2.09622e7 −0.0764998
\(76\) −5.93607e7 −0.204098
\(77\) 0 0
\(78\) −3.45274e7 −0.105618
\(79\) 8.87846e7 0.256458 0.128229 0.991745i \(-0.459071\pi\)
0.128229 + 0.991745i \(0.459071\pi\)
\(80\) 8.97561e7 0.244996
\(81\) 1.43580e9 3.70604
\(82\) 8.91836e7 0.217833
\(83\) 2.41708e8 0.559035 0.279517 0.960141i \(-0.409826\pi\)
0.279517 + 0.960141i \(0.409826\pi\)
\(84\) 0 0
\(85\) −4.43757e8 −0.922061
\(86\) −4.98146e8 −0.982004
\(87\) −1.47957e9 −2.76885
\(88\) −4.47461e7 −0.0795395
\(89\) 5.48690e8 0.926984 0.463492 0.886101i \(-0.346596\pi\)
0.463492 + 0.886101i \(0.346596\pi\)
\(90\) 1.17586e9 1.88914
\(91\) 0 0
\(92\) 5.39295e8 0.784841
\(93\) −5.35863e8 −0.742814
\(94\) 6.89905e7 0.0911410
\(95\) −3.17573e8 −0.400025
\(96\) 2.83975e8 0.341239
\(97\) −1.16746e9 −1.33897 −0.669483 0.742828i \(-0.733484\pi\)
−0.669483 + 0.742828i \(0.733484\pi\)
\(98\) 0 0
\(99\) −5.86201e8 −0.613322
\(100\) −1.98151e7 −0.0198151
\(101\) 1.38986e9 1.32900 0.664498 0.747290i \(-0.268646\pi\)
0.664498 + 0.747290i \(0.268646\pi\)
\(102\) −1.40398e9 −1.28428
\(103\) 9.38808e8 0.821881 0.410941 0.911662i \(-0.365200\pi\)
0.410941 + 0.911662i \(0.365200\pi\)
\(104\) −3.26380e7 −0.0273573
\(105\) 0 0
\(106\) −1.44465e9 −1.11144
\(107\) 2.59288e8 0.191230 0.0956149 0.995418i \(-0.469518\pi\)
0.0956149 + 0.995418i \(0.469518\pi\)
\(108\) 2.35563e9 1.66609
\(109\) −8.25786e7 −0.0560336 −0.0280168 0.999607i \(-0.508919\pi\)
−0.0280168 + 0.999607i \(0.508919\pi\)
\(110\) −2.39386e8 −0.155895
\(111\) 1.29054e9 0.806899
\(112\) 0 0
\(113\) 1.17279e9 0.676654 0.338327 0.941029i \(-0.390139\pi\)
0.338327 + 0.941029i \(0.390139\pi\)
\(114\) −1.00475e9 −0.557169
\(115\) 2.88517e9 1.53826
\(116\) −1.39861e9 −0.717192
\(117\) −4.27578e8 −0.210950
\(118\) −1.16658e9 −0.553917
\(119\) 0 0
\(120\) 1.51923e9 0.668819
\(121\) −2.23861e9 −0.949388
\(122\) −1.18960e8 −0.0486161
\(123\) 1.50954e9 0.594664
\(124\) −5.06540e8 −0.192405
\(125\) −2.78095e9 −1.01882
\(126\) 0 0
\(127\) −2.85883e9 −0.975150 −0.487575 0.873081i \(-0.662118\pi\)
−0.487575 + 0.873081i \(0.662118\pi\)
\(128\) 2.68435e8 0.0883883
\(129\) −8.43172e9 −2.68079
\(130\) −1.74610e8 −0.0536196
\(131\) −5.17100e9 −1.53410 −0.767050 0.641587i \(-0.778276\pi\)
−0.767050 + 0.641587i \(0.778276\pi\)
\(132\) −7.57382e8 −0.217136
\(133\) 0 0
\(134\) 1.69260e9 0.453505
\(135\) 1.26023e10 3.26549
\(136\) −1.32715e9 −0.332656
\(137\) −1.69648e9 −0.411440 −0.205720 0.978611i \(-0.565954\pi\)
−0.205720 + 0.978611i \(0.565954\pi\)
\(138\) 9.12823e9 2.14255
\(139\) 5.00914e9 1.13814 0.569071 0.822288i \(-0.307303\pi\)
0.569071 + 0.822288i \(0.307303\pi\)
\(140\) 0 0
\(141\) 1.16775e9 0.248807
\(142\) 1.76397e9 0.364078
\(143\) 8.70480e7 0.0174079
\(144\) 3.51667e9 0.681554
\(145\) −7.48240e9 −1.40567
\(146\) 3.27119e9 0.595823
\(147\) 0 0
\(148\) 1.21992e9 0.209004
\(149\) 1.67994e9 0.279226 0.139613 0.990206i \(-0.455414\pi\)
0.139613 + 0.990206i \(0.455414\pi\)
\(150\) −3.35395e8 −0.0540935
\(151\) −6.81460e9 −1.06671 −0.533353 0.845893i \(-0.679068\pi\)
−0.533353 + 0.845893i \(0.679068\pi\)
\(152\) −9.49772e8 −0.144319
\(153\) −1.73865e10 −2.56508
\(154\) 0 0
\(155\) −2.70993e9 −0.377108
\(156\) −5.52438e8 −0.0746832
\(157\) 9.56661e8 0.125664 0.0628318 0.998024i \(-0.479987\pi\)
0.0628318 + 0.998024i \(0.479987\pi\)
\(158\) 1.42055e9 0.181343
\(159\) −2.44524e10 −3.03413
\(160\) 1.43610e9 0.173238
\(161\) 0 0
\(162\) 2.29728e10 2.62057
\(163\) −6.21953e9 −0.690102 −0.345051 0.938584i \(-0.612138\pi\)
−0.345051 + 0.938584i \(0.612138\pi\)
\(164\) 1.42694e9 0.154031
\(165\) −4.05190e9 −0.425580
\(166\) 3.86732e9 0.395297
\(167\) −3.33475e9 −0.331771 −0.165886 0.986145i \(-0.553048\pi\)
−0.165886 + 0.986145i \(0.553048\pi\)
\(168\) 0 0
\(169\) −1.05410e10 −0.994013
\(170\) −7.10011e9 −0.651996
\(171\) −1.24426e10 −1.11283
\(172\) −7.97033e9 −0.694382
\(173\) 1.13002e10 0.959131 0.479566 0.877506i \(-0.340794\pi\)
0.479566 + 0.877506i \(0.340794\pi\)
\(174\) −2.36732e10 −1.95787
\(175\) 0 0
\(176\) −7.15937e8 −0.0562429
\(177\) −1.97457e10 −1.51215
\(178\) 8.77904e9 0.655477
\(179\) 1.85514e9 0.135063 0.0675316 0.997717i \(-0.478488\pi\)
0.0675316 + 0.997717i \(0.478488\pi\)
\(180\) 1.88138e10 1.33583
\(181\) 1.64314e9 0.113794 0.0568972 0.998380i \(-0.481879\pi\)
0.0568972 + 0.998380i \(0.481879\pi\)
\(182\) 0 0
\(183\) −2.01353e9 −0.132718
\(184\) 8.62873e9 0.554966
\(185\) 6.52645e9 0.409642
\(186\) −8.57380e9 −0.525249
\(187\) 3.53961e9 0.211674
\(188\) 1.10385e9 0.0644464
\(189\) 0 0
\(190\) −5.08117e9 −0.282861
