Properties

Label 112.10.i.b.65.1
Level $112$
Weight $10$
Character 112.65
Analytic conductor $57.684$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(65,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.65"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,233] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 1116x^{4} - 3085x^{3} + 1245325x^{2} - 2341500x + 4410000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{6}\cdot 3\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 65.1
Root \(-16.9063 + 29.2826i\) of defining polynomial
Character \(\chi\) \(=\) 112.65
Dual form 112.10.i.b.81.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-11.9224 - 20.6501i) q^{3} +(-541.184 + 937.358i) q^{5} +(5624.74 + 2952.27i) q^{7} +(9557.22 - 16553.6i) q^{9} +(37454.4 + 64872.9i) q^{11} -50060.6 q^{13} +25808.7 q^{15} +(-59482.6 - 103027. i) q^{17} +(402181. - 696599. i) q^{19} +(-6095.40 - 151350. i) q^{21} +(134394. - 232777. i) q^{23} +(390803. + 676891. i) q^{25} -925113. q^{27} -5.29735e6 q^{29} +(2.73293e6 + 4.73357e6i) q^{31} +(893089. - 1.54688e6i) q^{33} +(-5.81135e6 + 3.67467e6i) q^{35} +(-1.55446e6 + 2.69240e6i) q^{37} +(596840. + 1.03376e6i) q^{39} +2.07841e7 q^{41} -4.76437e6 q^{43} +(1.03444e7 + 1.79171e7i) q^{45} +(1.50766e7 - 2.61135e7i) q^{47} +(2.29218e7 + 3.32115e7i) q^{49} +(-1.41835e6 + 2.45665e6i) q^{51} +(-2.85871e7 - 4.95142e7i) q^{53} -8.10788e7 q^{55} -1.91798e7 q^{57} +(9.18379e7 + 1.59068e8i) q^{59} +(-2.65083e7 + 4.59138e7i) q^{61} +(1.02628e8 - 6.48941e7i) q^{63} +(2.70920e7 - 4.69247e7i) q^{65} +(8.67433e7 + 1.50244e8i) q^{67} -6.40918e6 q^{69} +1.68342e8 q^{71} +(2.32340e8 + 4.02424e8i) q^{73} +(9.31858e6 - 1.61403e7i) q^{75} +(1.91489e7 + 4.75469e8i) q^{77} +(-2.06864e8 + 3.58299e8i) q^{79} +(-1.77085e8 - 3.06720e8i) q^{81} -3.50584e8 q^{83} +1.28764e8 q^{85} +(6.31569e7 + 1.09391e8i) q^{87} +(-2.58736e8 + 4.48144e8i) q^{89} +(-2.81578e8 - 1.47792e8i) q^{91} +(6.51659e7 - 1.12871e8i) q^{93} +(4.35308e8 + 7.53976e8i) q^{95} +1.32529e9 q^{97} +1.43184e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 233 q^{3} - 733 q^{5} - 5012 q^{7} - 15058 q^{9} - 7339 q^{11} + 197036 q^{13} - 738238 q^{15} - 306665 q^{17} + 377991 q^{19} - 1585927 q^{21} + 2267255 q^{23} - 142612 q^{25} - 21348358 q^{27} - 13085956 q^{29}+ \cdots + 1256218868 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −11.9224 20.6501i −0.0849799 0.147190i 0.820403 0.571786i \(-0.193749\pi\)
−0.905383 + 0.424597i \(0.860416\pi\)
\(4\) 0 0
\(5\) −541.184 + 937.358i −0.387239 + 0.670718i −0.992077 0.125630i \(-0.959905\pi\)
0.604838 + 0.796349i \(0.293238\pi\)
\(6\) 0 0
\(7\) 5624.74 + 2952.27i 0.885444 + 0.464745i
\(8\) 0 0
\(9\) 9557.22 16553.6i 0.485557 0.841009i
\(10\) 0 0
\(11\) 37454.4 + 64872.9i 0.771322 + 1.33597i 0.936839 + 0.349762i \(0.113737\pi\)
−0.165517 + 0.986207i \(0.552929\pi\)
\(12\) 0 0
\(13\) −50060.6 −0.486128 −0.243064 0.970010i \(-0.578153\pi\)
−0.243064 + 0.970010i \(0.578153\pi\)
\(14\) 0 0
\(15\) 25808.7 0.131630
\(16\) 0 0
\(17\) −59482.6 103027.i −0.172731 0.299179i 0.766643 0.642074i \(-0.221926\pi\)
−0.939374 + 0.342895i \(0.888592\pi\)
\(18\) 0 0
\(19\) 402181. 696599.i 0.707996 1.22629i −0.257603 0.966251i \(-0.582933\pi\)
0.965599 0.260034i \(-0.0837339\pi\)
\(20\) 0 0
\(21\) −6095.40 151350.i −0.00683936 0.169822i
\(22\) 0 0
\(23\) 134394. 232777.i 0.100139 0.173447i −0.811603 0.584210i \(-0.801404\pi\)
0.911742 + 0.410763i \(0.134738\pi\)
\(24\) 0 0
\(25\) 390803. + 676891.i 0.200091 + 0.346568i
\(26\) 0 0
\(27\) −925113. −0.335010
\(28\) 0 0
\(29\) −5.29735e6 −1.39081 −0.695405 0.718618i \(-0.744775\pi\)
−0.695405 + 0.718618i \(0.744775\pi\)
\(30\) 0 0
\(31\) 2.73293e6 + 4.73357e6i 0.531497 + 0.920579i 0.999324 + 0.0367596i \(0.0117036\pi\)
−0.467827 + 0.883820i \(0.654963\pi\)
\(32\) 0 0
\(33\) 893089. 1.54688e6i 0.131094 0.227061i
\(34\) 0 0
\(35\) −5.81135e6 + 3.67467e6i −0.654592 + 0.413916i
\(36\) 0 0
\(37\) −1.55446e6 + 2.69240e6i −0.136355 + 0.236174i −0.926114 0.377243i \(-0.876872\pi\)
0.789759 + 0.613417i \(0.210206\pi\)
\(38\) 0 0
\(39\) 596840. + 1.03376e6i 0.0413111 + 0.0715530i
\(40\) 0 0
\(41\) 2.07841e7 1.14869 0.574345 0.818613i \(-0.305257\pi\)
0.574345 + 0.818613i \(0.305257\pi\)
\(42\) 0 0
\(43\) −4.76437e6 −0.212519 −0.106259 0.994338i \(-0.533887\pi\)
−0.106259 + 0.994338i \(0.533887\pi\)
\(44\) 0 0
\(45\) 1.03444e7 + 1.79171e7i 0.376054 + 0.651344i
\(46\) 0 0
\(47\) 1.50766e7 2.61135e7i 0.450675 0.780592i −0.547753 0.836640i \(-0.684517\pi\)
0.998428 + 0.0560482i \(0.0178501\pi\)
\(48\) 0 0
\(49\) 2.29218e7 + 3.32115e7i 0.568024 + 0.823012i
\(50\) 0 0
\(51\) −1.41835e6 + 2.45665e6i −0.0293573 + 0.0508483i
\(52\) 0 0
\(53\) −2.85871e7 4.95142e7i −0.497655 0.861963i 0.502342 0.864669i \(-0.332472\pi\)
−0.999996 + 0.00270617i \(0.999139\pi\)
\(54\) 0 0
\(55\) −8.10788e7 −1.19475
\(56\) 0 0
\(57\) −1.91798e7 −0.240662
\(58\) 0 0
\(59\) 9.18379e7 + 1.59068e8i 0.986706 + 1.70902i 0.634097 + 0.773254i \(0.281372\pi\)
0.352609 + 0.935771i \(0.385295\pi\)
\(60\) 0 0
\(61\) −2.65083e7 + 4.59138e7i −0.245131 + 0.424579i −0.962168 0.272455i \(-0.912164\pi\)
0.717038 + 0.697035i \(0.245498\pi\)
\(62\) 0 0
\(63\) 1.02628e8 6.48941e7i 0.820789 0.519007i
\(64\) 0 0
\(65\) 2.70920e7 4.69247e7i 0.188248 0.326055i
\(66\) 0 0
\(67\) 8.67433e7 + 1.50244e8i 0.525896 + 0.910878i 0.999545 + 0.0301643i \(0.00960304\pi\)
−0.473649 + 0.880713i \(0.657064\pi\)
\(68\) 0 0
\(69\) −6.40918e6 −0.0340394
\(70\) 0 0
\(71\) 1.68342e8 0.786195 0.393097 0.919497i \(-0.371404\pi\)
