Properties

Label 98.10.a.i.1.3
Level $98$
Weight $10$
Character 98.1
Self dual yes
Analytic conductor $50.474$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [98,10,Mod(1,98)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(98, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("98.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 98 = 2 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 98.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,48,-233] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.4735119441\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 1115x + 2100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{3}\cdot 3\cdot 7 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-33.8126\) of defining polynomial
Character \(\chi\) \(=\) 98.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+16.0000 q^{2} +23.8447 q^{3} +256.000 q^{4} -1082.37 q^{5} +381.515 q^{6} +4096.00 q^{8} -19114.4 q^{9} -17317.9 q^{10} +74908.8 q^{11} +6104.24 q^{12} +50060.6 q^{13} -25808.7 q^{15} +65536.0 q^{16} -118965. q^{17} -305831. q^{18} -804363. q^{19} -277086. q^{20} +1.19854e6 q^{22} +268788. q^{23} +97667.9 q^{24} -781606. q^{25} +800969. q^{26} -925113. q^{27} -5.29735e6 q^{29} -412940. q^{30} -5.46586e6 q^{31} +1.04858e6 q^{32} +1.78618e6 q^{33} -1.90344e6 q^{34} -4.89329e6 q^{36} +3.10892e6 q^{37} -1.28698e7 q^{38} +1.19368e6 q^{39} -4.43338e6 q^{40} -2.07841e7 q^{41} +4.76437e6 q^{43} +1.91766e7 q^{44} +2.06888e7 q^{45} +4.30061e6 q^{46} -3.01532e7 q^{47} +1.56269e6 q^{48} -1.25057e7 q^{50} -2.83669e6 q^{51} +1.28155e7 q^{52} +5.71741e7 q^{53} -1.48018e7 q^{54} -8.10788e7 q^{55} -1.91798e7 q^{57} -8.47576e7 q^{58} -1.83676e8 q^{59} -6.60703e6 q^{60} -5.30167e7 q^{61} -8.74537e7 q^{62} +1.67772e7 q^{64} -5.41839e7 q^{65} +2.85788e7 q^{66} +1.73487e8 q^{67} -3.04551e7 q^{68} +6.40918e6 q^{69} -1.68342e8 q^{71} -7.82927e7 q^{72} +4.64679e8 q^{73} +4.97427e7 q^{74} -1.86372e7 q^{75} -2.05917e8 q^{76} +1.90989e7 q^{78} -4.13728e8 q^{79} -7.09340e7 q^{80} +3.54170e8 q^{81} -3.32545e8 q^{82} -3.50584e8 q^{83} +1.28764e8 q^{85} +7.62299e7 q^{86} -1.26314e8 q^{87} +3.06826e8 q^{88} -5.17472e8 q^{89} +3.31021e8 q^{90} +6.88098e7 q^{92} -1.30332e8 q^{93} -4.82452e8 q^{94} +8.70616e8 q^{95} +2.50030e7 q^{96} -1.32529e9 q^{97} -1.43184e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 48 q^{2} - 233 q^{3} + 768 q^{4} - 733 q^{5} - 3728 q^{6} + 12288 q^{8} + 15058 q^{9} - 11728 q^{10} - 7339 q^{11} - 59648 q^{12} - 98518 q^{13} + 369119 q^{15} + 196608 q^{16} - 306665 q^{17} + 240928 q^{18}+ \cdots - 628109434 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.0000 0.707107
\(3\) 23.8447 0.169960 0.0849799 0.996383i \(-0.472917\pi\)
0.0849799 + 0.996383i \(0.472917\pi\)
\(4\) 256.000 0.500000
\(5\) −1082.37 −0.774479 −0.387239 0.921979i \(-0.626571\pi\)
−0.387239 + 0.921979i \(0.626571\pi\)
\(6\) 381.515 0.120180
\(7\) 0 0
\(8\) 4096.00 0.353553
\(9\) −19114.4 −0.971114
\(10\) −17317.9 −0.547639
\(11\) 74908.8 1.54264 0.771322 0.636445i \(-0.219596\pi\)
0.771322 + 0.636445i \(0.219596\pi\)
\(12\) 6104.24 0.0849799
\(13\) 50060.6 0.486128 0.243064 0.970010i \(-0.421847\pi\)
0.243064 + 0.970010i \(0.421847\pi\)
\(14\) 0 0
\(15\) −25808.7 −0.131630
\(16\) 65536.0 0.250000
\(17\) −118965. −0.345462 −0.172731 0.984969i \(-0.555259\pi\)
−0.172731 + 0.984969i \(0.555259\pi\)
\(18\) −305831. −0.686681
\(19\) −804363. −1.41599 −0.707996 0.706216i \(-0.750401\pi\)
−0.707996 + 0.706216i \(0.750401\pi\)