\(191\) 1.13687e10 0.618103 0.309052 0.951045i \(-0.399988\pi\)
0.309052 + 0.951045i \(0.399988\pi\)
\(192\) 4.54360e9 0.241293
\(193\) −3.81022e10 −1.97671 −0.988354 0.152175i \(-0.951372\pi\)
−0.988354 + 0.152175i \(0.951372\pi\)
\(194\) −1.86794e10 −0.946792
\(195\) −2.95548e9 −0.146377
\(196\) 0 0
\(197\) −1.71349e10 −0.810558 −0.405279 0.914193i \(-0.632826\pi\)
−0.405279 + 0.914193i \(0.632826\pi\)
\(198\) −9.37922e9 −0.433684
\(199\) −2.30179e10 −1.04046 −0.520232 0.854025i \(-0.674155\pi\)
−0.520232 + 0.854025i \(0.674155\pi\)
\(200\) −3.17042e8 −0.0140114
\(201\) 2.86492e10 1.23803
\(202\) 2.22377e10 0.939741
\(203\) 0 0
\(204\) −2.24637e10 −0.908123
\(205\) 7.63395e9 0.301896
\(206\) 1.50209e10 0.581158
\(207\) 1.13042e11 4.27929
\(208\) −5.22209e8 −0.0193446
\(209\) 2.53311e9 0.0918324
\(210\) 0 0
\(211\) 4.95907e10 1.72238 0.861190 0.508283i \(-0.169720\pi\)
0.861190 + 0.508283i \(0.169720\pi\)
\(212\) −2.31143e10 −0.785905
\(213\) 2.98574e10 0.993901
\(214\) 4.14861e9 0.135220
\(215\) −4.26403e10 −1.36097
\(216\) 3.76900e10 1.17811
\(217\) 0 0
\(218\) −1.32126e9 −0.0396217
\(219\) 5.53688e10 1.62655
\(220\) −3.83018e9 −0.110234
\(221\) 2.58181e9 0.0728047
\(222\) 2.06487e10 0.570563
\(223\) 5.54434e10 1.50134 0.750669 0.660679i \(-0.229731\pi\)
0.750669 + 0.660679i \(0.229731\pi\)
\(224\) 0 0
\(225\) −4.15344e9 −0.108041
\(226\) 1.87646e10 0.478466
\(227\) −3.53834e9 −0.0884471 −0.0442236 0.999022i \(-0.514081\pi\)
−0.0442236 + 0.999022i \(0.514081\pi\)
\(228\) −1.60760e10 −0.393978
\(229\) −3.04328e10 −0.731278 −0.365639 0.930757i \(-0.619150\pi\)
−0.365639 + 0.930757i \(0.619150\pi\)
\(230\) 4.61627e10 1.08772
\(231\) 0 0
\(232\) −2.23777e10 −0.507131
\(233\) 6.16096e9 0.136945 0.0684725 0.997653i \(-0.478187\pi\)
0.0684725 + 0.997653i \(0.478187\pi\)
\(234\) −6.84126e9 −0.149164
\(235\) 5.90545e9 0.126313
\(236\) −1.86652e10 −0.391678
\(237\) 2.40446e10 0.495051
\(238\) 0 0
\(239\) −6.33526e10 −1.25595 −0.627977 0.778232i \(-0.716117\pi\)
−0.627977 + 0.778232i \(0.716117\pi\)
\(240\) 2.43077e10 0.472926
\(241\) 7.51528e10 1.43506 0.717528 0.696530i \(-0.245274\pi\)
0.717528 + 0.696530i \(0.245274\pi\)
\(242\) −3.58177e10 −0.671319
\(243\) 2.07725e11 3.82174
\(244\) −1.90335e9 −0.0343768
\(245\) 0 0
\(246\) 2.41527e10 0.420491
\(247\) 1.84767e9 0.0315855
\(248\) −8.10464e9 −0.136051
\(249\) 6.54591e10 1.07913
\(250\) −4.44952e10 −0.720416
\(251\) 1.01701e11 1.61731 0.808653 0.588286i \(-0.200197\pi\)
0.808653 + 0.588286i \(0.200197\pi\)
\(252\) 0 0
\(253\) −2.30135e10 −0.353134
\(254\) −4.57413e10 −0.689535
\(255\) −1.20178e11 −1.77989
\(256\) 4.29497e9 0.0625000
\(257\) 5.51693e10 0.788857 0.394429 0.918927i \(-0.370943\pi\)
0.394429 + 0.918927i \(0.370943\pi\)
\(258\) −1.34908e11 −1.89560
\(259\) 0 0
\(260\) −2.79375e9 −0.0379147
\(261\) −2.93162e11 −3.91044
\(262\) −8.27360e10 −1.08477
\(263\) −2.24461e10 −0.289294 −0.144647 0.989483i \(-0.546205\pi\)
−0.144647 + 0.989483i \(0.546205\pi\)
\(264\) −1.21181e10 −0.153538
\(265\) −1.23659e11 −1.54035
\(266\) 0 0
\(267\) 1.48596e11 1.78940
\(268\) 2.70815e10 0.320676
\(269\) 2.35215e9 0.0273892 0.0136946 0.999906i \(-0.495641\pi\)
0.0136946 + 0.999906i \(0.495641\pi\)
\(270\) 2.01637e11 2.30905
\(271\) −1.49406e11 −1.68269 −0.841346 0.540496i \(-0.818236\pi\)
−0.841346 + 0.540496i \(0.818236\pi\)
\(272\) −2.12344e10 −0.235223
\(273\) 0 0
\(274\) −2.71437e10 −0.290932
\(275\) 8.45573e8 0.00891567
\(276\) 1.46052e11 1.51501
\(277\) −1.44399e11 −1.47368 −0.736842 0.676065i \(-0.763684\pi\)
−0.736842 + 0.676065i \(0.763684\pi\)
\(278\) 8.01463e10 0.804788
\(279\) −1.06176e11 −1.04908
\(280\) 0 0
\(281\) −7.04301e10 −0.673876 −0.336938 0.941527i \(-0.609391\pi\)
−0.336938 + 0.941527i \(0.609391\pi\)
\(282\) 1.86840e10 0.175933
\(283\) 2.04558e11 1.89574 0.947868 0.318665i \(-0.103234\pi\)
0.947868 + 0.318665i \(0.103234\pi\)
\(284\) 2.82235e10 0.257442
\(285\) −8.60049e10 −0.772185
\(286\) 1.39277e9 0.0123093
\(287\) 0 0
\(288\) 5.62667e10 0.481932
\(289\) −1.36043e10 −0.114719
\(290\) −1.19718e11 −0.993962
\(291\) −3.16171e11 −2.58466
\(292\) 5.23390e10 0.421311
\(293\) 1.08283e11 0.858335 0.429168 0.903225i \(-0.358807\pi\)
0.429168 + 0.903225i \(0.358807\pi\)
\(294\) 0 0
\(295\) −9.98569e10 −0.767677
\(296\) 1.95188e10 0.147788
\(297\) −1.00522e11 −0.749648
\(298\) 2.68790e10 0.197443
\(299\) −1.67861e10 −0.121459
\(300\) −5.36631e9 −0.0382499
\(301\) 0 0
\(302\) −1.09034e11 −0.754274
\(303\) 3.76400e11 2.56541
\(304\) −1.51964e10 −0.102049