0.393097 + 0.919497i \(0.371404\pi\)
\(72\) 0 0
\(73\) 2.32340e8 + 4.02424e8i 0.957570 + 1.65856i 0.728375 + 0.685179i \(0.240276\pi\)
0.229195 + 0.973381i \(0.426391\pi\)
\(74\) 0 0
\(75\) 9.31858e6 1.61403e7i 0.0340075 0.0589026i
\(76\) 0 0
\(77\) 1.91489e7 + 4.75469e8i 0.0620776 + 1.54139i
\(78\) 0 0
\(79\) −2.06864e8 + 3.58299e8i −0.597535 + 1.03496i 0.395649 + 0.918402i \(0.370520\pi\)
−0.993184 + 0.116559i \(0.962814\pi\)
\(80\) 0 0
\(81\) −1.77085e8 3.06720e8i −0.457088 0.791699i
\(82\) 0 0
\(83\) −3.50584e8 −0.810850 −0.405425 0.914128i \(-0.632876\pi\)
−0.405425 + 0.914128i \(0.632876\pi\)
\(84\) 0 0
\(85\) 1.28764e8 0.267553
\(86\) 0 0
\(87\) 6.31569e7 + 1.09391e8i 0.118191 + 0.204713i
\(88\) 0 0
\(89\) −2.58736e8 + 4.48144e8i −0.437122 + 0.757117i −0.997466 0.0711428i \(-0.977335\pi\)
0.560345 + 0.828260i \(0.310669\pi\)
\(90\) 0 0
\(91\) −2.81578e8 1.47792e8i −0.430439 0.225926i
\(92\) 0 0
\(93\) 6.51659e7 1.12871e8i 0.0903331 0.156462i
\(94\) 0 0
\(95\) 4.35308e8 + 7.53976e8i 0.548328 + 0.949732i
\(96\) 0 0
\(97\) 1.32529e9 1.51998 0.759990 0.649935i \(-0.225204\pi\)
0.759990 + 0.649935i \(0.225204\pi\)
\(98\) 0 0
\(99\) 1.43184e9 1.49808
\(100\) 0 0
\(101\) −3.16581e7 5.48335e7i −0.0302718 0.0524324i 0.850493 0.525987i \(-0.176304\pi\)
−0.880764 + 0.473555i \(0.842971\pi\)
\(102\) 0 0
\(103\) −5.64570e8 + 9.77863e8i −0.494254 + 0.856073i −0.999978 0.00662253i \(-0.997892\pi\)
0.505724 + 0.862695i \(0.331225\pi\)
\(104\) 0 0
\(105\) 1.45167e8 + 7.61943e7i 0.116551 + 0.0611746i
\(106\) 0 0
\(107\) 9.23383e7 1.59935e8i 0.0681012 0.117955i −0.829964 0.557817i \(-0.811639\pi\)
0.898065 + 0.439862i \(0.144973\pi\)
\(108\) 0 0
\(109\) 6.03407e8 + 1.04513e9i 0.409441 + 0.709172i 0.994827 0.101582i \(-0.0323905\pi\)
−0.585386 + 0.810754i \(0.699057\pi\)
\(110\) 0 0
\(111\) 7.41313e7 0.0463498
\(112\) 0 0
\(113\) 3.17054e8 0.182928 0.0914639 0.995808i \(-0.470845\pi\)
0.0914639 + 0.995808i \(0.470845\pi\)
\(114\) 0 0
\(115\) 1.45464e8 + 2.51951e8i 0.0775559 + 0.134331i
\(116\) 0 0
\(117\) −4.78440e8 + 8.28682e8i −0.236043 + 0.408838i
\(118\) 0 0
\(119\) −3.04110e7 7.55108e8i −0.0139017 0.345182i
\(120\) 0 0
\(121\) −1.62669e9 + 2.81751e9i −0.689875 + 1.19490i
\(122\) 0 0
\(123\) −2.47795e8 4.29193e8i −0.0976156 0.169075i
\(124\) 0 0
\(125\) −2.95998e9 −1.08441
\(126\) 0 0
\(127\) 1.91107e9 0.651868 0.325934 0.945392i \(-0.394321\pi\)
0.325934 + 0.945392i \(0.394321\pi\)
\(128\) 0 0
\(129\) 5.68025e7 + 9.83848e7i 0.0180598 + 0.0312806i
\(130\) 0 0
\(131\) −3.02645e9 + 5.24197e9i −0.897869 + 1.55516i −0.0676566 + 0.997709i \(0.521552\pi\)
−0.830213 + 0.557447i \(0.811781\pi\)
\(132\) 0 0
\(133\) 4.31871e9 2.73084e9i 1.19680 0.756770i
\(134\) 0 0
\(135\) 5.00656e8 8.67162e8i 0.129729 0.224698i
\(136\) 0 0
\(137\) −2.49781e9 4.32634e9i −0.605783 1.04925i −0.991927 0.126809i \(-0.959527\pi\)
0.386144 0.922438i \(-0.373807\pi\)
\(138\) 0 0
\(139\) 5.39864e9 1.22664 0.613321 0.789834i \(-0.289833\pi\)
0.613321 + 0.789834i \(0.289833\pi\)
\(140\) 0 0
\(141\) −7.18995e8 −0.153193
\(142\) 0 0
\(143\) −1.87499e9 3.24758e9i −0.374961 0.649452i
\(144\) 0 0
\(145\) 2.86684e9 4.96551e9i 0.538577 0.932842i
\(146\) 0 0
\(147\) 4.12540e8 8.69297e8i 0.0728682 0.153547i
\(148\) 0 0
\(149\) −3.12472e8 + 5.41218e8i −0.0519366 + 0.0899568i −0.890825 0.454347i \(-0.849873\pi\)
0.838888 + 0.544304i \(0.183206\pi\)
\(150\) 0 0
\(151\) −5.50838e9 9.54079e9i −0.862238 1.49344i −0.869763 0.493469i \(-0.835729\pi\)
0.00752500 0.999972i \(-0.497605\pi\)
\(152\) 0 0
\(153\) −2.27395e9 −0.335483
\(154\) 0 0
\(155\) −5.91606e9 −0.823266
\(156\) 0 0
\(157\) 3.40159e9 + 5.89172e9i 0.446821 + 0.773916i 0.998177 0.0603538i \(-0.0192229\pi\)
−0.551356 + 0.834270i \(0.685890\pi\)
\(158\) 0 0
\(159\) −6.81650e8 + 1.18065e9i −0.0845813 + 0.146499i
\(160\) 0 0
\(161\) 1.44315e9 9.12545e8i 0.169276 0.107038i
\(162\) 0 0
\(163\) 1.03329e9 1.78972e9i 0.114651 0.198582i −0.802989 0.595994i \(-0.796758\pi\)
0.917640 + 0.397412i \(0.130092\pi\)
\(164\) 0 0
\(165\) 9.66650e8 + 1.67429e9i 0.101529 + 0.175854i
\(166\) 0 0
\(167\) 6.75774e8 0.0672322 0.0336161 0.999435i \(-0.489298\pi\)
0.0336161 + 0.999435i \(0.489298\pi\)
\(168\) 0 0
\(169\) −8.09844e9 −0.763679
\(170\) 0 0
\(171\) −7.68747e9 1.33151e10i −0.687545 1.19086i
\(172\) 0 0
\(173\) 9.72079e9 1.68369e10i 0.825076 1.42907i −0.0767850 0.997048i \(-0.524466\pi\)
0.901861 0.432026i \(-0.142201\pi\)
\(174\) 0 0
\(175\) 1.99801e8 + 4.96109e9i 0.0161037 + 0.399858i
\(176\) 0 0
\(177\) 2.18985e9 3.79293e9i 0.167700 0.290466i
\(178\) 0 0
\(179\) 2.04825e9 + 3.54767e9i 0.149123 + 0.258288i 0.930903 0.365265i \(-0.119022\pi\)
−0.781781 + 0.623553i \(0.785688\pi\)
\(180\) 0 0
\(181\) −2.41926e10 −1.67544 −0.837720 0.546101i \(-0.816112\pi\)
−0.837720 + 0.546101i \(0.816112\pi\)
\(182\) 0 0
\(183\) 1.26417e9 0.0833248
\(184\) 0 0
\(185\) −1.68250e9 2.91417e9i −0.105604 0.182912i
\(186\) 0 0
\(187\) 4.45577e9 7.71762e9i 0.266462 0.461526i
\(188\) 0 0
\(189\) −5.20352e9 2.73118e9i −0.296633 0.155694i
\(190\) 0 0
\(191\) 2.90999e9 5.04025e9i 0.158213 0.274033i −0.776011 0.630719i \(-0.782760\pi\)
0.934224 + 0.356686i \(0.116093\pi\)
\(192\) 0 0
\(193\) −1.19292e10 2.06619e10i −0.618874 1.07192i −0.989692 0.143215i \(-0.954256\pi\)
0.370818 0.928706i \(-0.379077\pi\)
\(194\) 0 0
\(195\) −1.29200e9 −0.0639892
\(196\) 0 0
\(197\) −1.13267e10 −0.535802 −0.267901 0.963446i \(-0.586330\pi\)
−0.267901 + 0.963446i \(0.586330\pi\)
\(198\) 0 0
\(199\) 8.76433e9 + 1.51803e10i 0.396168 + 0.686184i 0.993250 0.115997i \(-0.0370063\pi\)