\(20\) −277086. −0.387239
\(21\) 0 0
\(22\) 1.19854e6 1.09081
\(23\) 268788. 0.200279 0.100139 0.994973i \(-0.468071\pi\)
0.100139 + 0.994973i \(0.468071\pi\)
\(24\) 97667.9 0.0600899
\(25\) −781606. −0.400182
\(26\) 800969. 0.343745
\(27\) −925113. −0.335010
\(28\) 0 0
\(29\) −5.29735e6 −1.39081 −0.695405 0.718618i \(-0.744775\pi\)
−0.695405 + 0.718618i \(0.744775\pi\)
\(30\) −412940. −0.0930767
\(31\) −5.46586e6 −1.06299 −0.531497 0.847060i \(-0.678370\pi\)
−0.531497 + 0.847060i \(0.678370\pi\)
\(32\) 1.04858e6 0.176777
\(33\) 1.78618e6 0.262187
\(34\) −1.90344e6 −0.244278
\(35\) 0 0
\(36\) −4.89329e6 −0.485557
\(37\) 3.10892e6 0.272710 0.136355 0.990660i \(-0.456461\pi\)
0.136355 + 0.990660i \(0.456461\pi\)
\(38\) −1.28698e7 −1.00126
\(39\) 1.19368e6 0.0826223
\(40\) −4.43338e6 −0.273820
\(41\) −2.07841e7 −1.14869 −0.574345 0.818613i \(-0.694743\pi\)
−0.574345 + 0.818613i \(0.694743\pi\)
\(42\) 0 0
\(43\) 4.76437e6 0.212519 0.106259 0.994338i \(-0.466113\pi\)
0.106259 + 0.994338i \(0.466113\pi\)
\(44\) 1.91766e7 0.771322
\(45\) 2.06888e7 0.752107
\(46\) 4.30061e6 0.141619
\(47\) −3.01532e7 −0.901350 −0.450675 0.892688i \(-0.648817\pi\)
−0.450675 + 0.892688i \(0.648817\pi\)
\(48\) 1.56269e6 0.0424900
\(49\) 0 0
\(50\) −1.25057e7 −0.282972
\(51\) −2.83669e6 −0.0587146
\(52\) 1.28155e7 0.243064
\(53\) 5.71741e7 0.995309 0.497655 0.867375i \(-0.334195\pi\)
0.497655 + 0.867375i \(0.334195\pi\)
\(54\) −1.48018e7 −0.236888
\(55\) −8.10788e7 −1.19475
\(56\) 0 0
\(57\) −1.91798e7 −0.240662
\(58\) −8.47576e7 −0.983451
\(59\) −1.83676e8 −1.97341 −0.986706 0.162517i \(-0.948039\pi\)
−0.986706 + 0.162517i \(0.948039\pi\)
\(60\) −6.60703e6 −0.0658152
\(61\) −5.30167e7 −0.490262 −0.245131 0.969490i \(-0.578831\pi\)
−0.245131 + 0.969490i \(0.578831\pi\)
\(62\) −8.74537e7 −0.751650
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) −5.41839e7 −0.376496
\(66\) 2.85788e7 0.185395
\(67\) 1.73487e8 1.05179 0.525896 0.850549i \(-0.323730\pi\)
0.525896 + 0.850549i \(0.323730\pi\)
\(68\) −3.04551e7 −0.172731
\(69\) 6.40918e6 0.0340394
\(70\) 0 0
\(71\) −1.68342e8 −0.786195 −0.393097 0.919497i \(-0.628596\pi\)
−0.393097 + 0.919497i \(0.628596\pi\)
\(72\) −7.82927e7 −0.343341
\(73\) 4.64679e8 1.91514 0.957570 0.288201i \(-0.0930573\pi\)
0.957570 + 0.288201i \(0.0930573\pi\)
\(74\) 4.97427e7 0.192835
\(75\) −1.86372e7 −0.0680149
\(76\) −2.05917e8 −0.707996
\(77\) 0 0
\(78\) 1.90989e7 0.0584228
\(79\) −4.13728e8 −1.19507 −0.597535 0.801843i \(-0.703853\pi\)
−0.597535 + 0.801843i \(0.703853\pi\)
\(80\) −7.09340e7 −0.193620
\(81\) 3.54170e8 0.914175
\(82\) −3.32545e8 −0.812247
\(83\) −3.50584e8 −0.810850 −0.405425 0.914128i \(-0.632876\pi\)
−0.405425 + 0.914128i \(0.632876\pi\)
\(84\) 0 0
\(85\) 1.28764e8 0.267553
\(86\) 7.62299e7 0.150274
\(87\) −1.26314e8 −0.236382
\(88\) 3.06826e8 0.545407
\(89\) −5.17472e8 −0.874243 −0.437122 0.899402i \(-0.644002\pi\)
−0.437122 + 0.899402i \(0.644002\pi\)
\(90\) 3.31021e8 0.531820
\(91\) 0 0
\(92\) 6.88098e7 0.100139
\(93\) −1.30332e8 −0.180666
\(94\) −4.82452e8 −0.637350
\(95\) 8.70616e8 1.09666
\(96\) 2.50030e7 0.0300449
\(97\) −1.32529e9 −1.51998 −0.759990 0.649935i \(-0.774796\pi\)
−0.759990 + 0.649935i \(0.774796\pi\)
\(98\) 0 0
\(99\) −1.43184e9 −1.49808
\(100\) −2.00091e8 −0.200091
\(101\) −6.33162e7 −0.0605437 −0.0302718 0.999542i \(-0.509637\pi\)
−0.0302718 + 0.999542i \(0.509637\pi\)
\(102\) −4.53871e7 −0.0415175
\(103\) 1.12914e9 0.988508 0.494254 0.869318i \(-0.335441\pi\)