\(305\) −1.01827e10 −0.0673774
\(306\) −2.78184e11 −1.81379
\(307\) −1.17650e11 −0.755912 −0.377956 0.925824i \(-0.623373\pi\)
−0.377956 + 0.925824i \(0.623373\pi\)
\(308\) 0 0
\(309\) 2.54247e11 1.58651
\(310\) −4.33589e10 −0.266655
\(311\) −1.77275e10 −0.107455 −0.0537273 0.998556i \(-0.517110\pi\)
−0.0537273 + 0.998556i \(0.517110\pi\)
\(312\) −8.83901e9 −0.0528090
\(313\) 1.06637e11 0.627996 0.313998 0.949424i \(-0.398331\pi\)
0.313998 + 0.949424i \(0.398331\pi\)
\(314\) 1.53066e10 0.0888576
\(315\) 0 0
\(316\) 2.27288e10 0.128229
\(317\) −3.31101e10 −0.184159 −0.0920797 0.995752i \(-0.529351\pi\)
−0.0920797 + 0.995752i \(0.529351\pi\)
\(318\) −3.91238e11 −2.14545
\(319\) 5.96831e10 0.322696
\(320\) 2.29776e10 0.122498
\(321\) 7.02203e10 0.369139
\(322\) 0 0
\(323\) 7.51311e10 0.384068
\(324\) 3.67564e11 1.85302
\(325\) 6.16766e8 0.00306652
\(326\) −9.95125e10 −0.487976
\(327\) −2.23639e10 −0.108164
\(328\) 2.28310e10 0.108916
\(329\) 0 0
\(330\) −6.48304e10 −0.300931
\(331\) −2.20016e11 −1.00746 −0.503730 0.863861i \(-0.668039\pi\)
−0.503730 + 0.863861i \(0.668039\pi\)
\(332\) 6.18771e10 0.279517
\(333\) 2.55708e11 1.13958
\(334\) −5.33560e10 −0.234598
\(335\) 1.44883e11 0.628515
\(336\) 0 0
\(337\) 1.58927e11 0.671217 0.335609 0.942001i \(-0.391058\pi\)
0.335609 + 0.942001i \(0.391058\pi\)
\(338\) −1.68656e11 −0.702873
\(339\) 3.17614e11 1.30617
\(340\) −1.13602e11 −0.461031
\(341\) 2.16157e10 0.0865713
\(342\) −1.99082e11 −0.786889
\(343\) 0 0
\(344\) −1.27525e11 −0.491002
\(345\) 7.81359e11 2.96937
\(346\) 1.80803e11 0.678208
\(347\) 9.05893e10 0.335424 0.167712 0.985836i \(-0.446362\pi\)
0.167712 + 0.985836i \(0.446362\pi\)
\(348\) −3.78771e11 −1.38443
\(349\) −1.82702e11 −0.659219 −0.329609 0.944117i \(-0.606917\pi\)
−0.329609 + 0.944117i \(0.606917\pi\)
\(350\) 0 0
\(351\) −7.33214e10 −0.257839
\(352\) −1.14550e10 −0.0397698
\(353\) 2.89147e11 0.991136 0.495568 0.868569i \(-0.334960\pi\)
0.495568 + 0.868569i \(0.334960\pi\)
\(354\) −3.15932e11 −1.06925
\(355\) 1.50993e11 0.504578
\(356\) 1.40465e11 0.463492
\(357\) 0 0
\(358\) 2.96822e10 0.0955041
\(359\) −3.29047e11 −1.04552 −0.522761 0.852479i \(-0.675098\pi\)
−0.522761 + 0.852479i \(0.675098\pi\)
\(360\) 3.01020e11 0.944571
\(361\) −2.68920e11 −0.833376
\(362\) 2.62902e10 0.0804647
\(363\) −6.06258e11 −1.83264
\(364\) 0 0
\(365\) 2.80007e11 0.825756
\(366\) −3.22165e10 −0.0938456
\(367\) −4.16454e11 −1.19831 −0.599156 0.800632i \(-0.704497\pi\)
−0.599156 + 0.800632i \(0.704497\pi\)
\(368\) 1.38060e11 0.392420
\(369\) 2.99100e11 0.839843
\(370\) 1.04423e11 0.289660
\(371\) 0 0
\(372\) −1.37181e11 −0.371407
\(373\) 1.07630e11 0.287900 0.143950 0.989585i \(-0.454020\pi\)
0.143950 + 0.989585i \(0.454020\pi\)
\(374\) 5.66338e10 0.149676
\(375\) −7.53135e11 −1.96667
\(376\) 1.76616e10 0.0455705
\(377\) 4.35332e10 0.110990
\(378\) 0 0
\(379\) 5.34243e11 1.33003 0.665016 0.746829i \(-0.268425\pi\)
0.665016 + 0.746829i \(0.268425\pi\)
\(380\) −8.12987e10 −0.200013
\(381\) −7.74226e11 −1.88237
\(382\) 1.81899e11 0.437065
\(383\) −3.07903e11 −0.731173 −0.365586 0.930777i \(-0.619132\pi\)
−0.365586 + 0.930777i \(0.619132\pi\)
\(384\) 7.26975e10 0.170620
\(385\) 0 0
\(386\) −6.09635e11 −1.39774
\(387\) −1.67066e12 −3.78607
\(388\) −2.98870e11 −0.669483
\(389\) 5.87210e11 1.30023 0.650115 0.759836i \(-0.274721\pi\)
0.650115 + 0.759836i \(0.274721\pi\)
\(390\) −4.72877e10 −0.103504
\(391\) −6.82570e11 −1.47690
\(392\) 0 0
\(393\) −1.40041e12 −2.96134
\(394\) −2.74159e11 −0.573151
\(395\) 1.21597e11 0.251324
\(396\) −1.50068e11 −0.306661
\(397\) 5.93603e11 1.19933 0.599665 0.800251i \(-0.295301\pi\)
0.599665 + 0.800251i \(0.295301\pi\)
\(398\) −3.68287e11 −0.735720
\(399\) 0 0
\(400\) −5.07267e9 −0.00990755
\(401\) 4.50186e11 0.869446 0.434723 0.900564i \(-0.356846\pi\)
0.434723 + 0.900564i \(0.356846\pi\)
\(402\) 4.58388e11 0.875419
\(403\) 1.57666e10 0.0297759
\(404\) 3.55803e11 0.664498
\(405\) 1.96643e12 3.63187
\(406\) 0 0
\(407\) −5.20580e10 −0.0940400
\(408\) −3.59418e11 −0.642140
\(409\) 4.34640e11 0.768023 0.384012 0.923328i \(-0.374542\pi\)
0.384012 + 0.923328i \(0.374542\pi\)
\(410\) 1.22143e11 0.213473
\(411\) −4.59440e11 −0.794219
\(412\) 2.40335e11 0.410941
\(413\) 0 0
\(414\) 1.80867e12 3.02592
\(415\) 3.31036e11 0.547846
\(416\) −8.35534e9 −0.0136787
\(417\) 1.35657e12 2.19700
\(418\) 4.05298e10 0.0649353
\(419\) −4.94533e11 −0.783848 −0.391924 0.919998i \(-0.628190\pi\)
−0.391924 + 0.919998i \(0.628190\pi\)
\(420\) 0 0