−0.597081 + 0.802181i \(0.703673\pi\)
\(200\) 0 0
\(201\) 2.06837e9 3.58252e9i 0.0893811 0.154813i
\(202\) 0 0
\(203\) −2.97962e10 1.56392e10i −1.23149 0.646372i
\(204\) 0 0
\(205\) −1.12480e10 + 1.94821e10i −0.444818 + 0.770448i
\(206\) 0 0
\(207\) −2.56887e9 4.44941e9i −0.0972468 0.168436i
\(208\) 0 0
\(209\) 6.02538e10 2.18437
\(210\) 0 0
\(211\) 3.12620e10 1.08579 0.542895 0.839801i \(-0.317328\pi\)
0.542895 + 0.839801i \(0.317328\pi\)
\(212\) 0 0
\(213\) −2.00703e9 3.47628e9i −0.0668108 0.115720i
\(214\) 0 0
\(215\) 2.57840e9 4.46592e9i 0.0822957 0.142540i
\(216\) 0 0
\(217\) 1.39723e9 + 3.46935e10i 0.0427759 + 1.06213i
\(218\) 0 0
\(219\) 5.54007e9 9.59568e9i 0.162748 0.281889i
\(220\) 0 0
\(221\) 2.97773e9 + 5.15759e9i 0.0839693 + 0.145439i
\(222\) 0 0
\(223\) −2.74321e10 −0.742825 −0.371413 0.928468i \(-0.621127\pi\)
−0.371413 + 0.928468i \(0.621127\pi\)
\(224\) 0 0
\(225\) 1.49400e10 0.388622
\(226\) 0 0
\(227\) 5.78305e9 + 1.00165e10i 0.144557 + 0.250381i 0.929208 0.369558i \(-0.120491\pi\)
−0.784650 + 0.619939i \(0.787157\pi\)
\(228\) 0 0
\(229\) −2.11891e10 + 3.67007e10i −0.509159 + 0.881890i 0.490785 + 0.871281i \(0.336710\pi\)
−0.999944 + 0.0106087i \(0.996623\pi\)
\(230\) 0 0
\(231\) 9.59019e9 6.06413e9i 0.221602 0.140125i
\(232\) 0 0
\(233\) 4.26184e10 7.38173e10i 0.947318 1.64080i 0.196276 0.980549i \(-0.437115\pi\)
0.751042 0.660254i \(-0.229552\pi\)
\(234\) 0 0
\(235\) 1.63184e10 + 2.82643e10i 0.349038 + 0.604552i
\(236\) 0 0
\(237\) 9.86522e9 0.203114
\(238\) 0 0
\(239\) −1.81331e10 −0.359486 −0.179743 0.983714i \(-0.557527\pi\)
−0.179743 + 0.983714i \(0.557527\pi\)
\(240\) 0 0
\(241\) −1.24598e10 2.15810e10i −0.237921 0.412092i 0.722196 0.691688i \(-0.243133\pi\)
−0.960118 + 0.279596i \(0.909799\pi\)
\(242\) 0 0
\(243\) −1.33270e10 + 2.30831e10i −0.245192 + 0.424684i
\(244\) 0 0
\(245\) −4.35360e10 + 3.51240e9i −0.771971 + 0.0622812i
\(246\) 0 0
\(247\) −2.01334e10 + 3.48721e10i −0.344177 + 0.596132i
\(248\) 0 0
\(249\) 4.17979e9 + 7.23960e9i 0.0689060 + 0.119349i
\(250\) 0 0
\(251\) 3.47730e9 0.0552981 0.0276491 0.999618i \(-0.491198\pi\)
0.0276491 + 0.999618i \(0.491198\pi\)
\(252\) 0 0
\(253\) 2.01346e10 0.308959
\(254\) 0 0
\(255\) −1.53517e9 2.65899e9i −0.0227366 0.0393810i
\(256\) 0 0
\(257\) −3.77069e10 + 6.53102e10i −0.539164 + 0.933860i 0.459785 + 0.888030i \(0.347927\pi\)
−0.998949 + 0.0458298i \(0.985407\pi\)
\(258\) 0 0
\(259\) −1.66921e10 + 1.05549e10i −0.230496 + 0.145749i
\(260\) 0 0
\(261\) −5.06279e10 + 8.76901e10i −0.675317 + 1.16968i
\(262\) 0 0
\(263\) 5.88025e10 + 1.01849e11i 0.757870 + 1.31267i 0.943935 + 0.330132i \(0.107093\pi\)
−0.186064 + 0.982538i \(0.559573\pi\)
\(264\) 0 0
\(265\) 6.18834e10 0.770846
\(266\) 0 0
\(267\) 1.23390e10 0.148586
\(268\) 0 0
\(269\) 3.71283e10 + 6.43082e10i 0.432335 + 0.748826i 0.997074 0.0764436i \(-0.0243565\pi\)
−0.564739 + 0.825270i \(0.691023\pi\)
\(270\) 0 0
\(271\) 4.01996e10 6.96277e10i 0.452751 0.784188i −0.545805 0.837913i \(-0.683776\pi\)
0.998556 + 0.0537244i \(0.0171092\pi\)
\(272\) 0 0
\(273\) 3.05139e8 + 7.57665e9i 0.00332480 + 0.0825553i
\(274\) 0 0
\(275\) −2.92746e10 + 5.07051e10i −0.308669 + 0.534631i
\(276\) 0 0
\(277\) 6.52889e10 + 1.13084e11i 0.666316 + 1.15409i 0.978927 + 0.204212i \(0.0654631\pi\)
−0.312611 + 0.949881i \(0.601204\pi\)
\(278\) 0 0
\(279\) 1.04477e11 1.03229
\(280\) 0 0
\(281\) −6.23328e10 −0.596401 −0.298200 0.954503i \(-0.596386\pi\)
−0.298200 + 0.954503i \(0.596386\pi\)
\(282\) 0 0
\(283\) 3.39157e8 + 5.87437e8i 0.00314312 + 0.00544405i 0.867593 0.497276i \(-0.165666\pi\)
−0.864450 + 0.502720i \(0.832333\pi\)
\(284\) 0 0
\(285\) 1.03798e10 1.79783e10i 0.0931938 0.161416i
\(286\) 0 0
\(287\) 1.16905e11 + 6.13601e10i 1.01710 + 0.533848i
\(288\) 0 0
\(289\) 5.22176e10 9.04435e10i 0.440328 0.762671i
\(290\) 0 0
\(291\) −1.58006e10 2.73674e10i −0.129168 0.223725i
\(292\) 0 0
\(293\) 5.67165e9 0.0449578 0.0224789 0.999747i \(-0.492844\pi\)
0.0224789 + 0.999747i \(0.492844\pi\)
\(294\) 0 0
\(295\) −1.98805e11 −1.52837
\(296\) 0 0
\(297\) −3.46496e10 6.00148e10i −0.258401 0.447563i
\(298\) 0 0
\(299\) −6.72785e9 + 1.16530e10i −0.0486806 + 0.0843173i
\(300\) 0 0
\(301\) −2.67983e10 1.40657e10i −0.188174 0.0987671i
\(302\) 0 0
\(303\) −7.54878e8 + 1.30749e9i −0.00514500 + 0.00891139i
\(304\) 0 0
\(305\) −2.86917e10 4.96956e10i −0.189849 0.328828i
\(306\) 0 0
\(307\) 1.81171e11 1.16403 0.582017 0.813176i \(-0.302264\pi\)
0.582017 + 0.813176i \(0.302264\pi\)
\(308\) 0 0
\(309\) 2.69240e10 0.168007
\(310\) 0 0
\(311\) 5.19032e10 + 8.98990e10i 0.314610 + 0.544920i 0.979354 0.202150i \(-0.0647930\pi\)
−0.664745 + 0.747071i \(0.731460\pi\)
\(312\) 0 0
\(313\) 7.44320e10 1.28920e11i 0.438339 0.759226i −0.559222 0.829018i \(-0.688900\pi\)
0.997562 + 0.0697919i \(0.0222335\pi\)
\(314\) 0 0
\(315\) 5.28867e9 + 1.31318e11i 0.0302656 + 0.751498i
\(316\) 0 0
\(317\) −9.88493e10 + 1.71212e11i −0.549803 + 0.952286i 0.448485 + 0.893790i \(0.351964\pi\)
−0.998288 + 0.0584960i \(0.981370\pi\)
\(318\) 0 0
\(319\) −1.98409e11 3.43655e11i −1.07276 1.85808i
\(320\) 0 0
\(321\) −4.40356e9 −0.0231489
\(322\) 0 0
\(323\) −9.56912e10 −0.489171
\(324\) 0 0
\(325\) −1.95638e10 3.38855e10i −0.0972699 0.168476i
\(326\) 0 0
\(327\) 1.43881e10 2.49208e10i 0.0695885 0.120531i
\(328\) 0 0
\(329\) 1.61896e11 1.02371e11i 0.761824 0.481722i
\(330\) 0 0
\(331\) 2.78940e10 4.83139e10i 0.127728 0.221231i −0.795068 0.606520i \(-0.792565\pi\)
0.922796 + 0.385289i \(0.125898\pi\)
\(332\) 0 0
\(333\) 2.97126e10 + 5.14638e10i 0.132416 + 0.229352i