0.494254 + 0.869318i \(0.335441\pi\)
\(104\) 2.05048e8 0.171872
\(105\) 0 0
\(106\) 9.14786e8 0.703790
\(107\) 1.84677e8 0.136202 0.0681012 0.997678i \(-0.478306\pi\)
0.0681012 + 0.997678i \(0.478306\pi\)
\(108\) −2.36829e8 −0.167505
\(109\) −1.20681e9 −0.818881 −0.409441 0.912337i \(-0.634276\pi\)
−0.409441 + 0.912337i \(0.634276\pi\)
\(110\) −1.29726e9 −0.844812
\(111\) 7.41313e7 0.0463498
\(112\) 0 0
\(113\) 3.17054e8 0.182928 0.0914639 0.995808i \(-0.470845\pi\)
0.0914639 + 0.995808i \(0.470845\pi\)
\(114\) −3.06877e8 −0.170174
\(115\) −2.90928e8 −0.155112
\(116\) −1.35612e9 −0.695405
\(117\) −9.56879e8 −0.472086
\(118\) −2.93881e9 −1.39541
\(119\) 0 0
\(120\) −1.05713e8 −0.0465383
\(121\) 3.25338e9 1.37975
\(122\) −8.48266e8 −0.346667
\(123\) −4.95590e8 −0.195231
\(124\) −1.39926e9 −0.531497
\(125\) 2.95998e9 1.08441
\(126\) 0 0
\(127\) −1.91107e9 −0.651868 −0.325934 0.945392i \(-0.605679\pi\)
−0.325934 + 0.945392i \(0.605679\pi\)
\(128\) 2.68435e8 0.0883883
\(129\) 1.13605e8 0.0361197
\(130\) −8.66943e8 −0.266223
\(131\) 6.05291e9 1.79574 0.897869 0.440262i \(-0.145114\pi\)
0.897869 + 0.440262i \(0.145114\pi\)
\(132\) 4.57261e8 0.131094
\(133\) 0 0
\(134\) 2.77579e9 0.743729
\(135\) 1.00131e9 0.259458
\(136\) −4.87282e8 −0.122139
\(137\) 4.99562e9 1.21157 0.605783 0.795630i \(-0.292860\pi\)
0.605783 + 0.795630i \(0.292860\pi\)
\(138\) 1.02547e8 0.0240695
\(139\) 5.39864e9 1.22664 0.613321 0.789834i \(-0.289833\pi\)
0.613321 + 0.789834i \(0.289833\pi\)
\(140\) 0 0
\(141\) −7.18995e8 −0.153193
\(142\) −2.69347e9 −0.555924
\(143\) 3.74998e9 0.749923
\(144\) −1.25268e9 −0.242778
\(145\) 5.73368e9 1.07715
\(146\) 7.43487e9 1.35421
\(147\) 0 0
\(148\) 7.95883e8 0.136355
\(149\) 6.24945e8 0.103873 0.0519366 0.998650i \(-0.483461\pi\)
0.0519366 + 0.998650i \(0.483461\pi\)
\(150\) −2.98195e8 −0.0480938
\(151\) −1.10168e10 −1.72448 −0.862238 0.506503i \(-0.830938\pi\)
−0.862238 + 0.506503i \(0.830938\pi\)
\(152\) −3.29467e9 −0.500629
\(153\) 2.27395e9 0.335483
\(154\) 0 0
\(155\) 5.91606e9 0.823266
\(156\) 3.05582e8 0.0413111
\(157\) 6.80317e9 0.893641 0.446821 0.894624i \(-0.352556\pi\)
0.446821 + 0.894624i \(0.352556\pi\)
\(158\) −6.61965e9 −0.845042
\(159\) 1.36330e9 0.169163
\(160\) −1.13494e9 −0.136910
\(161\) 0 0
\(162\) 5.66672e9 0.646420
\(163\) 2.06659e9 0.229303 0.114651 0.993406i \(-0.463425\pi\)
0.114651 + 0.993406i \(0.463425\pi\)
\(164\) −5.32072e9 −0.574345
\(165\) −1.93330e9 −0.203059
\(166\) −5.60934e9 −0.573358
\(167\) 6.75774e8 0.0672322 0.0336161 0.999435i \(-0.489298\pi\)
0.0336161 + 0.999435i \(0.489298\pi\)
\(168\) 0 0
\(169\) −8.09844e9 −0.763679
\(170\) 2.06023e9 0.189188
\(171\) 1.53749e10 1.37509
\(172\) 1.21968e9 0.106259
\(173\) 1.94416e10 1.65015 0.825076 0.565022i \(-0.191132\pi\)
0.825076 + 0.565022i \(0.191132\pi\)
\(174\) −2.02102e9 −0.167147
\(175\) 0 0
\(176\) 4.90922e9 0.385661
\(177\) −4.37969e9 −0.335401
\(178\) −8.27956e9 −0.618183
\(179\) 4.09649e9 0.298245 0.149123 0.988819i \(-0.452355\pi\)
0.149123 + 0.988819i \(0.452355\pi\)
\(180\) 5.29634e9 0.376054
\(181\) 2.41926e10 1.67544 0.837720 0.546101i \(-0.183888\pi\)
0.837720 + 0.546101i \(0.183888\pi\)
\(182\) 0 0
\(183\) −1.26417e9 −0.0833248
\(184\) 1.10096e9 0.0708093
\(185\) −3.36499e9 −0.211209
\(186\) −2.08531e9 −0.127750
\(187\) −8.91154e9 −0.532924
\(188\) −7.71922e9 −0.450675
\(189\) 0 0
\(190\) 1.39299e10 0.775453
\(191\) 5.81998e9 0.316426 0.158213 0.987405i \(-0.449427\pi\)
0.158213 + 0.987405i \(0.449427\pi\)