\(421\) 6.78076e11 1.05198 0.525992 0.850490i \(-0.323694\pi\)
0.525992 + 0.850490i \(0.323694\pi\)
\(422\) 7.93451e11 1.21791
\(423\) 2.31377e11 0.351390
\(424\) −3.69829e11 −0.555718
\(425\) 2.50794e10 0.0372878
\(426\) 4.77718e11 0.702794
\(427\) 0 0
\(428\) 6.63778e10 0.0956149
\(429\) 2.35743e10 0.0336032
\(430\) −6.82245e11 −0.962349
\(431\) 1.14262e12 1.59497 0.797485 0.603339i \(-0.206163\pi\)
0.797485 + 0.603339i \(0.206163\pi\)
\(432\) 6.03040e11 0.833047
\(433\) 9.94314e11 1.35934 0.679670 0.733518i \(-0.262123\pi\)
0.679670 + 0.733518i \(0.262123\pi\)
\(434\) 0 0
\(435\) −2.02638e12 −2.71343
\(436\) −2.11401e10 −0.0280168
\(437\) −4.88479e11 −0.640737
\(438\) 8.85901e11 1.15014
\(439\) 2.16942e11 0.278775 0.139387 0.990238i \(-0.455487\pi\)
0.139387 + 0.990238i \(0.455487\pi\)
\(440\) −6.12829e10 −0.0779475
\(441\) 0 0
\(442\) 4.13090e10 0.0514807
\(443\) 1.06952e12 1.31939 0.659693 0.751535i \(-0.270686\pi\)
0.659693 + 0.751535i \(0.270686\pi\)
\(444\) 3.30379e11 0.403449
\(445\) 7.51470e11 0.908430
\(446\) 8.87095e11 1.06161
\(447\) 4.54960e11 0.539001
\(448\) 0 0
\(449\) 1.65225e12 1.91853 0.959264 0.282510i \(-0.0911669\pi\)
0.959264 + 0.282510i \(0.0911669\pi\)
\(450\) −6.64551e10 −0.0763962
\(451\) −6.08920e10 −0.0693052
\(452\) 3.00234e11 0.338327
\(453\) −1.84553e12 −2.05910
\(454\) −5.66135e10 −0.0625416
\(455\) 0 0
\(456\) −2.57217e11 −0.278585
\(457\) −7.46509e10 −0.0800594 −0.0400297 0.999198i \(-0.512745\pi\)
−0.0400297 + 0.999198i \(0.512745\pi\)
\(458\) −4.86925e11 −0.517092
\(459\) −2.98145e12 −3.13524
\(460\) 7.38603e11 0.769132
\(461\) 5.63966e11 0.581565 0.290783 0.956789i \(-0.406084\pi\)
0.290783 + 0.956789i \(0.406084\pi\)
\(462\) 0 0
\(463\) 9.11377e11 0.921687 0.460844 0.887481i \(-0.347547\pi\)
0.460844 + 0.887481i \(0.347547\pi\)
\(464\) −3.58044e11 −0.358596
\(465\) −7.33902e11 −0.727947
\(466\) 9.85753e10 0.0968348
\(467\) −1.91784e11 −0.186589 −0.0932946 0.995639i \(-0.529740\pi\)
−0.0932946 + 0.995639i \(0.529740\pi\)
\(468\) −1.09460e11 −0.105475
\(469\) 0 0
\(470\) 9.44873e10 0.0893168
\(471\) 2.59082e11 0.242574
\(472\) −2.98644e11 −0.276958
\(473\) 3.40119e11 0.312433
\(474\) 3.84713e11 0.350054
\(475\) 1.79480e10 0.0161769
\(476\) 0 0
\(477\) −4.84499e12 −4.28509
\(478\) −1.01364e12 −0.888093
\(479\) 1.49058e12 1.29373 0.646866 0.762604i \(-0.276079\pi\)
0.646866 + 0.762604i \(0.276079\pi\)
\(480\) 3.88923e11 0.334409
\(481\) −3.79714e10 −0.0323447
\(482\) 1.20245e12 1.01474
\(483\) 0 0
\(484\) −5.73083e11 −0.474694
\(485\) −1.59892e12 −1.31217
\(486\) 3.32361e12 2.70238
\(487\) −1.26948e12 −1.02269 −0.511345 0.859376i \(-0.670853\pi\)
−0.511345 + 0.859376i \(0.670853\pi\)
\(488\) −3.04536e10 −0.0243080
\(489\) −1.68437e12 −1.33213
\(490\) 0 0
\(491\) −7.11119e11 −0.552173 −0.276087 0.961133i \(-0.589038\pi\)
−0.276087 + 0.961133i \(0.589038\pi\)
\(492\) 3.86442e11 0.297332
\(493\) 1.77018e12 1.34960
\(494\) 2.95626e10 0.0223343
\(495\) −8.02844e11 −0.601046
\(496\) −1.29674e11 −0.0962025
\(497\) 0 0
\(498\) 1.04735e12 0.763059
\(499\) 1.60263e12 1.15712 0.578562 0.815639i \(-0.303614\pi\)
0.578562 + 0.815639i \(0.303614\pi\)
\(500\) −7.11923e11 −0.509411
\(501\) −9.03114e11 −0.640432
\(502\) 1.62721e12 1.14361
\(503\) −6.48944e11 −0.452013 −0.226007 0.974126i \(-0.572567\pi\)
−0.226007 + 0.974126i \(0.572567\pi\)
\(504\) 0 0
\(505\) 1.90350e12 1.30239
\(506\) −3.68215e11 −0.249703
\(507\) −2.85471e12 −1.91878
\(508\) −7.31860e11 −0.487575
\(509\) −3.81925e10 −0.0252202 −0.0126101 0.999920i \(-0.504014\pi\)
−0.0126101 + 0.999920i \(0.504014\pi\)
\(510\) −1.92285e12 −1.25857
\(511\) 0 0
\(512\) 6.87195e10 0.0441942
\(513\) −2.13366e12 −1.36018
\(514\) 8.82709e11 0.557806
\(515\) 1.28576e12 0.805431
\(516\) −2.15852e12 −1.34039
\(517\) −4.71047e10 −0.0289972
\(518\) 0 0
\(519\) 3.06031e12 1.85145
\(520\) −4.47001e10 −0.0268098
\(521\) −1.16818e12 −0.694606 −0.347303 0.937753i \(-0.612902\pi\)
−0.347303 + 0.937753i \(0.612902\pi\)
\(522\) −4.69060e12 −2.76510
\(523\) 1.51866e12 0.887572 0.443786 0.896133i \(-0.353635\pi\)
0.443786 + 0.896133i \(0.353635\pi\)
\(524\) −1.32378e12 −0.767050
\(525\) 0 0
\(526\) −3.59137e11 −0.204562
\(527\) 6.41113e11 0.362065
\(528\) −1.93890e11 −0.108568
\(529\) 2.63671e12 1.46390
\(530\) −1.97854e12 −1.08919
\(531\) −3.91242e12 −2.13560
\(532\) 0 0
\(533\) −4.44149e10 −0.0238373
\(534\) 2.37754e12 1.26529
\(535\) 3.55113e11 0.187402
\(536\) 4.33304e11 0.226752
\(537\) 5.02407e11 0.260718
\(538\) 3.76344e10 0.0193671
\(539\) 0 0
\(540\) 3.22620e12 1.63275