\(334\) 0 0
\(335\) −1.87776e11 −0.814590
\(336\) 0 0
\(337\) 4.01748e11 1.69676 0.848378 0.529391i \(-0.177580\pi\)
0.848378 + 0.529391i \(0.177580\pi\)
\(338\) 0 0
\(339\) −3.78003e9 6.54720e9i −0.0155452 0.0269251i
\(340\) 0 0
\(341\) −2.04720e11 + 3.54586e11i −0.819910 + 1.42013i
\(342\) 0 0
\(343\) 3.08798e10 + 2.54477e11i 0.120462 + 0.992718i
\(344\) 0 0
\(345\) 3.46854e9 6.00769e9i 0.0131814 0.0228308i
\(346\) 0 0
\(347\) −1.68936e11 2.92606e11i −0.625518 1.08343i −0.988440 0.151610i \(-0.951554\pi\)
0.362923 0.931819i \(-0.381779\pi\)
\(348\) 0 0
\(349\) −3.59959e11 −1.29879 −0.649395 0.760451i \(-0.724978\pi\)
−0.649395 + 0.760451i \(0.724978\pi\)
\(350\) 0 0
\(351\) 4.63117e10 0.162858
\(352\) 0 0
\(353\) −9.51732e10 1.64845e11i −0.326233 0.565053i 0.655528 0.755171i \(-0.272446\pi\)
−0.981761 + 0.190118i \(0.939113\pi\)
\(354\) 0 0
\(355\) −9.11040e10 + 1.57797e11i −0.304446 + 0.527315i
\(356\) 0 0
\(357\) −1.52305e10 + 9.63066e9i −0.0496258 + 0.0313797i
\(358\) 0 0
\(359\) 1.96349e11 3.40086e11i 0.623884 1.08060i −0.364872 0.931058i \(-0.618887\pi\)
0.988756 0.149540i \(-0.0477794\pi\)
\(360\) 0 0
\(361\) −1.62156e11 2.80862e11i −0.502517 0.870385i
\(362\) 0 0
\(363\) 7.75758e10 0.234502
\(364\) 0 0
\(365\) −5.02954e11 −1.48324
\(366\) 0 0
\(367\) −1.62237e10 2.81002e10i −0.0466823 0.0808561i 0.841740 0.539883i \(-0.181532\pi\)
−0.888422 + 0.459027i \(0.848198\pi\)
\(368\) 0 0
\(369\) 1.98638e11 3.44051e11i 0.557754 0.966059i
\(370\) 0 0
\(371\) −1.46154e10 3.62901e11i −0.0400523 0.994503i
\(372\) 0 0
\(373\) 2.19500e11 3.80185e11i 0.587143 1.01696i −0.407461 0.913223i \(-0.633586\pi\)
0.994604 0.103740i \(-0.0330809\pi\)
\(374\) 0 0
\(375\) 3.52900e10 + 6.11240e10i 0.0921532 + 0.159614i
\(376\) 0 0
\(377\) 2.65189e11 0.676112
\(378\) 0 0
\(379\) 3.56933e11 0.888607 0.444304 0.895876i \(-0.353451\pi\)
0.444304 + 0.895876i \(0.353451\pi\)
\(380\) 0 0
\(381\) −2.27845e10 3.94638e10i −0.0553957 0.0959482i
\(382\) 0 0
\(383\) −7.62364e10 + 1.32045e11i −0.181037 + 0.313566i −0.942234 0.334955i \(-0.891279\pi\)
0.761197 + 0.648521i \(0.224612\pi\)
\(384\) 0 0
\(385\) −4.56047e11 2.39367e11i −1.05788 0.555252i
\(386\) 0 0
\(387\) −4.55341e10 + 7.88674e10i −0.103190 + 0.178730i
\(388\) 0 0
\(389\) −2.78559e11 4.82478e11i −0.616800 1.06833i −0.990066 0.140604i \(-0.955096\pi\)
0.373266 0.927724i \(-0.378238\pi\)
\(390\) 0 0
\(391\) −3.19765e10 −0.0691887
\(392\) 0 0
\(393\) 1.44330e11 0.305203
\(394\) 0 0
\(395\) −2.23903e11 3.87811e11i −0.462778 0.801555i
\(396\) 0 0
\(397\) −4.32956e11 + 7.49901e11i −0.874755 + 1.51512i −0.0177309 + 0.999843i \(0.505644\pi\)
−0.857024 + 0.515277i \(0.827689\pi\)
\(398\) 0 0
\(399\) −1.07881e11 5.66239e10i −0.213093 0.111846i
\(400\) 0 0
\(401\) 3.38246e11 5.85858e11i 0.653254 1.13147i −0.329074 0.944304i \(-0.606737\pi\)
0.982328 0.187166i \(-0.0599301\pi\)
\(402\) 0 0
\(403\) −1.36812e11 2.36965e11i −0.258376 0.447520i
\(404\) 0 0
\(405\) 3.83342e11 0.708010
\(406\) 0 0
\(407\) −2.32885e11 −0.420695
\(408\) 0 0
\(409\) 1.39521e11 + 2.41658e11i 0.246539 + 0.427018i 0.962563 0.271058i \(-0.0873734\pi\)
−0.716024 + 0.698075i \(0.754040\pi\)
\(410\) 0 0
\(411\) −5.95596e10 + 1.03160e11i −0.102959 + 0.178330i
\(412\) 0 0
\(413\) 4.69528e10 + 1.16585e12i 0.0794121 + 1.97181i
\(414\) 0 0
\(415\) 1.89730e11 3.28623e11i 0.313993 0.543852i
\(416\) 0 0
\(417\) −6.43645e10 1.11483e11i −0.104240 0.180549i
\(418\) 0 0
\(419\) 9.62344e10 0.152534 0.0762671 0.997087i \(-0.475700\pi\)
0.0762671 + 0.997087i \(0.475700\pi\)
\(420\) 0 0
\(421\) 4.35437e10 0.0675547 0.0337774 0.999429i \(-0.489246\pi\)
0.0337774 + 0.999429i \(0.489246\pi\)
\(422\) 0 0
\(423\) −2.88181e11 4.99144e11i −0.437657 0.758043i
\(424\) 0 0
\(425\) 4.64920e10 8.05265e10i 0.0691238 0.119726i
\(426\) 0 0
\(427\) −2.84652e11 + 1.79993e11i −0.414371 + 0.262018i
\(428\) 0 0
\(429\) −4.47085e10 + 7.74375e10i −0.0637284 + 0.110381i
\(430\) 0 0
\(431\) 3.88074e11 + 6.72163e11i 0.541709 + 0.938268i 0.998806 + 0.0488511i \(0.0155560\pi\)
−0.457097 + 0.889417i \(0.651111\pi\)
\(432\) 0 0
\(433\) 5.97634e11 0.817033 0.408517 0.912751i \(-0.366046\pi\)
0.408517 + 0.912751i \(0.366046\pi\)
\(434\) 0 0
\(435\) −1.36718e11 −0.183073
\(436\) 0 0
\(437\) −1.08102e11 1.87238e11i −0.141797 0.245599i
\(438\) 0 0
\(439\) −1.59917e11 + 2.76984e11i −0.205496 + 0.355930i −0.950291 0.311364i \(-0.899214\pi\)
0.744795 + 0.667294i \(0.232547\pi\)
\(440\) 0 0
\(441\) 7.68838e11 6.20284e10i 0.967969 0.0780939i
\(442\) 0 0
\(443\) −2.21049e11 + 3.82869e11i −0.272692 + 0.472317i −0.969550 0.244892i \(-0.921247\pi\)
0.696858 + 0.717209i \(0.254581\pi\)
\(444\) 0 0
\(445\) −2.80048e11 4.85057e11i −0.338541 0.586371i
\(446\) 0 0
\(447\) 1.49016e10 0.0176543
\(448\) 0 0
\(449\) −7.93959e11 −0.921913 −0.460956 0.887423i \(-0.652494\pi\)
−0.460956 + 0.887423i \(0.652494\pi\)
\(450\) 0 0
\(451\) 7.78454e11 + 1.34832e12i 0.886010 + 1.53461i
\(452\) 0 0
\(453\) −1.31346e11 + 2.27497e11i −0.146546 + 0.253825i
\(454\) 0 0
\(455\) 2.90920e11 1.83956e11i 0.318216 0.201216i
\(456\) 0 0
\(457\) −4.85797e10 + 8.41426e10i −0.0520993 + 0.0902387i −0.890899 0.454202i \(-0.849925\pi\)
0.838800 + 0.544440i \(0.183258\pi\)
\(458\) 0 0
\(459\) 5.50282e10 + 9.53116e10i 0.0578666 + 0.100228i
\(460\) 0 0
\(461\) 8.96191e11 0.924158 0.462079 0.886839i \(-0.347104\pi\)
0.462079 + 0.886839i \(0.347104\pi\)
\(462\) 0 0
\(463\) 6.89366e11 0.697164 0.348582 0.937278i \(-0.386663\pi\)
0.348582 + 0.937278i \(0.386663\pi\)
\(464\) 0 0
\(465\) 7.05334e10 + 1.22167e11i 0.0699611 + 0.121176i