\(192\) 4.00048e8 0.0212450
\(193\) 2.38583e10 1.23775 0.618874 0.785490i \(-0.287589\pi\)
0.618874 + 0.785490i \(0.287589\pi\)
\(194\) −2.12046e10 −1.07479
\(195\) −1.29200e9 −0.0639892
\(196\) 0 0
\(197\) −1.13267e10 −0.535802 −0.267901 0.963446i \(-0.586330\pi\)
−0.267901 + 0.963446i \(0.586330\pi\)
\(198\) −2.29094e10 −1.05930
\(199\) −1.75287e10 −0.792337 −0.396168 0.918178i \(-0.629660\pi\)
−0.396168 + 0.918178i \(0.629660\pi\)
\(200\) −3.20146e9 −0.141486
\(201\) 4.13674e9 0.178762
\(202\) −1.01306e9 −0.0428108
\(203\) 0 0
\(204\) −7.26193e8 −0.0293573
\(205\) 2.24960e10 0.889636
\(206\) 1.80662e10 0.698980
\(207\) −5.13773e9 −0.194494
\(208\) 3.28077e9 0.121532
\(209\) −6.02538e10 −2.18437
\(210\) 0 0
\(211\) −3.12620e10 −1.08579 −0.542895 0.839801i \(-0.682672\pi\)
−0.542895 + 0.839801i \(0.682672\pi\)
\(212\) 1.46366e10 0.497655
\(213\) −4.01407e9 −0.133622
\(214\) 2.95483e9 0.0963097
\(215\) −5.15680e9 −0.164591
\(216\) −3.78926e9 −0.118444
\(217\) 0 0
\(218\) −1.93090e10 −0.579037
\(219\) 1.10801e10 0.325497
\(220\) −2.07562e10 −0.597373
\(221\) −5.95547e9 −0.167939
\(222\) 1.18610e9 0.0327743
\(223\) −2.74321e10 −0.742825 −0.371413 0.928468i \(-0.621127\pi\)
−0.371413 + 0.928468i \(0.621127\pi\)
\(224\) 0 0
\(225\) 1.49400e10 0.388622
\(226\) 5.07286e9 0.129350
\(227\) −1.15661e10 −0.289115 −0.144557 0.989496i \(-0.546176\pi\)
−0.144557 + 0.989496i \(0.546176\pi\)
\(228\) −4.91003e9 −0.120331
\(229\) −4.23783e10 −1.01832 −0.509159 0.860672i \(-0.670044\pi\)
−0.509159 + 0.860672i \(0.670044\pi\)
\(230\) −4.65484e9 −0.109681
\(231\) 0 0
\(232\) −2.16980e10 −0.491726
\(233\) −8.52369e10 −1.89464 −0.947318 0.320294i \(-0.896218\pi\)
−0.947318 + 0.320294i \(0.896218\pi\)
\(234\) −1.53101e10 −0.333815
\(235\) 3.26369e10 0.698076
\(236\) −4.70210e10 −0.986706
\(237\) −9.86522e9 −0.203114
\(238\) 0 0
\(239\) 1.81331e10 0.359486 0.179743 0.983714i \(-0.442473\pi\)
0.179743 + 0.983714i \(0.442473\pi\)
\(240\) −1.69140e9 −0.0329076
\(241\) −2.49196e10 −0.475843 −0.237921 0.971284i \(-0.576466\pi\)
−0.237921 + 0.971284i \(0.576466\pi\)
\(242\) 5.20540e10 0.975630
\(243\) 2.66541e10 0.490383
\(244\) −1.35723e10 −0.245131
\(245\) 0 0
\(246\) −7.92943e9 −0.138049
\(247\) −4.02669e10 −0.688354
\(248\) −2.23882e10 −0.375825
\(249\) −8.35957e9 −0.137812
\(250\) 4.73597e10 0.766795
\(251\) 3.47730e9 0.0552981 0.0276491 0.999618i \(-0.491198\pi\)
0.0276491 + 0.999618i \(0.491198\pi\)
\(252\) 0 0
\(253\) 2.01346e10 0.308959
\(254\) −3.05771e10 −0.460940
\(255\) 3.07034e9 0.0454732
\(256\) 4.29497e9 0.0625000
\(257\) −7.54137e10 −1.07833 −0.539164 0.842201i \(-0.681260\pi\)
−0.539164 + 0.842201i \(0.681260\pi\)
\(258\) 1.81768e9 0.0255405
\(259\) 0 0
\(260\) −1.38711e10 −0.188248
\(261\) 1.01256e11 1.35063
\(262\) 9.68465e10 1.26978
\(263\) 1.17605e11 1.51574 0.757870 0.652405i \(-0.226240\pi\)
0.757870 + 0.652405i \(0.226240\pi\)
\(264\) 7.31618e9 0.0926973
\(265\) −6.18834e10 −0.770846
\(266\) 0 0
\(267\) −1.23390e10 −0.148586
\(268\) 4.44126e10 0.525896
\(269\) 7.42567e10 0.864670 0.432335 0.901713i \(-0.357690\pi\)
0.432335 + 0.901713i \(0.357690\pi\)
\(270\) 1.60210e10 0.183465
\(271\) −8.03991e10 −0.905502 −0.452751 0.891637i \(-0.649557\pi\)
−0.452751 + 0.891637i \(0.649557\pi\)
\(272\) −7.79651e9 −0.0863654
\(273\) 0 0
\(274\) 7.99300e10 0.856707
\(275\) −5.85492e10 −0.617339
\(276\) 1.64075e9 0.0170197
\(277\) −1.30578e11 −1.33263 −0.666316 0.745670i \(-0.732130\pi\)
−0.666316 + 0.745670i \(0.732130\pi\)
\(278\) 8.63782e10 0.867367