\(541\) 1.19442e12 0.599473 0.299736 0.954022i \(-0.403101\pi\)
0.299736 + 0.954022i \(0.403101\pi\)
\(542\) −2.39049e12 −1.18984
\(543\) 4.44994e11 0.219662
\(544\) −3.39751e11 −0.166328
\(545\) −1.13097e11 −0.0549120
\(546\) 0 0
\(547\) −3.52503e11 −0.168353 −0.0841764 0.996451i \(-0.526826\pi\)
−0.0841764 + 0.996451i \(0.526826\pi\)
\(548\) −4.34299e11 −0.205720
\(549\) −3.98962e11 −0.187437
\(550\) 1.35292e10 0.00630433
\(551\) 1.26682e12 0.585509
\(552\) 2.33683e12 1.07127
\(553\) 0 0
\(554\) −2.31038e12 −1.04205
\(555\) 1.76749e12 0.790748
\(556\) 1.28234e12 0.569071
\(557\) −1.81198e12 −0.797638 −0.398819 0.917030i \(-0.630580\pi\)
−0.398819 + 0.917030i \(0.630580\pi\)
\(558\) −1.69881e12 −0.741808
\(559\) 2.48085e11 0.107460
\(560\) 0 0
\(561\) 9.58595e11 0.408604
\(562\) −1.12688e12 −0.476502
\(563\) −2.83080e12 −1.18747 −0.593733 0.804662i \(-0.702346\pi\)
−0.593733 + 0.804662i \(0.702346\pi\)
\(564\) 2.98943e11 0.124404
\(565\) 1.60621e12 0.663110
\(566\) 3.27293e12 1.34049
\(567\) 0 0
\(568\) 4.51577e11 0.182039
\(569\) 3.53471e12 1.41367 0.706837 0.707377i \(-0.250122\pi\)
0.706837 + 0.707377i \(0.250122\pi\)
\(570\) −1.37608e12 −0.546017
\(571\) 1.06393e12 0.418842 0.209421 0.977826i \(-0.432842\pi\)
0.209421 + 0.977826i \(0.432842\pi\)
\(572\) 2.22843e10 0.00870396
\(573\) 3.07887e12 1.19315
\(574\) 0 0
\(575\) −1.63058e11 −0.0622068
\(576\) 9.00268e11 0.340777
\(577\) 3.55526e12 1.33530 0.667652 0.744474i \(-0.267300\pi\)
0.667652 + 0.744474i \(0.267300\pi\)
\(578\) −2.17669e11 −0.0811188
\(579\) −1.03188e13 −3.81572
\(580\) −1.91549e12 −0.702837
\(581\) 0 0
\(582\) −5.05873e12 −1.82763
\(583\) 9.86362e11 0.353613
\(584\) 8.37424e11 0.297912
\(585\) −5.85599e11 −0.206728
\(586\) 1.73253e12 0.606935
\(587\) −5.01945e12 −1.74496 −0.872478 0.488653i \(-0.837488\pi\)
−0.872478 + 0.488653i \(0.837488\pi\)
\(588\) 0 0
\(589\) 4.58810e11 0.157078
\(590\) −1.59771e12 −0.542830
\(591\) −4.64047e12 −1.56465
\(592\) 3.12300e11 0.104502
\(593\) −3.61438e12 −1.20029 −0.600146 0.799890i \(-0.704891\pi\)
−0.600146 + 0.799890i \(0.704891\pi\)
\(594\) −1.60835e12 −0.530081
\(595\) 0 0
\(596\) 4.30065e11 0.139613
\(597\) −6.23370e12 −2.00845
\(598\) −2.68578e11 −0.0858846
\(599\) −8.96553e11 −0.284548 −0.142274 0.989827i \(-0.545441\pi\)
−0.142274 + 0.989827i \(0.545441\pi\)
\(600\) −8.58610e10 −0.0270468
\(601\) 2.12154e11 0.0663310 0.0331655 0.999450i \(-0.489441\pi\)
0.0331655 + 0.999450i \(0.489441\pi\)
\(602\) 0 0
\(603\) 5.67656e12 1.74847
\(604\) −1.74454e12 −0.533353
\(605\) −3.06593e12 −0.930385
\(606\) 6.02240e12 1.81402
\(607\) 1.97565e12 0.590692 0.295346 0.955390i \(-0.404565\pi\)
0.295346 + 0.955390i \(0.404565\pi\)
\(608\) −2.43142e11 −0.0721594
\(609\) 0 0
\(610\) −1.62923e11 −0.0476430
\(611\) −3.43584e10 −0.00997350
\(612\) −4.45095e12 −1.28254
\(613\) −3.85941e12 −1.10395 −0.551974 0.833861i \(-0.686125\pi\)
−0.551974 + 0.833861i \(0.686125\pi\)
\(614\) −1.88241e12 −0.534510
\(615\) 2.06742e12 0.582762
\(616\) 0 0
\(617\) −3.19932e12 −0.888738 −0.444369 0.895844i \(-0.646572\pi\)
−0.444369 + 0.895844i \(0.646572\pi\)
\(618\) 4.06796e12 1.12183
\(619\) 5.73209e12 1.56930 0.784649 0.619940i \(-0.212843\pi\)
0.784649 + 0.619940i \(0.212843\pi\)
\(620\) −6.93742e11 −0.188554
\(621\) 1.93844e13 5.23048
\(622\) −2.83639e11 −0.0759819
\(623\) 0 0
\(624\) −1.41424e11 −0.0373416
\(625\) −3.65753e12 −0.958799
\(626\) 1.70619e12 0.444060
\(627\) 6.86016e11 0.177268
\(628\) 2.44905e11 0.0628318
\(629\) −1.54402e12 −0.393301
\(630\) 0 0
\(631\) 6.65474e12 1.67109 0.835543 0.549425i \(-0.185153\pi\)
0.835543 + 0.549425i \(0.185153\pi\)
\(632\) 3.63662e11 0.0906714
\(633\) 1.34301e13 3.32478
\(634\) −5.29762e11 −0.130220
\(635\) −3.91537e12 −0.955632
\(636\) −6.25981e12 −1.51706
\(637\) 0 0
\(638\) 9.54930e11 0.228180
\(639\) 5.91594e12 1.40368
\(640\) 3.67641e11 0.0866192
\(641\) −4.60320e12 −1.07696 −0.538479 0.842639i \(-0.681001\pi\)
−0.538479 + 0.842639i \(0.681001\pi\)
\(642\) 1.12352e12 0.261021
\(643\) 6.55681e12 1.51267 0.756333 0.654186i \(-0.226989\pi\)
0.756333 + 0.654186i \(0.226989\pi\)
\(644\) 0 0
\(645\) −1.15478e13 −2.62713
\(646\) 1.20210e12 0.271577
\(647\) 1.79575e12 0.402880 0.201440 0.979501i \(-0.435438\pi\)
0.201440 + 0.979501i \(0.435438\pi\)
\(648\) 5.88103e12 1.31028
\(649\) 7.96505e11 0.176233
\(650\) 9.86825e9 0.00216835
\(651\) 0 0
\(652\) −1.59220e12 −0.345051
\(653\) −6.30641e12 −1.35729 −0.678645 0.734466i \(-0.737433\pi\)
−0.678645 + 0.734466i \(0.737433\pi\)
\(654\) −3.57822e11 −0.0764834