\(466\) 0 0
\(467\) −1.87790e11 + 3.25262e11i −0.182703 + 0.316451i −0.942800 0.333358i \(-0.891818\pi\)
0.760097 + 0.649810i \(0.225151\pi\)
\(468\) 0 0
\(469\) 4.43482e10 + 1.10117e12i 0.0423251 + 1.05094i
\(470\) 0 0
\(471\) 8.11098e10 1.40486e11i 0.0759416 0.131535i
\(472\) 0 0
\(473\) −1.78447e11 3.09079e11i −0.163920 0.283919i
\(474\) 0 0
\(475\) 6.28695e11 0.566655
\(476\) 0 0
\(477\) −1.09285e12 −0.966558
\(478\) 0 0
\(479\) −5.90992e11 1.02363e12i −0.512946 0.888448i −0.999887 0.0150137i \(-0.995221\pi\)
0.486941 0.873435i \(-0.338113\pi\)
\(480\) 0 0
\(481\) 7.78172e10 1.34783e11i 0.0662861 0.114811i
\(482\) 0 0
\(483\) −3.60500e10 1.89216e10i −0.0301400 0.0158196i
\(484\) 0 0
\(485\) −7.17225e11 + 1.24227e12i −0.588596 + 1.01948i
\(486\) 0 0
\(487\) −1.39234e11 2.41160e11i −0.112167 0.194278i 0.804477 0.593984i \(-0.202446\pi\)
−0.916644 + 0.399706i \(0.869112\pi\)
\(488\) 0 0
\(489\) −4.92771e10 −0.0389722
\(490\) 0 0
\(491\) −7.96998e10 −0.0618857 −0.0309429 0.999521i \(-0.509851\pi\)
−0.0309429 + 0.999521i \(0.509851\pi\)
\(492\) 0 0
\(493\) 3.15100e11 + 5.45770e11i 0.240236 + 0.416101i
\(494\) 0 0
\(495\) −7.74888e11 + 1.34214e12i −0.580117 + 1.00479i
\(496\) 0 0
\(497\) 9.46880e11 + 4.96991e11i 0.696132 + 0.365380i
\(498\) 0 0
\(499\) 1.59936e11 2.77017e11i 0.115477 0.200011i −0.802494 0.596661i \(-0.796494\pi\)
0.917970 + 0.396649i \(0.129827\pi\)
\(500\) 0 0
\(501\) −8.05682e9 1.39548e10i −0.00571339 0.00989588i
\(502\) 0 0
\(503\) 1.67487e12 1.16661 0.583306 0.812253i \(-0.301759\pi\)
0.583306 + 0.812253i \(0.301759\pi\)
\(504\) 0 0
\(505\) 6.85314e10 0.0468898
\(506\) 0 0
\(507\) 9.65524e10 + 1.67234e11i 0.0648974 + 0.112406i
\(508\) 0 0
\(509\) 3.12305e11 5.40927e11i 0.206228 0.357198i −0.744295 0.667851i \(-0.767214\pi\)
0.950523 + 0.310653i \(0.100548\pi\)
\(510\) 0 0
\(511\) 1.18786e11 + 2.94946e12i 0.0770672 + 1.91359i
\(512\) 0 0
\(513\) −3.72063e11 + 6.44433e11i −0.237186 + 0.410818i
\(514\) 0 0
\(515\) −6.11072e11 1.05841e12i −0.382789 0.663010i
\(516\) 0 0
\(517\) 2.25874e12 1.39046
\(518\) 0 0
\(519\) −4.63579e11 −0.280460
\(520\) 0 0
\(521\) −3.21473e11 5.56808e11i −0.191150 0.331082i 0.754481 0.656321i \(-0.227888\pi\)
−0.945632 + 0.325239i \(0.894555\pi\)
\(522\) 0 0
\(523\) 8.08666e11 1.40065e12i 0.472619 0.818601i −0.526890 0.849934i \(-0.676642\pi\)
0.999509 + 0.0313330i \(0.00997522\pi\)
\(524\) 0 0
\(525\) 1.00065e11 6.32738e10i 0.0574864 0.0363502i
\(526\) 0 0
\(527\) 3.25123e11 5.63130e11i 0.183612 0.318025i
\(528\) 0 0
\(529\) 8.64453e11 + 1.49728e12i 0.479944 + 0.831288i
\(530\) 0 0
\(531\) 3.51086e12 1.91641
\(532\) 0 0
\(533\) −1.04046e12 −0.558411
\(534\) 0 0
\(535\) 9.99439e10 + 1.73108e11i 0.0527430 + 0.0913535i
\(536\) 0 0
\(537\) 4.88398e10 8.45930e10i 0.0253448 0.0438986i
\(538\) 0 0
\(539\) −1.29600e12 + 2.73092e12i −0.661389 + 1.39367i
\(540\) 0 0
\(541\) 1.21728e12 2.10840e12i 0.610948 1.05819i −0.380132 0.924932i \(-0.624122\pi\)
0.991081 0.133262i \(-0.0425451\pi\)
\(542\) 0 0
\(543\) 2.88432e11 + 4.99580e11i 0.142379 + 0.246607i
\(544\) 0 0
\(545\) −1.30622e12 −0.634206
\(546\) 0 0
\(547\) −3.63462e12 −1.73587 −0.867934 0.496680i \(-0.834552\pi\)
−0.867934 + 0.496680i \(0.834552\pi\)
\(548\) 0 0
\(549\) 5.06692e11 + 8.77616e11i 0.238050 + 0.412315i
\(550\) 0 0
\(551\) −2.13050e12 + 3.69013e12i −0.984688 + 1.70553i
\(552\) 0 0
\(553\) −2.22135e12 + 1.40462e12i −1.01008 + 0.638699i
\(554\) 0 0
\(555\) −4.01186e10 + 6.94875e10i −0.0179485 + 0.0310877i
\(556\) 0 0
\(557\) 2.22234e10 + 3.84921e10i 0.00978278 + 0.0169443i 0.870875 0.491504i \(-0.163553\pi\)
−0.861093 + 0.508448i \(0.830219\pi\)
\(558\) 0 0
\(559\) 2.38507e11 0.103311
\(560\) 0 0
\(561\) −2.12493e11 −0.0905757
\(562\) 0 0
\(563\) −1.93179e12 3.34596e12i −0.810349 1.40357i −0.912620 0.408810i \(-0.865944\pi\)
0.102270 0.994757i \(-0.467389\pi\)
\(564\) 0 0
\(565\) −1.71584e11 + 2.97193e11i −0.0708369 + 0.122693i
\(566\) 0 0
\(567\) −9.05362e10 2.24803e12i −0.0367874 0.913435i
\(568\) 0 0
\(569\) 1.03247e12 1.78828e12i 0.412925 0.715206i −0.582284 0.812986i \(-0.697841\pi\)
0.995208 + 0.0977795i \(0.0311740\pi\)
\(570\) 0 0
\(571\) −1.55084e12 2.68613e12i −0.610527 1.05746i −0.991152 0.132734i \(-0.957624\pi\)
0.380625 0.924729i \(-0.375709\pi\)
\(572\) 0 0
\(573\) −1.38776e11 −0.0537796
\(574\) 0 0
\(575\) 2.10087e11 0.0801480
\(576\) 0 0
\(577\) −1.04111e11 1.80326e11i −0.0391027 0.0677279i 0.845812 0.533482i \(-0.179117\pi\)
−0.884914 + 0.465754i \(0.845783\pi\)
\(578\) 0 0
\(579\) −2.84447e11 + 4.92677e11i −0.105184 + 0.182184i
\(580\) 0 0
\(581\) −1.97194e12 1.03502e12i −0.717963 0.376839i
\(582\) 0 0
\(583\) 2.14142e12 3.70905e12i 0.767704 1.32970i
\(584\) 0 0
\(585\) −5.17848e11 8.96938e11i −0.182810 0.316637i
\(586\) 0 0
\(587\) 2.56958e12 0.893286 0.446643 0.894712i \(-0.352619\pi\)
0.446643 + 0.894712i \(0.352619\pi\)
\(588\) 0 0
\(589\) 4.39653e12 1.50519
\(590\) 0 0
\(591\) 1.35041e11 + 2.33897e11i 0.0455324 + 0.0788644i
\(592\) 0 0
\(593\) −1.01774e12 + 1.76278e12i −0.337980 + 0.585399i −0.984053 0.177877i \(-0.943077\pi\)
0.646073 + 0.763276i \(0.276410\pi\)
\(594\) 0 0
\(595\) 7.24265e11 + 3.80146e11i 0.236903 + 0.124344i
\(596\) 0 0
\(597\) 2.08983e11 3.61969e11i 0.0673327 0.116624i
\(598\) 0 0
\(599\) −1.40874e12 2.44002e12i −0.447107 0.774412i 0.551090 0.834446i \(-0.314212\pi\)
−0.998196 + 0.0600345i \(0.980879\pi\)
\(600\) 0 0
\(601\) 2.84630e12 0.889908 0.444954 0.895553i \(-0.353220\pi\)
0.444954 + 0.895553i \(0.353220\pi\)
\(602\) 0 0
\(603\) 3.31610e12 1.02141
\(604\) 0 0