\(279\) 1.04477e11 1.03229
\(280\) 0 0
\(281\) −6.23328e10 −0.596401 −0.298200 0.954503i \(-0.596386\pi\)
−0.298200 + 0.954503i \(0.596386\pi\)
\(282\) −1.15039e10 −0.108324
\(283\) −6.78313e8 −0.00628625 −0.00314312 0.999995i \(-0.501000\pi\)
−0.00314312 + 0.999995i \(0.501000\pi\)
\(284\) −4.30956e10 −0.393097
\(285\) 2.07596e10 0.186388
\(286\) 5.99996e10 0.530275
\(287\) 0 0
\(288\) −2.00429e10 −0.171670
\(289\) −1.04435e11 −0.880656
\(290\) 9.17389e10 0.761662
\(291\) −3.16011e10 −0.258335
\(292\) 1.18958e11 0.957570
\(293\) −5.67165e9 −0.0449578 −0.0224789 0.999747i \(-0.507156\pi\)
−0.0224789 + 0.999747i \(0.507156\pi\)
\(294\) 0 0
\(295\) 1.98805e11 1.52837
\(296\) 1.27341e10 0.0964177
\(297\) −6.92991e10 −0.516801
\(298\) 9.99912e9 0.0734494
\(299\) 1.34557e10 0.0973612
\(300\) −4.77111e9 −0.0340075
\(301\) 0 0
\(302\) −1.76268e11 −1.21939
\(303\) −1.50976e9 −0.0102900
\(304\) −5.27147e10 −0.353998
\(305\) 5.73835e10 0.379697
\(306\) 3.63832e10 0.237222
\(307\) 1.81171e11 1.16403 0.582017 0.813176i \(-0.302264\pi\)
0.582017 + 0.813176i \(0.302264\pi\)
\(308\) 0 0
\(309\) 2.69240e10 0.168007
\(310\) 9.46570e10 0.582137
\(311\) −1.03806e11 −0.629220 −0.314610 0.949221i \(-0.601874\pi\)
−0.314610 + 0.949221i \(0.601874\pi\)
\(312\) 4.88931e9 0.0292114
\(313\) 1.48864e11 0.876678 0.438339 0.898810i \(-0.355567\pi\)
0.438339 + 0.898810i \(0.355567\pi\)
\(314\) 1.08851e11 0.631900
\(315\) 0 0
\(316\) −1.05914e11 −0.597535
\(317\) 1.97699e11 1.09961 0.549803 0.835294i \(-0.314703\pi\)
0.549803 + 0.835294i \(0.314703\pi\)
\(318\) 2.18128e10 0.119616
\(319\) −3.96818e11 −2.14552
\(320\) −1.81591e10 −0.0968099
\(321\) 4.40356e9 0.0231489
\(322\) 0 0
\(323\) 9.56912e10 0.489171
\(324\) 9.06676e10 0.457088
\(325\) −3.91277e10 −0.194540
\(326\) 3.30654e10 0.162141
\(327\) −2.87761e10 −0.139177
\(328\) −8.51315e10 −0.406123
\(329\) 0 0
\(330\) −3.09328e10 −0.143584
\(331\) 5.57880e10 0.255455 0.127728 0.991809i \(-0.459232\pi\)
0.127728 + 0.991809i \(0.459232\pi\)
\(332\) −8.97495e10 −0.405425
\(333\) −5.94252e10 −0.264833
\(334\) 1.08124e10 0.0475404
\(335\) −1.87776e11 −0.814590
\(336\) 0 0
\(337\) 4.01748e11 1.69676 0.848378 0.529391i \(-0.177580\pi\)
0.848378 + 0.529391i \(0.177580\pi\)
\(338\) −1.29575e11 −0.540003
\(339\) 7.56005e9 0.0310904
\(340\) 3.29636e10 0.133776
\(341\) −4.09441e11 −1.63982
\(342\) 2.45999e11 0.972335
\(343\) 0 0
\(344\) 1.95149e10 0.0751368
\(345\) −6.93708e9 −0.0263628
\(346\) 3.11065e11 1.16683
\(347\) −3.37872e11 −1.25104 −0.625518 0.780210i \(-0.715112\pi\)
−0.625518 + 0.780210i \(0.715112\pi\)
\(348\) −3.23363e10 −0.118191
\(349\) 3.59959e11 1.29879 0.649395 0.760451i \(-0.275022\pi\)
0.649395 + 0.760451i \(0.275022\pi\)
\(350\) 0 0
\(351\) −4.63117e10 −0.162858
\(352\) 7.85475e10 0.272703
\(353\) −1.90346e11 −0.652467 −0.326233 0.945289i \(-0.605780\pi\)
−0.326233 + 0.945289i \(0.605780\pi\)
\(354\) −7.00751e10 −0.237164
\(355\) 1.82208e11 0.608891
\(356\) −1.32473e11 −0.437122
\(357\) 0 0
\(358\) 6.55439e10 0.210891
\(359\) 3.92698e11 1.24777 0.623884 0.781517i \(-0.285554\pi\)
0.623884 + 0.781517i \(0.285554\pi\)
\(360\) 8.47415e10 0.265910
\(361\) 3.24312e11 1.00503
\(362\) 3.87081e11 1.18471
\(363\) 7.75758e10 0.234502
\(364\) 0 0
\(365\) −5.02954e11 −1.48324
\(366\) −2.02267e10 −0.0589195
\(367\) 3.24474e10 0.0933646 0.0466823 0.998910i \(-0.485135\pi\)
0.0466823 + 0.998910i \(0.485135\pi\)
\(368\) 1.76153e10 0.0500697
\(369\) 3.97275e11 1.11551
\(370\) −5.38399e10 −0.149347