\(655\) −7.08205e12 −1.50339
\(656\) 3.65296e11 0.0770154
\(657\) 1.09708e13 2.29717
\(658\) 0 0
\(659\) −6.63478e12 −1.37038 −0.685191 0.728363i \(-0.740281\pi\)
−0.685191 + 0.728363i \(0.740281\pi\)
\(660\) −1.03729e12 −0.212790
\(661\) −2.38444e11 −0.0485825 −0.0242913 0.999705i \(-0.507733\pi\)
−0.0242913 + 0.999705i \(0.507733\pi\)
\(662\) −3.52025e12 −0.712382
\(663\) 6.99205e11 0.140538
\(664\) 9.90034e11 0.197649
\(665\) 0 0
\(666\) 4.09133e12 0.805806
\(667\) −1.15091e13 −2.25153
\(668\) −8.53695e11 −0.165886
\(669\) 1.50152e13 2.89809
\(670\) 2.31813e12 0.444427
\(671\) 8.12221e10 0.0154676
\(672\) 0 0
\(673\) 7.84956e12 1.47495 0.737475 0.675374i \(-0.236018\pi\)
0.737475 + 0.675374i \(0.236018\pi\)
\(674\) 2.54283e12 0.474622
\(675\) −7.12234e11 −0.132055
\(676\) −2.69850e12 −0.497006
\(677\) −7.27382e11 −0.133080 −0.0665401 0.997784i \(-0.521196\pi\)
−0.0665401 + 0.997784i \(0.521196\pi\)
\(678\) 5.08182e12 0.923603
\(679\) 0 0
\(680\) −1.81763e12 −0.325998
\(681\) −9.58252e11 −0.170733
\(682\) 3.45851e11 0.0612152
\(683\) −2.03252e11 −0.0357390 −0.0178695 0.999840i \(-0.505688\pi\)
−0.0178695 + 0.999840i \(0.505688\pi\)
\(684\) −3.18531e12 −0.556415
\(685\) −2.32345e12 −0.403205
\(686\) 0 0
\(687\) −8.24180e12 −1.41162
\(688\) −2.04040e12 −0.347191
\(689\) 7.19458e11 0.121624
\(690\) 1.25017e13 2.09966
\(691\) 4.66699e12 0.778728 0.389364 0.921084i \(-0.372695\pi\)
0.389364 + 0.921084i \(0.372695\pi\)
\(692\) 2.89285e12 0.479566
\(693\) 0 0
\(694\) 1.44943e12 0.237181
\(695\) 6.86037e12 1.11536
\(696\) −6.06033e12 −0.978937
\(697\) −1.80603e12 −0.289853
\(698\) −2.92324e12 −0.466138
\(699\) 1.66851e12 0.264351
\(700\) 0 0
\(701\) −1.00377e12 −0.157001 −0.0785003 0.996914i \(-0.525013\pi\)
−0.0785003 + 0.996914i \(0.525013\pi\)
\(702\) −1.17314e12 −0.182320
\(703\) −1.10497e12 −0.170629
\(704\) −1.83280e11 −0.0281215
\(705\) 1.59931e12 0.243827
\(706\) 4.62636e12 0.700839
\(707\) 0 0
\(708\) −5.05491e12 −0.756073
\(709\) 3.02087e12 0.448977 0.224488 0.974477i \(-0.427929\pi\)
0.224488 + 0.974477i \(0.427929\pi\)
\(710\) 2.41588e12 0.356791
\(711\) 4.76419e12 0.699159
\(712\) 2.24744e12 0.327738
\(713\) −4.16832e12 −0.604029
\(714\) 0 0
\(715\) 1.19218e11 0.0170595
\(716\) 4.74915e11 0.0675316
\(717\) −1.71571e13 −2.42442
\(718\) −5.26476e12 −0.739296
\(719\) −1.09553e13 −1.52877 −0.764386 0.644758i \(-0.776958\pi\)
−0.764386 + 0.644758i \(0.776958\pi\)
\(720\) 4.81633e12 0.667913
\(721\) 0 0
\(722\) −4.30273e12 −0.589286
\(723\) 2.03528e13 2.77015
\(724\) 4.20643e11 0.0568972
\(725\) 4.22876e11 0.0568449
\(726\) −9.70013e12 −1.29587
\(727\) 1.28144e13 1.70135 0.850674 0.525694i \(-0.176194\pi\)
0.850674 + 0.525694i \(0.176194\pi\)
\(728\) 0 0
\(729\) 2.79953e13 3.67122
\(730\) 4.48012e12 0.583898
\(731\) 1.00878e13 1.30668
\(732\) −5.15465e11 −0.0663589
\(733\) 7.12017e12 0.911009 0.455505 0.890233i \(-0.349459\pi\)
0.455505 + 0.890233i \(0.349459\pi\)
\(734\) −6.66326e12 −0.847334
\(735\) 0 0
\(736\) 2.20895e12 0.277483
\(737\) −1.15566e12 −0.144286
\(738\) 4.78560e12 0.593859
\(739\) −5.53361e12 −0.682509 −0.341254 0.939971i \(-0.610852\pi\)
−0.341254 + 0.939971i \(0.610852\pi\)
\(740\) 1.67077e12 0.204821
\(741\) 5.00384e11 0.0609707
\(742\) 0 0
\(743\) 2.58825e12 0.311571 0.155785 0.987791i \(-0.450209\pi\)
0.155785 + 0.987791i \(0.450209\pi\)
\(744\) −2.19489e12 −0.262625
\(745\) 2.30080e12 0.273637
\(746\) 1.72207e12 0.203576
\(747\) 1.29701e13 1.52405
\(748\) 9.06141e11 0.105837
\(749\) 0 0
\(750\) −1.20502e13 −1.39065
\(751\) −5.64331e12 −0.647373 −0.323686 0.946164i \(-0.604922\pi\)
−0.323686 + 0.946164i \(0.604922\pi\)
\(752\) 2.82585e11 0.0322232
\(753\) 2.75425e13 3.12195
\(754\) 6.96531e11 0.0784819
\(755\) −9.33308e12 −1.04535
\(756\) 0 0
\(757\) −1.51570e13 −1.67757 −0.838786 0.544462i \(-0.816734\pi\)
−0.838786 + 0.544462i \(0.816734\pi\)
\(758\) 8.54789e12 0.940475
\(759\) −6.23249e12 −0.681669
\(760\) −1.30078e12 −0.141430
\(761\) −8.05711e12 −0.870860 −0.435430 0.900222i \(-0.643404\pi\)
−0.435430 + 0.900222i \(0.643404\pi\)
\(762\) −1.23876e13 −1.33104
\(763\) 0 0
\(764\) 2.91039e12 0.309052
\(765\) −2.38120e13 −2.51374
\(766\) −4.92646e12 −0.517017
\(767\) 5.80975e11 0.0606148
\(768\) 1.16316e12 0.120646
\(769\) −2.31836e12 −0.239063 −0.119531 0.992830i \(-0.538139\pi\)
−0.119531 + 0.992830i \(0.538139\pi\)
\(770\) 0 0
\(771\) 1.49409e13 1.52276
\(772\) −9.75417e12 −0.988354
\(773\) −1.70922e13 −1.72183 −0.860916 0.508747i \(-0.830109\pi\)
−0.860916 + 0.508747i \(0.830109\pi\)