\(605\) −1.76067e12 3.04958e12i −0.534293 0.925423i
\(606\) 0 0
\(607\) 1.51972e12 2.63223e12i 0.454375 0.787000i −0.544277 0.838905i \(-0.683196\pi\)
0.998652 + 0.0519053i \(0.0165294\pi\)
\(608\) 0 0
\(609\) 3.22895e10 + 8.01752e11i 0.00951225 + 0.236190i
\(610\) 0 0
\(611\) −7.54744e11 + 1.30725e12i −0.219086 + 0.379468i
\(612\) 0 0
\(613\) −2.85482e12 4.94469e12i −0.816594 1.41438i −0.908178 0.418584i \(-0.862526\pi\)
0.0915841 0.995797i \(-0.470807\pi\)
\(614\) 0 0
\(615\) 5.36410e11 0.151202
\(616\) 0 0
\(617\) −2.92315e12 −0.812023 −0.406011 0.913868i \(-0.633081\pi\)
−0.406011 + 0.913868i \(0.633081\pi\)
\(618\) 0 0
\(619\) 2.88780e12 + 5.00181e12i 0.790604 + 1.36937i 0.925593 + 0.378519i \(0.123567\pi\)
−0.134989 + 0.990847i \(0.543100\pi\)
\(620\) 0 0
\(621\) −1.24330e11 + 2.15346e11i −0.0335477 + 0.0581064i
\(622\) 0 0
\(623\) −2.77837e12 + 1.75684e12i −0.738913 + 0.467235i
\(624\) 0 0
\(625\) 8.38607e11 1.45251e12i 0.219836 0.380767i
\(626\) 0 0
\(627\) −7.18368e11 1.24425e12i −0.185628 0.321517i
\(628\) 0 0
\(629\) 3.69853e11 0.0942110
\(630\) 0 0
\(631\) −2.44150e12 −0.613090 −0.306545 0.951856i \(-0.599173\pi\)
−0.306545 + 0.951856i \(0.599173\pi\)
\(632\) 0 0
\(633\) −3.72716e11 6.45564e11i −0.0922703 0.159817i
\(634\) 0 0
\(635\) −1.03424e12 + 1.79136e12i −0.252429 + 0.437220i
\(636\) 0 0
\(637\) −1.14748e12 1.66259e12i −0.276132 0.400089i
\(638\) 0 0
\(639\) 1.60888e12 2.78666e12i 0.381742 0.661197i
\(640\) 0 0
\(641\) −3.95349e12 6.84764e12i −0.924952 1.60206i −0.791639 0.610989i \(-0.790772\pi\)
−0.133313 0.991074i \(-0.542562\pi\)
\(642\) 0 0
\(643\) −1.32729e12 −0.306208 −0.153104 0.988210i \(-0.548927\pi\)
−0.153104 + 0.988210i \(0.548927\pi\)
\(644\) 0 0
\(645\) −1.22962e11 −0.0279739
\(646\) 0 0
\(647\) −1.61610e12 2.79917e12i −0.362576 0.628000i 0.625808 0.779977i \(-0.284769\pi\)
−0.988384 + 0.151977i \(0.951436\pi\)
\(648\) 0 0
\(649\) −6.87946e12 + 1.19156e13i −1.52214 + 2.63642i
\(650\) 0 0
\(651\) 6.99766e11 4.42481e11i 0.152700 0.0965561i
\(652\) 0 0
\(653\) 9.19644e11 1.59287e12i 0.197929 0.342824i −0.749927 0.661520i \(-0.769912\pi\)
0.947857 + 0.318696i \(0.103245\pi\)
\(654\) 0 0
\(655\) −3.27573e12 5.67374e12i −0.695381 1.20444i
\(656\) 0 0
\(657\) 8.88208e12 1.85982
\(658\) 0 0
\(659\) −5.84606e12 −1.20748 −0.603738 0.797182i \(-0.706323\pi\)
−0.603738 + 0.797182i \(0.706323\pi\)
\(660\) 0 0
\(661\) −2.82594e12 4.89468e12i −0.575780 0.997280i −0.995956 0.0898379i \(-0.971365\pi\)
0.420176 0.907443i \(-0.361968\pi\)
\(662\) 0 0
\(663\) 7.10032e10 1.22981e11i 0.0142714 0.0247188i
\(664\) 0 0
\(665\) 2.22555e11 + 5.52606e12i 0.0441306 + 1.09577i
\(666\) 0 0
\(667\) −7.11933e11 + 1.23310e12i −0.139275 + 0.241231i
\(668\) 0 0
\(669\) 3.27055e11 + 5.66476e11i 0.0631252 + 0.109336i
\(670\) 0 0
\(671\) −3.97141e12 −0.756299
\(672\) 0 0
\(673\) −1.86409e12 −0.350267 −0.175133 0.984545i \(-0.556036\pi\)
−0.175133 + 0.984545i \(0.556036\pi\)
\(674\) 0 0
\(675\) −3.61537e11 6.26201e11i −0.0670326 0.116104i
\(676\) 0 0
\(677\) 1.14713e12 1.98689e12i 0.209877 0.363517i −0.741799 0.670622i \(-0.766027\pi\)
0.951675 + 0.307106i \(0.0993604\pi\)
\(678\) 0 0
\(679\) 7.45441e12 + 3.91261e12i 1.34586 + 0.706403i
\(680\) 0 0
\(681\) 1.37895e11 2.38841e11i 0.0245690 0.0425547i
\(682\) 0 0
\(683\) −2.46771e12 4.27420e12i −0.433911 0.751556i 0.563295 0.826256i \(-0.309533\pi\)
−0.997206 + 0.0746998i \(0.976200\pi\)
\(684\) 0 0
\(685\) 5.40710e12 0.938332
\(686\) 0 0
\(687\) 1.01050e12 0.173073
\(688\) 0 0
\(689\) 1.43108e12 + 2.47871e12i 0.241924 + 0.419024i
\(690\) 0 0
\(691\) 3.95992e12 6.85879e12i 0.660747 1.14445i −0.319672 0.947528i \(-0.603573\pi\)
0.980420 0.196920i \(-0.0630939\pi\)
\(692\) 0 0
\(693\) 8.05372e12 + 4.22717e12i 1.32647 + 0.696227i
\(694\) 0 0
\(695\) −2.92166e12 + 5.06046e12i −0.475004 + 0.822731i
\(696\) 0 0
\(697\) −1.23629e12 2.14132e12i −0.198414 0.343664i
\(698\) 0 0
\(699\) −2.03245e12 −0.322012
\(700\) 0 0
\(701\) −1.24405e12 −0.194584 −0.0972919 0.995256i \(-0.531018\pi\)
−0.0972919 + 0.995256i \(0.531018\pi\)
\(702\) 0 0
\(703\) 1.25035e12 + 2.16567e12i 0.193078 + 0.334421i
\(704\) 0 0
\(705\) 3.89108e11 6.73955e11i 0.0593225 0.102750i
\(706\) 0 0
\(707\) −1.61855e10 4.01887e11i −0.00243634 0.0604946i
\(708\) 0 0
\(709\) 3.64164e12 6.30751e12i 0.541239 0.937454i −0.457594 0.889161i \(-0.651289\pi\)
0.998833 0.0482926i \(-0.0153780\pi\)
\(710\) 0 0
\(711\) 3.95409e12 + 6.84868e12i 0.580274 + 1.00506i
\(712\) 0 0
\(713\) 1.46916e12 0.212895
\(714\) 0 0
\(715\) 4.05885e12 0.580799
\(716\) 0 0
\(717\) 2.16190e11 + 3.74451e11i 0.0305491 + 0.0529126i
\(718\) 0 0
\(719\) −1.97345e12 + 3.41811e12i −0.275388 + 0.476986i −0.970233 0.242174i \(-0.922140\pi\)
0.694845 + 0.719160i \(0.255473\pi\)
\(720\) 0 0
\(721\) −6.06247e12 + 3.83346e12i −0.835490 + 0.528303i
\(722\) 0 0
\(723\) −2.97100e11 + 5.14592e11i −0.0404371 + 0.0700391i
\(724\) 0 0
\(725\) −2.07022e12 3.58573e12i −0.278289 0.482010i
\(726\) 0 0
\(727\) 1.29298e13 1.71667 0.858335 0.513089i \(-0.171499\pi\)
0.858335 + 0.513089i \(0.171499\pi\)
\(728\) 0 0
\(729\) −6.33557e12 −0.830830
\(730\) 0 0
\(731\) 2.83397e11 + 4.90858e11i 0.0367086 + 0.0635811i
\(732\) 0 0
\(733\) 3.52694e11 6.10884e11i 0.0451263 0.0781611i −0.842580 0.538571i \(-0.818964\pi\)
0.887706 + 0.460410i \(0.152298\pi\)
\(734\) 0 0
\(735\) 5.91583e11 + 8.57147e11i 0.0747691 + 0.108333i
\(736\) 0 0
\(737\) −6.49784e12 + 1.12546e13i −0.811269 + 1.40516i
\(738\) 0 0
\(739\) 1.24236e12 + 2.15182e12i 0.153231 + 0.265403i 0.932413 0.361394i \(-0.117699\pi\)