\(371\) 0 0
\(372\) −3.33649e10 −0.0903331
\(373\) −4.38999e11 −1.17429 −0.587143 0.809483i \(-0.699748\pi\)
−0.587143 + 0.809483i \(0.699748\pi\)
\(374\) −1.42585e11 −0.376834
\(375\) 7.05799e10 0.184306
\(376\) −1.23508e11 −0.318675
\(377\) −2.65189e11 −0.676112
\(378\) 0 0
\(379\) −3.56933e11 −0.888607 −0.444304 0.895876i \(-0.646549\pi\)
−0.444304 + 0.895876i \(0.646549\pi\)
\(380\) 2.22878e11 0.548328
\(381\) −4.55689e10 −0.110791
\(382\) 9.31197e10 0.223747
\(383\) 1.52473e11 0.362074 0.181037 0.983476i \(-0.442055\pi\)
0.181037 + 0.983476i \(0.442055\pi\)
\(384\) 6.40076e9 0.0150225
\(385\) 0 0
\(386\) 3.81733e11 0.875220
\(387\) −9.10682e10 −0.206380
\(388\) −3.39274e11 −0.759990
\(389\) 5.57118e11 1.23360 0.616800 0.787120i \(-0.288429\pi\)
0.616800 + 0.787120i \(0.288429\pi\)
\(390\) −2.06720e10 −0.0452472
\(391\) −3.19765e10 −0.0691887
\(392\) 0 0
\(393\) 1.44330e11 0.305203
\(394\) −1.81227e11 −0.378869
\(395\) 4.47806e11 0.925556
\(396\) −3.66551e11 −0.749041
\(397\) −8.65912e11 −1.74951 −0.874755 0.484566i \(-0.838978\pi\)
−0.874755 + 0.484566i \(0.838978\pi\)
\(398\) −2.80458e11 −0.560267
\(399\) 0 0
\(400\) −5.12233e10 −0.100046
\(401\) −6.76491e11 −1.30651 −0.653254 0.757138i \(-0.726597\pi\)
−0.653254 + 0.757138i \(0.726597\pi\)
\(402\) 6.61878e10 0.126404
\(403\) −2.73624e11 −0.516751
\(404\) −1.62090e10 −0.0302718
\(405\) −3.83342e11 −0.708010
\(406\) 0 0
\(407\) 2.32885e11 0.420695
\(408\) −1.16191e10 −0.0207588
\(409\) 2.79042e11 0.493078 0.246539 0.969133i \(-0.420707\pi\)
0.246539 + 0.969133i \(0.420707\pi\)
\(410\) 3.59936e11 0.629068
\(411\) 1.19119e11 0.205918
\(412\) 2.89060e11 0.494254
\(413\) 0 0
\(414\) −8.22038e10 −0.137528
\(415\) 3.79461e11 0.627986
\(416\) 5.24923e10 0.0859361
\(417\) 1.28729e11 0.208480
\(418\) −9.64061e11 −1.54458
\(419\) 9.62344e10 0.152534 0.0762671 0.997087i \(-0.475700\pi\)
0.0762671 + 0.997087i \(0.475700\pi\)
\(420\) 0 0
\(421\) 4.35437e10 0.0675547 0.0337774 0.999429i \(-0.489246\pi\)
0.0337774 + 0.999429i \(0.489246\pi\)
\(422\) −5.00192e11 −0.767769
\(423\) 5.76362e11 0.875313
\(424\) 2.34185e11 0.351895
\(425\) 9.29839e10 0.138248
\(426\) −6.42251e10 −0.0944847
\(427\) 0 0
\(428\) 4.72772e10 0.0681012
\(429\) 8.94171e10 0.127457
\(430\) −8.25088e10 −0.116384
\(431\) 7.76147e11 1.08342 0.541709 0.840566i \(-0.317777\pi\)
0.541709 + 0.840566i \(0.317777\pi\)
\(432\) −6.06282e10 −0.0837525
\(433\) −5.97634e11 −0.817033 −0.408517 0.912751i \(-0.633954\pi\)
−0.408517 + 0.912751i \(0.633954\pi\)
\(434\) 0 0
\(435\) 1.36718e11 0.183073
\(436\) −3.08944e11 −0.409441
\(437\) −2.16203e11 −0.283593
\(438\) 1.77282e11 0.230161
\(439\) 3.19834e11 0.410992 0.205496 0.978658i \(-0.434119\pi\)
0.205496 + 0.978658i \(0.434119\pi\)
\(440\) −3.32099e11 −0.422406
\(441\) 0 0
\(442\) −9.52875e10 −0.118751
\(443\) −4.42099e11 −0.545384 −0.272692 0.962101i \(-0.587914\pi\)
−0.272692 + 0.962101i \(0.587914\pi\)
\(444\) 1.89776e10 0.0231749
\(445\) 5.60095e11 0.677083
\(446\) −4.38913e11 −0.525257
\(447\) 1.49016e10 0.0176543
\(448\) 0 0
\(449\) −7.93959e11 −0.921913 −0.460956 0.887423i \(-0.652494\pi\)
−0.460956 + 0.887423i \(0.652494\pi\)
\(450\) 2.39039e11 0.274798
\(451\) −1.55691e12 −1.77202
\(452\) 8.11658e10 0.0914639
\(453\) −2.62691e11 −0.293092
\(454\) −1.85058e11 −0.204435
\(455\) 0 0
\(456\) −7.85604e10 −0.0850868
\(457\) 9.71595e10 0.104199 0.0520993 0.998642i \(-0.483409\pi\)
0.0520993 + 0.998642i \(0.483409\pi\)
\(458\) −6.78052e11 −0.720060