\(774\) −2.67306e13 −2.67716
\(775\) 1.53155e11 0.0152501
\(776\) −4.78192e12 −0.473396
\(777\) 0 0
\(778\) 9.39536e12 0.919402
\(779\) −1.29248e12 −0.125749
\(780\) −7.56603e11 −0.0731884
\(781\) −1.20439e12 −0.115834
\(782\) −1.09211e13 −1.04433
\(783\) −5.02716e13 −4.77964
\(784\) 0 0
\(785\) 1.31021e12 0.123148
\(786\) −2.24065e13 −2.09398
\(787\) −4.18824e12 −0.389176 −0.194588 0.980885i \(-0.562337\pi\)
−0.194588 + 0.980885i \(0.562337\pi\)
\(788\) −4.38654e12 −0.405279
\(789\) −6.07883e12 −0.558436
\(790\) 1.94555e12 0.177713
\(791\) 0 0
\(792\) −2.40108e12 −0.216842
\(793\) 5.92438e10 0.00532003
\(794\) 9.49764e12 0.848054
\(795\) −3.34892e13 −2.97340
\(796\) −5.89259e12 −0.520232
\(797\) 1.78707e13 1.56884 0.784421 0.620229i \(-0.212960\pi\)
0.784421 + 0.620229i \(0.212960\pi\)
\(798\) 0 0
\(799\) −1.39711e12 −0.121274
\(800\) −8.11626e10 −0.00700570
\(801\) 2.94428e13 2.52716
\(802\) 7.20298e12 0.614791
\(803\) −2.23347e12 −0.189566
\(804\) 7.33420e12 0.619014
\(805\) 0 0
\(806\) 2.52265e11 0.0210547
\(807\) 6.37007e11 0.0528705
\(808\) 5.69285e12 0.469871
\(809\) −3.19043e12 −0.261867 −0.130934 0.991391i \(-0.541797\pi\)
−0.130934 + 0.991391i \(0.541797\pi\)
\(810\) 3.14628e13 2.56812
\(811\) −1.37637e12 −0.111722 −0.0558612 0.998439i \(-0.517790\pi\)
−0.0558612 + 0.998439i \(0.517790\pi\)
\(812\) 0 0
\(813\) −4.04619e13 −3.24817
\(814\) −8.32928e11 −0.0664963
\(815\) −8.51808e12 −0.676290
\(816\) −5.75069e12 −0.454061
\(817\) 7.21931e12 0.566887
\(818\) 6.95423e12 0.543075
\(819\) 0 0
\(820\) 1.95429e12 0.150948
\(821\) 2.10169e13 1.61445 0.807223 0.590247i \(-0.200970\pi\)
0.807223 + 0.590247i \(0.200970\pi\)
\(822\) −7.35104e12 −0.561598
\(823\) −1.36094e13 −1.03405 −0.517024 0.855971i \(-0.672960\pi\)
−0.517024 + 0.855971i \(0.672960\pi\)
\(824\) 3.84536e12 0.290579
\(825\) 2.28998e11 0.0172103
\(826\) 0 0
\(827\) 1.02944e13 0.765288 0.382644 0.923896i \(-0.375014\pi\)
0.382644 + 0.923896i \(0.375014\pi\)
\(828\) 2.89387e13 2.13965
\(829\) 2.59127e13 1.90554 0.952769 0.303695i \(-0.0982204\pi\)
0.952769 + 0.303695i \(0.0982204\pi\)
\(830\) 5.29657e12 0.387385
\(831\) −3.91059e13 −2.84471
\(832\) −1.33685e11 −0.00967228
\(833\) 0 0
\(834\) 2.17052e13 1.55352
\(835\) −4.56717e12 −0.325131
\(836\) 6.48477e11 0.0459162
\(837\) −1.82071e13 −1.28226
\(838\) −7.91252e12 −0.554264
\(839\) −5.20978e12 −0.362986 −0.181493 0.983392i \(-0.558093\pi\)
−0.181493 + 0.983392i \(0.558093\pi\)
\(840\) 0 0
\(841\) 1.53407e13 1.05746
\(842\) 1.08492e13 0.743864
\(843\) −1.90738e13 −1.30081
\(844\) 1.26952e13 0.861190
\(845\) −1.44366e13 −0.974117
\(846\) 3.70204e12 0.248470
\(847\) 0 0
\(848\) −5.91727e12 −0.392952
\(849\) 5.53983e13 3.65942
\(850\) 4.01270e11 0.0263665
\(851\) 1.00387e13 0.656140
\(852\) 7.64348e12 0.496951
\(853\) −2.58714e12 −0.167321 −0.0836604 0.996494i \(-0.526661\pi\)
−0.0836604 + 0.996494i \(0.526661\pi\)
\(854\) 0 0
\(855\) −1.70410e13 −1.09056
\(856\) 1.06204e12 0.0676100
\(857\) −1.91338e13 −1.21168 −0.605838 0.795588i \(-0.707162\pi\)
−0.605838 + 0.795588i \(0.707162\pi\)
\(858\) 3.77189e11 0.0237611
\(859\) 2.66475e13 1.66989 0.834945 0.550334i \(-0.185499\pi\)
0.834945 + 0.550334i \(0.185499\pi\)
\(860\) −1.09159e13 −0.680483
\(861\) 0 0
\(862\) 1.82819e13 1.12781
\(863\) −2.48333e13 −1.52401 −0.762003 0.647574i \(-0.775784\pi\)
−0.762003 + 0.647574i \(0.775784\pi\)
\(864\) 9.64865e12 0.589053
\(865\) 1.54764e13 0.939934
\(866\) 1.59090e13 0.961198
\(867\) −3.68431e12 −0.221447
\(868\) 0 0
\(869\) −9.69912e11 −0.0576957
\(870\) −3.24220e13 −1.91869
\(871\) −8.42941e11 −0.0496267
\(872\) −3.38242e11 −0.0198109
\(873\) −6.26461e13 −3.65031
\(874\) −7.81567e12 −0.453069
\(875\) 0 0
\(876\) 1.41744e13 0.813273
\(877\) 1.18382e13 0.675753 0.337876 0.941190i \(-0.390291\pi\)
0.337876 + 0.941190i \(0.390291\pi\)
\(878\) 3.47107e12 0.197124
\(879\) 2.93252e13 1.65688
\(880\) −9.80526e11 −0.0551172
\(881\) 2.57086e13 1.43776 0.718882 0.695133i \(-0.244654\pi\)
0.718882 + 0.695133i \(0.244654\pi\)
\(882\) 0 0
\(883\) −1.32530e13 −0.733656 −0.366828 0.930289i \(-0.619556\pi\)
−0.366828 + 0.930289i \(0.619556\pi\)
\(884\) 6.60944e11 0.0364024
\(885\) −2.70432e13 −1.48188
\(886\) 1.71123e13 0.932947
\(887\) −3.14489e11 −0.0170588 −0.00852941 0.999964i \(-0.502715\pi\)
−0.00852941 + 0.999964i \(0.502715\pi\)
\(888\) 5.28606e12 0.285282
\(889\) 0 0
\(890\) 1.20235e13 0.642357
\(891\) −1.56851e13 −0.833755
\(892\) 1.41935e13 0.750669
\(893\) −9.99835e11 −0.0526135
\(894\) 7.27937e12 0.381131