−0.779183 + 0.626797i \(0.784366\pi\)
\(740\) 0 0
\(741\) 9.60152e11 0.116992
\(742\) 0 0
\(743\) −7.27764e12 −0.876074 −0.438037 0.898957i \(-0.644326\pi\)
−0.438037 + 0.898957i \(0.644326\pi\)
\(744\) 0 0
\(745\) −3.38210e11 5.85797e11i −0.0402238 0.0696697i
\(746\) 0 0
\(747\) −3.35061e12 + 5.80342e12i −0.393714 + 0.681932i
\(748\) 0 0
\(749\) 9.91549e11 6.26983e11i 0.115119 0.0727927i
\(750\) 0 0
\(751\) −2.75196e12 + 4.76654e12i −0.315691 + 0.546794i −0.979584 0.201034i \(-0.935570\pi\)
0.663893 + 0.747828i \(0.268903\pi\)
\(752\) 0 0
\(753\) −4.14576e10 7.18067e10i −0.00469923 0.00813931i
\(754\) 0 0
\(755\) 1.19242e13 1.33557
\(756\) 0 0
\(757\) 1.41842e13 1.56991 0.784955 0.619553i \(-0.212686\pi\)
0.784955 + 0.619553i \(0.212686\pi\)
\(758\) 0 0
\(759\) −2.40052e11 4.15782e11i −0.0262553 0.0454755i
\(760\) 0 0
\(761\) −5.00695e12 + 8.67229e12i −0.541180 + 0.937352i 0.457656 + 0.889129i \(0.348689\pi\)
−0.998837 + 0.0482227i \(0.984644\pi\)
\(762\) 0 0
\(763\) 3.08497e11 + 7.66001e12i 0.0329526 + 0.818218i
\(764\) 0 0
\(765\) 1.23063e12 2.13151e12i 0.129912 0.225014i
\(766\) 0 0
\(767\) −4.59746e12 7.96303e12i −0.479665 0.830805i
\(768\) 0 0
\(769\) 1.39641e12 0.143994 0.0719968 0.997405i \(-0.477063\pi\)
0.0719968 + 0.997405i \(0.477063\pi\)
\(770\) 0 0
\(771\) 1.79822e12 0.183273
\(772\) 0 0
\(773\) 3.71378e12 + 6.43246e12i 0.374118 + 0.647992i 0.990195 0.139695i \(-0.0446121\pi\)
−0.616077 + 0.787686i \(0.711279\pi\)
\(774\) 0 0
\(775\) −2.13607e12 + 3.69979e12i −0.212696 + 0.368400i
\(776\) 0 0
\(777\) 4.16969e11 + 2.18856e11i 0.0410402 + 0.0215409i
\(778\) 0 0
\(779\) 8.35896e12 1.44781e13i 0.813268 1.40862i
\(780\) 0 0
\(781\) 6.30515e12 + 1.09208e13i 0.606409 + 1.05033i
\(782\) 0 0
\(783\) 4.90065e12 0.465935
\(784\) 0 0
\(785\) −7.36353e12 −0.692106
\(786\) 0 0
\(787\) −2.15657e12 3.73529e12i −0.200391 0.347087i 0.748264 0.663402i \(-0.230888\pi\)
−0.948654 + 0.316314i \(0.897555\pi\)
\(788\) 0 0
\(789\) 1.40213e12 2.42856e12i 0.128808 0.223101i
\(790\) 0 0
\(791\) 1.78335e12 + 9.36029e11i 0.161972 + 0.0850149i
\(792\) 0 0
\(793\) 1.32702e12 2.29847e12i 0.119165 0.206400i
\(794\) 0 0
\(795\) −7.37796e11 1.27790e12i −0.0655064 0.113460i
\(796\) 0 0
\(797\) −6.97760e12 −0.612553 −0.306276 0.951943i \(-0.599083\pi\)
−0.306276 + 0.951943i \(0.599083\pi\)
\(798\) 0 0
\(799\) −3.58718e12 −0.311382
\(800\) 0 0
\(801\) 4.94560e12 + 8.56602e12i 0.424495 + 0.735246i
\(802\) 0 0
\(803\) −1.74043e13 + 3.01451e13i −1.47719 + 2.55857i
\(804\) 0 0
\(805\) 7.43696e10 + 1.84661e12i 0.00624186 + 0.154986i
\(806\) 0 0
\(807\) 8.85314e11 1.53341e12i 0.0734796 0.127270i
\(808\) 0 0
\(809\) −1.14195e11 1.97791e11i −0.00937296 0.0162344i 0.861301 0.508095i \(-0.169650\pi\)
−0.870674 + 0.491861i \(0.836317\pi\)
\(810\) 0 0
\(811\) 1.24712e12 0.101231 0.0506156 0.998718i \(-0.483882\pi\)
0.0506156 + 0.998718i \(0.483882\pi\)
\(812\) 0 0
\(813\) −1.91709e12 −0.153899
\(814\) 0 0
\(815\) 1.11840e12 + 1.93713e12i 0.0887950 + 0.153798i
\(816\) 0 0
\(817\) −1.91614e12 + 3.31885e12i −0.150463 + 0.260609i
\(818\) 0 0
\(819\) −5.13759e12 + 3.24864e12i −0.399008 + 0.252304i
\(820\) 0 0
\(821\) 2.13203e11 3.69278e11i 0.0163775 0.0283667i −0.857720 0.514116i \(-0.828120\pi\)
0.874098 + 0.485750i \(0.161453\pi\)
\(822\) 0 0
\(823\) −5.10619e11 8.84418e11i −0.0387970 0.0671983i 0.845975 0.533223i \(-0.179019\pi\)
−0.884772 + 0.466024i \(0.845686\pi\)
\(824\) 0 0
\(825\) 1.39609e12 0.104923
\(826\) 0 0
\(827\) 5.09034e12 0.378418 0.189209 0.981937i \(-0.439408\pi\)
0.189209 + 0.981937i \(0.439408\pi\)
\(828\) 0 0
\(829\) −6.45038e12 1.11724e13i −0.474340 0.821582i 0.525228 0.850962i \(-0.323980\pi\)
−0.999568 + 0.0293800i \(0.990647\pi\)
\(830\) 0 0
\(831\) 1.55679e12 2.69645e12i 0.113247 0.196149i
\(832\) 0 0
\(833\) 2.05823e12 4.33707e12i 0.148112 0.312100i
\(834\) 0 0
\(835\) −3.65718e11 + 6.33442e11i −0.0260350 + 0.0450939i
\(836\) 0 0
\(837\) −2.52827e12 4.37909e12i −0.178057 0.308403i
\(838\) 0 0
\(839\) 6.08459e12 0.423938 0.211969 0.977276i \(-0.432012\pi\)
0.211969 + 0.977276i \(0.432012\pi\)
\(840\) 0 0
\(841\) 1.35548e13 0.934353
\(842\) 0 0
\(843\) 7.43153e11 + 1.28718e12i 0.0506821 + 0.0877839i
\(844\) 0 0
\(845\) 4.38274e12 7.59113e12i 0.295727 0.512214i
\(846\) 0 0
\(847\) −1.74677e13 + 1.10453e13i −1.16617 + 0.737400i
\(848\) 0 0
\(849\) 8.08709e9 1.40073e10i 0.000534205 0.000925270i
\(850\) 0 0
\(851\) 4.17821e11 + 7.23686e11i 0.0273091 + 0.0473007i
\(852\) 0 0
\(853\) 1.69683e13 1.09741 0.548703 0.836017i \(-0.315122\pi\)
0.548703 + 0.836017i \(0.315122\pi\)
\(854\) 0 0
\(855\) 1.66413e13 1.06498
\(856\) 0 0
\(857\) 2.35529e12 + 4.07948e12i 0.149152 + 0.258339i 0.930914 0.365237i \(-0.119012\pi\)
−0.781762 + 0.623577i \(0.785679\pi\)
\(858\) 0 0
\(859\) 4.02258e12 6.96732e12i 0.252079 0.436613i −0.712019 0.702160i \(-0.752219\pi\)
0.964098 + 0.265547i \(0.0855525\pi\)
\(860\) 0 0
\(861\) −1.26687e11 3.14566e12i −0.00785630 0.195073i
\(862\) 0 0
\(863\) 8.78137e12 1.52098e13i 0.538907 0.933414i −0.460056 0.887890i \(-0.652171\pi\)
0.998963 0.0455244i \(-0.0144959\pi\)
\(864\) 0 0
\(865\) 1.05215e13 + 1.82237e13i 0.639004 + 1.10679i
\(866\) 0 0
\(867\) −2.49023e12 −0.149676
\(868\) 0 0
\(869\) −3.09919e13 −1.84357
\(870\) 0 0
\(871\) −4.34242e12 7.52129e12i −0.255653 0.442803i
\(872\) 0 0
\(873\) 1.26661e13 2.19383e13i 0.738037 1.27832i
\(874\) 0 0
\(875\) −1.66491e13 8.73867e12i −0.960186 0.503975i
\(876\) 0 0
\(877\) −4.21010e12 + 7.29210e12i −0.240322 + 0.416250i −0.960806 0.277221i \(-0.910586\pi\)
0.720484 + 0.693472i \(0.243920\pi\)