\(459\) 1.10056e11 0.115733
\(460\) −7.44775e10 −0.0775559
\(461\) −8.96191e11 −0.924158 −0.462079 0.886839i \(-0.652896\pi\)
−0.462079 + 0.886839i \(0.652896\pi\)
\(462\) 0 0
\(463\) −6.89366e11 −0.697164 −0.348582 0.937278i \(-0.613337\pi\)
−0.348582 + 0.937278i \(0.613337\pi\)
\(464\) −3.47167e11 −0.347703
\(465\) 1.41067e11 0.139922
\(466\) −1.36379e12 −1.33971
\(467\) 3.75580e11 0.365407 0.182703 0.983168i \(-0.441515\pi\)
0.182703 + 0.983168i \(0.441515\pi\)
\(468\) −2.44961e11 −0.236043
\(469\) 0 0
\(470\) 5.22190e11 0.493615
\(471\) 1.62220e11 0.151883
\(472\) −7.52336e11 −0.697706
\(473\) 3.56893e11 0.327841
\(474\) −1.57844e11 −0.143623
\(475\) 6.28695e11 0.566655
\(476\) 0 0
\(477\) −1.09285e12 −0.966558
\(478\) 2.90130e11 0.254195
\(479\) 1.18198e12 1.02589 0.512946 0.858421i \(-0.328554\pi\)
0.512946 + 0.858421i \(0.328554\pi\)
\(480\) −2.70624e10 −0.0232692
\(481\) 1.55634e11 0.132572
\(482\) −3.98713e11 −0.336472
\(483\) 0 0
\(484\) 8.32865e11 0.689875
\(485\) 1.43445e12 1.17719
\(486\) 4.26465e11 0.346753
\(487\) −2.78467e11 −0.224333 −0.112167 0.993689i \(-0.535779\pi\)
−0.112167 + 0.993689i \(0.535779\pi\)
\(488\) −2.17156e11 −0.173334
\(489\) 4.92771e10 0.0389722
\(490\) 0 0
\(491\) 7.96998e10 0.0618857 0.0309429 0.999521i \(-0.490149\pi\)
0.0309429 + 0.999521i \(0.490149\pi\)
\(492\) −1.26871e11 −0.0976156
\(493\) 6.30201e11 0.480472
\(494\) −6.44270e11 −0.486740
\(495\) 1.54978e12 1.16023
\(496\) −3.58210e11 −0.265748
\(497\) 0 0
\(498\) −1.33753e11 −0.0974478
\(499\) 3.19872e11 0.230953 0.115477 0.993310i \(-0.463160\pi\)
0.115477 + 0.993310i \(0.463160\pi\)
\(500\) 7.57756e11 0.542206
\(501\) 1.61136e10 0.0114268
\(502\) 5.56368e10 0.0391017
\(503\) 1.67487e12 1.16661 0.583306 0.812253i \(-0.301759\pi\)
0.583306 + 0.812253i \(0.301759\pi\)
\(504\) 0 0
\(505\) 6.85314e10 0.0468898
\(506\) 3.22154e11 0.218467
\(507\) −1.93105e11 −0.129795
\(508\) −4.89234e11 −0.325934
\(509\) 6.24609e11 0.412457 0.206228 0.978504i \(-0.433881\pi\)
0.206228 + 0.978504i \(0.433881\pi\)
\(510\) 4.91255e10 0.0321544
\(511\) 0 0
\(512\) 6.87195e10 0.0441942
\(513\) 7.44127e11 0.474372
\(514\) −1.20662e12 −0.762494
\(515\) −1.22214e12 −0.765578
\(516\) 2.90829e10 0.0180598
\(517\) −2.25874e12 −1.39046
\(518\) 0 0
\(519\) 4.63579e11 0.280460
\(520\) −2.21937e11 −0.133111
\(521\) −6.42947e11 −0.382301 −0.191150 0.981561i \(-0.561222\pi\)
−0.191150 + 0.981561i \(0.561222\pi\)
\(522\) 1.62009e12 0.955043
\(523\) −1.61733e12 −0.945239 −0.472619 0.881267i \(-0.656691\pi\)
−0.472619 + 0.881267i \(0.656691\pi\)
\(524\) 1.54954e12 0.897869
\(525\) 0 0
\(526\) 1.88168e12 1.07179
\(527\) 6.50247e11 0.367224
\(528\) 1.17059e11 0.0655469
\(529\) −1.72891e12 −0.959888
\(530\) −9.90134e11 −0.545070
\(531\) 3.51086e12 1.91641
\(532\) 0 0
\(533\) −1.04046e12 −0.558411
\(534\) −1.97424e11 −0.105066
\(535\) −1.99888e11 −0.105486
\(536\) 7.10601e11 0.371864
\(537\) 9.76796e10 0.0506897
\(538\) 1.18811e12 0.611414
\(539\) 0 0
\(540\) 2.56336e11 0.129729
\(541\) −2.43457e12 −1.22190 −0.610948 0.791670i \(-0.709212\pi\)
−0.610948 + 0.791670i \(0.709212\pi\)
\(542\) −1.28639e12 −0.640287
\(543\) 5.76865e11 0.284757
\(544\) −1.24744e11 −0.0610696
\(545\) 1.30622e12 0.634206
\(546\) 0 0
\(547\) 3.63462e12 1.73587 0.867934 0.496680i \(-0.165448\pi\)
0.867934 + 0.496680i \(0.165448\pi\)
\(548\) 1.27888e12 0.605783
\(549\) 1.01338e12 0.476100
\(550\) −9.36786e11 −0.436524
\(551\) 4.26099e12 1.96938
\(552\) 2.62520e10 0.0120347
\(553\) 0 0