\(895\) 2.54074e12 0.132360
\(896\) 0 0
\(897\) −4.54601e12 −0.234458
\(898\) 2.64361e13 1.35660
\(899\) 1.08101e13 0.551965
\(900\) −1.06328e12 −0.0540203
\(901\) 2.92551e13 1.47891
\(902\) −9.74272e11 −0.0490062
\(903\) 0 0
\(904\) 4.80374e12 0.239233
\(905\) 2.25039e12 0.111517
\(906\) −2.95284e13 −1.45601
\(907\) 3.68141e12 0.180627 0.0903133 0.995913i \(-0.471213\pi\)
0.0903133 + 0.995913i \(0.471213\pi\)
\(908\) −9.05816e11 −0.0442236
\(909\) 7.45798e13 3.62313
\(910\) 0 0
\(911\) −2.58776e13 −1.24478 −0.622388 0.782709i \(-0.713837\pi\)
−0.622388 + 0.782709i \(0.713837\pi\)
\(912\) −4.11547e12 −0.196989
\(913\) −2.64049e12 −0.125767
\(914\) −1.19441e12 −0.0566105
\(915\) −2.75768e12 −0.130061
\(916\) −7.79080e12 −0.365639
\(917\) 0 0
\(918\) −4.77032e13 −2.21695
\(919\) −1.22244e13 −0.565340 −0.282670 0.959217i \(-0.591220\pi\)
−0.282670 + 0.959217i \(0.591220\pi\)
\(920\) 1.18176e13 0.543858
\(921\) −3.18620e13 −1.45917
\(922\) 9.02345e12 0.411229
\(923\) −8.78488e11 −0.0398408
\(924\) 0 0
\(925\) −3.68849e11 −0.0165657
\(926\) 1.45820e13 0.651731
\(927\) 5.03765e13 2.24063
\(928\) −5.72870e12 −0.253566
\(929\) 2.78231e13 1.22556 0.612780 0.790254i \(-0.290051\pi\)
0.612780 + 0.790254i \(0.290051\pi\)
\(930\) −1.17424e13 −0.514736
\(931\) 0 0
\(932\) 1.57720e12 0.0684725
\(933\) −4.80094e12 −0.207424
\(934\) −3.06855e12 −0.131939
\(935\) 4.84775e12 0.207438
\(936\) −1.75136e12 −0.0745821
\(937\) −3.45042e13 −1.46232 −0.731162 0.682204i \(-0.761022\pi\)
−0.731162 + 0.682204i \(0.761022\pi\)
\(938\) 0 0
\(939\) 2.88793e13 1.21225
\(940\) 1.51180e12 0.0631565
\(941\) −4.18564e13 −1.74024 −0.870119 0.492842i \(-0.835958\pi\)
−0.870119 + 0.492842i \(0.835958\pi\)
\(942\) 4.14532e12 0.171526
\(943\) 1.17423e13 0.483559
\(944\) −4.77830e12 −0.195839
\(945\) 0 0
\(946\) 5.44191e12 0.220923
\(947\) −1.65956e13 −0.670529 −0.335265 0.942124i \(-0.608826\pi\)
−0.335265 + 0.942124i \(0.608826\pi\)
\(948\) 6.15541e12 0.247525
\(949\) −1.62911e12 −0.0652006
\(950\) 2.87168e11 0.0114388
\(951\) −8.96686e12 −0.355491
\(952\) 0 0
\(953\) 1.49663e13 0.587756 0.293878 0.955843i \(-0.405054\pi\)
0.293878 + 0.955843i \(0.405054\pi\)
\(954\) −7.75199e13 −3.03002
\(955\) 1.55702e13 0.605732
\(956\) −1.62183e13 −0.627977
\(957\) 1.61633e13 0.622913
\(958\) 2.38492e13 0.914806
\(959\) 0 0
\(960\) 6.22277e12 0.236463
\(961\) −2.25245e13 −0.851921
\(962\) −6.07542e11 −0.0228712
\(963\) 1.39134e13 0.521334
\(964\) 1.92391e13 0.717528
\(965\) −5.21837e13 −1.93714
\(966\) 0 0
\(967\) 2.21214e13 0.813568 0.406784 0.913524i \(-0.366650\pi\)
0.406784 + 0.913524i \(0.366650\pi\)
\(968\) −9.16933e12 −0.335659
\(969\) 2.03470e13 0.741383
\(970\) −2.55827e13 −0.927841
\(971\) −1.17366e13 −0.423696 −0.211848 0.977303i \(-0.567948\pi\)
−0.211848 + 0.977303i \(0.567948\pi\)
\(972\) 5.31777e13 1.91087
\(973\) 0 0
\(974\) −2.03116e13 −0.723151
\(975\) 1.67032e11 0.00591942
\(976\) −4.87258e11 −0.0171884
\(977\) 5.58753e13 1.96198 0.980989 0.194065i \(-0.0621674\pi\)
0.980989 + 0.194065i \(0.0621674\pi\)
\(978\) −2.69499e13 −0.941960
\(979\) −5.99408e12 −0.208545
\(980\) 0 0
\(981\) −4.43118e12 −0.152760
\(982\) −1.13779e13 −0.390445
\(983\) −3.86757e13 −1.32113 −0.660567 0.750767i \(-0.729684\pi\)
−0.660567 + 0.750767i \(0.729684\pi\)
\(984\) 6.18308e12 0.210246
\(985\) −2.34675e13 −0.794334
\(986\) 2.83229e13 0.954313
\(987\) 0 0
\(988\) 4.73002e11 0.0157927
\(989\) −6.55878e13 −2.17992
\(990\) −1.28455e13 −0.425004
\(991\) −2.49912e13 −0.823106 −0.411553 0.911386i \(-0.635014\pi\)
−0.411553 + 0.911386i \(0.635014\pi\)
\(992\) −2.07479e12 −0.0680254
\(993\) −5.95845e13 −1.94474
\(994\) 0 0
\(995\) −3.15247e13 −1.01964
\(996\) 1.67575e13 0.539564
\(997\) 1.35204e13 0.433373 0.216687 0.976241i \(-0.430475\pi\)
0.216687 + 0.976241i \(0.430475\pi\)
\(998\) 2.56420e13 0.818210
\(999\) 4.38489e13 1.39288
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 98.10.a.j.1.3 3
7.2 even 3 14.10.c.a.11.1 yes 6
7.3 odd 6 98.10.c.k.79.3 6
7.4 even 3 14.10.c.a.9.1 6
7.5 odd 6 98.10.c.k.67.3 6
7.6 odd 2 98.10.a.i.1.1 3
21.2 odd 6 126.10.g.f.109.3 6
21.11 odd 6 126.10.g.f.37.3 6
28.11 odd 6 112.10.i.b.65.3 6
28.23 odd 6 112.10.i.b.81.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.10.c.a.9.1 6 7.4 even 3
14.10.c.a.11.1 yes 6 7.2 even 3
98.10.a.i.1.1 3 7.6 odd 2
98.10.a.j.1.3 3 1.1 even 1 trivial
98.10.c.k.67.3 6 7.5 odd 6
98.10.c.k.79.3 6 7.3 odd 6
112.10.i.b.65.3 6 28.11 odd 6
112.10.i.b.81.3 6 28.23 odd 6
126.10.g.f.37.3 6 21.11 odd 6
126.10.g.f.109.3 6 21.2 odd 6