\(878\) 0 0
\(879\) −6.76194e10 1.17120e11i −0.00382051 0.00661732i
\(880\) 0 0
\(881\) −3.03091e13 −1.69504 −0.847522 0.530760i \(-0.821907\pi\)
−0.847522 + 0.530760i \(0.821907\pi\)
\(882\) 0 0
\(883\) 2.44649e12 0.135432 0.0677159 0.997705i \(-0.478429\pi\)
0.0677159 + 0.997705i \(0.478429\pi\)
\(884\) 0 0
\(885\) 2.37022e12 + 4.10534e12i 0.129880 + 0.224959i
\(886\) 0 0
\(887\) 1.02686e13 1.77858e13i 0.557001 0.964753i −0.440744 0.897633i \(-0.645285\pi\)
0.997745 0.0671207i \(-0.0213813\pi\)
\(888\) 0 0
\(889\) 1.07493e13 + 5.64200e12i 0.577193 + 0.302953i
\(890\) 0 0
\(891\) 1.32652e13 2.29761e13i 0.705123 1.22131i
\(892\) 0 0
\(893\) −1.21271e13 2.10047e13i −0.638152 1.10531i
\(894\) 0 0
\(895\) −4.43391e12 −0.230985
\(896\) 0 0
\(897\) 3.20847e11 0.0165475
\(898\) 0 0
\(899\) −1.44773e13 2.50754e13i −0.739211 1.28035i
\(900\) 0 0
\(901\) −3.40087e12 + 5.89047e12i −0.171921 + 0.297775i
\(902\) 0 0
\(903\) 2.90407e10 + 7.21085e11i 0.00145349 + 0.0360904i
\(904\) 0 0
\(905\) 1.30926e13 2.26771e13i 0.648796 1.12375i
\(906\) 0 0
\(907\) 6.75232e12 + 1.16954e13i 0.331299 + 0.573827i 0.982767 0.184849i \(-0.0591797\pi\)
−0.651468 + 0.758676i \(0.725846\pi\)
\(908\) 0 0
\(909\) −1.21025e12 −0.0587948
\(910\) 0 0
\(911\) −2.83771e13 −1.36501 −0.682504 0.730882i \(-0.739109\pi\)
−0.682504 + 0.730882i \(0.739109\pi\)
\(912\) 0 0
\(913\) −1.31309e13 2.27434e13i −0.625426 1.08327i
\(914\) 0 0
\(915\) −6.84146e11 + 1.18498e12i −0.0322667 + 0.0558875i
\(916\) 0 0
\(917\) −3.24987e13 + 2.05498e13i −1.51776 + 0.959723i
\(918\) 0 0
\(919\) −1.30106e13 + 2.25350e13i −0.601696 + 1.04217i 0.390868 + 0.920447i \(0.372175\pi\)
−0.992564 + 0.121722i \(0.961158\pi\)
\(920\) 0 0
\(921\) −2.15998e12 3.74120e12i −0.0989196 0.171334i
\(922\) 0 0
\(923\) −8.42730e12 −0.382191
\(924\) 0 0
\(925\) −2.42995e12 −0.109134
\(926\) 0 0
\(927\) 1.07914e13 + 1.86913e13i 0.479977 + 0.831344i
\(928\) 0 0
\(929\) 8.52205e12 1.47606e13i 0.375382 0.650181i −0.615002 0.788525i \(-0.710845\pi\)
0.990384 + 0.138345i \(0.0441782\pi\)
\(930\) 0 0
\(931\) 3.23538e13 2.61025e12i 1.41141 0.113870i
\(932\) 0 0
\(933\) 1.23762e12 2.14361e12i 0.0534710 0.0926145i
\(934\) 0 0
\(935\) 4.82278e12 + 8.35330e12i 0.206369 + 0.357442i
\(936\) 0 0
\(937\) 1.17078e13 0.496188 0.248094 0.968736i \(-0.420196\pi\)
0.248094 + 0.968736i \(0.420196\pi\)
\(938\) 0 0
\(939\) −3.54962e12 −0.149000
\(940\) 0 0
\(941\) 7.99721e12 + 1.38516e13i 0.332495 + 0.575898i 0.983000 0.183603i \(-0.0587762\pi\)
−0.650505 + 0.759502i \(0.725443\pi\)
\(942\) 0 0
\(943\) 2.79325e12 4.83806e12i 0.115029 0.199236i
\(944\) 0 0
\(945\) 5.37616e12 3.39949e12i 0.219295 0.138666i
\(946\) 0 0
\(947\) −1.35192e13 + 2.34159e13i −0.546231 + 0.946099i 0.452298 + 0.891867i \(0.350604\pi\)
−0.998528 + 0.0542323i \(0.982729\pi\)
\(948\) 0 0
\(949\) −1.16311e13 2.01456e13i −0.465502 0.806273i
\(950\) 0 0
\(951\) 4.71407e12 0.186889
\(952\) 0 0
\(953\) −3.10710e13 −1.22022 −0.610108 0.792318i \(-0.708874\pi\)
−0.610108 + 0.792318i \(0.708874\pi\)
\(954\) 0 0
\(955\) 3.14968e12 + 5.45541e12i 0.122532 + 0.212233i
\(956\) 0 0
\(957\) −4.73101e12 + 8.19434e12i −0.182326 + 0.315799i
\(958\) 0 0
\(959\) −1.27703e12 3.17087e13i −0.0487547 1.21058i
\(960\) 0 0
\(961\) −1.71799e12 + 2.97564e12i −0.0649777 + 0.112545i
\(962\) 0 0
\(963\) −1.76499e12 3.05706e12i −0.0661340 0.114547i
\(964\) 0 0
\(965\) 2.58235e13 0.958610
\(966\) 0 0
\(967\) 1.42603e13 0.524457 0.262228 0.965006i \(-0.415543\pi\)
0.262228 + 0.965006i \(0.415543\pi\)
\(968\) 0 0
\(969\) 1.14086e12 + 1.97604e12i 0.0415697 + 0.0720009i
\(970\) 0 0
\(971\) 1.29280e13 2.23920e13i 0.466709 0.808364i −0.532568 0.846387i \(-0.678773\pi\)
0.999277 + 0.0380235i \(0.0121062\pi\)
\(972\) 0 0
\(973\) 3.03660e13 + 1.59382e13i 1.08612 + 0.570076i
\(974\) 0 0
\(975\) −4.66494e11 + 8.07991e11i −0.0165320 + 0.0286342i
\(976\) 0 0
\(977\) −5.41303e12 9.37565e12i −0.190071 0.329212i 0.755203 0.655491i \(-0.227538\pi\)
−0.945273 + 0.326279i \(0.894205\pi\)
\(978\) 0 0
\(979\) −3.87632e13 −1.34865
\(980\) 0 0
\(981\) 2.30676e13 0.795227
\(982\) 0 0
\(983\) −1.38301e13 2.39545e13i −0.472428 0.818269i 0.527074 0.849819i \(-0.323289\pi\)
−0.999502 + 0.0315503i \(0.989956\pi\)
\(984\) 0 0
\(985\) 6.12981e12 1.06171e13i 0.207484 0.359372i
\(986\) 0 0
\(987\) −4.04416e12 2.12267e12i −0.135644 0.0711958i
\(988\) 0 0
\(989\) −6.40303e11 + 1.10904e12i −0.0212815 + 0.0368607i
\(990\) 0 0
\(991\) −1.35483e13 2.34663e13i −0.446223 0.772881i 0.551914 0.833901i \(-0.313898\pi\)
−0.998137 + 0.0610206i \(0.980564\pi\)
\(992\) 0 0
\(993\) −1.33025e12 −0.0434172
\(994\) 0 0
\(995\) −1.89724e13 −0.613648
\(996\) 0 0
\(997\) −1.56566e13 2.71180e13i −0.501845 0.869221i −0.999998 0.00213142i \(-0.999322\pi\)
0.498153 0.867089i \(-0.334012\pi\)
\(998\) 0 0
\(999\) 1.43805e12 2.49078e12i 0.0456804 0.0791207i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.i.b.65.1 6
4.3 odd 2 14.10.c.a.9.3 6
7.4 even 3 inner 112.10.i.b.81.1 6
12.11 even 2 126.10.g.f.37.2 6
28.3 even 6 98.10.c.k.67.1 6
28.11 odd 6 14.10.c.a.11.3 yes 6
28.19 even 6 98.10.a.i.1.3 3
28.23 odd 6 98.10.a.j.1.1 3
28.27 even 2 98.10.c.k.79.1 6
84.11 even 6 126.10.g.f.109.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.10.c.a.9.3 6 4.3 odd 2
14.10.c.a.11.3 yes 6 28.11 odd 6
98.10.a.i.1.3 3 28.19 even 6
98.10.a.j.1.1 3 28.23 odd 6
98.10.c.k.67.1 6 28.3 even 6
98.10.c.k.79.1 6 28.27 even 2
112.10.i.b.65.1 6 1.1 even 1 trivial
112.10.i.b.81.1 6 7.4 even 3 inner
126.10.g.f.37.2 6 12.11 even 2
126.10.g.f.109.2 6 84.11 even 6