\(554\) −2.08924e12 −0.942313
\(555\) −8.02373e10 −0.0358970
\(556\) 1.38205e12 0.613321
\(557\) −4.44468e10 −0.0195656 −0.00978278 0.999952i \(-0.503114\pi\)
−0.00978278 + 0.999952i \(0.503114\pi\)
\(558\) 1.67163e12 0.729938
\(559\) 2.38507e11 0.103311
\(560\) 0 0
\(561\) −2.12493e11 −0.0905757
\(562\) −9.97324e11 −0.421719
\(563\) 3.86358e12 1.62070 0.810349 0.585947i \(-0.199277\pi\)
0.810349 + 0.585947i \(0.199277\pi\)
\(564\) −1.84063e11 −0.0765966
\(565\) −3.43169e11 −0.141674
\(566\) −1.08530e10 −0.00444505
\(567\) 0 0
\(568\) −6.89529e11 −0.277962
\(569\) −2.06493e12 −0.825849 −0.412925 0.910765i \(-0.635493\pi\)
−0.412925 + 0.910765i \(0.635493\pi\)
\(570\) 3.32153e11 0.131796
\(571\) −3.10168e12 −1.22105 −0.610527 0.791996i \(-0.709042\pi\)
−0.610527 + 0.791996i \(0.709042\pi\)
\(572\) 9.59994e11 0.374961
\(573\) 1.38776e11 0.0537796
\(574\) 0 0
\(575\) −2.10087e11 −0.0801480
\(576\) −3.20687e11 −0.121389
\(577\) −2.08223e11 −0.0782055 −0.0391027 0.999235i \(-0.512450\pi\)
−0.0391027 + 0.999235i \(0.512450\pi\)
\(578\) −1.67096e12 −0.622718
\(579\) 5.68895e11 0.210367
\(580\) 1.46782e12 0.538577
\(581\) 0 0
\(582\) −5.05618e11 −0.182671
\(583\) 4.28284e12 1.53541
\(584\) 1.90333e12 0.677104
\(585\) 1.03570e12 0.365620
\(586\) −9.07464e10 −0.0317900
\(587\) 2.56958e12 0.893286 0.446643 0.894712i \(-0.352619\pi\)
0.446643 + 0.894712i \(0.352619\pi\)
\(588\) 0 0
\(589\) 4.39653e12 1.50519
\(590\) 3.18087e12 1.08072
\(591\) −2.70081e11 −0.0910648
\(592\) 2.03746e11 0.0681776
\(593\) −2.03548e12 −0.675960 −0.337980 0.941153i \(-0.609744\pi\)
−0.337980 + 0.941153i \(0.609744\pi\)
\(594\) −1.10879e12 −0.365434
\(595\) 0 0
\(596\) 1.59986e11 0.0519366
\(597\) −4.17966e11 −0.134665
\(598\) 2.15291e11 0.0688448
\(599\) −2.81749e12 −0.894213 −0.447107 0.894481i \(-0.647546\pi\)
−0.447107 + 0.894481i \(0.647546\pi\)
\(600\) −7.63378e10 −0.0240469
\(601\) −2.84630e12 −0.889908 −0.444954 0.895553i \(-0.646780\pi\)
−0.444954 + 0.895553i \(0.646780\pi\)
\(602\) 0 0
\(603\) −3.31610e12 −1.02141
\(604\) −2.82029e12 −0.862238
\(605\) −3.52135e12 −1.06859
\(606\) −2.41561e10 −0.00727612
\(607\) −3.03944e12 −0.908749 −0.454375 0.890811i \(-0.650137\pi\)
−0.454375 + 0.890811i \(0.650137\pi\)
\(608\) −8.43436e11 −0.250314
\(609\) 0 0
\(610\) 9.18136e11 0.268487
\(611\) −1.50949e12 −0.438171
\(612\) 5.82132e11 0.167741
\(613\) 5.70963e12 1.63319 0.816594 0.577213i \(-0.195860\pi\)
0.816594 + 0.577213i \(0.195860\pi\)
\(614\) 2.89874e12 0.823097
\(615\) 5.36410e11 0.151202
\(616\) 0 0
\(617\) −2.92315e12 −0.812023 −0.406011 0.913868i \(-0.633081\pi\)
−0.406011 + 0.913868i \(0.633081\pi\)
\(618\) 4.30784e11 0.118799
\(619\) −5.77560e12 −1.58121 −0.790604 0.612328i \(-0.790233\pi\)
−0.790604 + 0.612328i \(0.790233\pi\)
\(620\) 1.51451e12 0.411633
\(621\) −2.48660e11 −0.0670954
\(622\) −1.66090e12 −0.444925
\(623\) 0 0
\(624\) 7.82290e10 0.0206556
\(625\) −1.67721e12 −0.439672
\(626\) 2.38182e12 0.619905
\(627\) −1.43674e12 −0.371255
\(628\) 1.74161e12 0.446821
\(629\) −3.69853e11 −0.0942110
\(630\) 0 0
\(631\) 2.44150e12 0.613090 0.306545 0.951856i \(-0.400827\pi\)
0.306545 + 0.951856i \(0.400827\pi\)
\(632\) −1.69463e12 −0.422521
\(633\) −7.45433e11 −0.184541
\(634\) 3.16318e12 0.777539
\(635\) 2.06848e12 0.504858
\(636\) 3.49005e11 0.0845813
\(637\) 0 0
\(638\) −6.34909e12 −1.51711
\(639\) 3.21776e12 0.763484
\(640\) −2.90546e11 −0.0684549
\(641\) 7.90697e12 1.84990 0.924952 0.380085i \(-0.124105\pi\)
0.924952 + 0.380085i \(0.124105\pi\)
\(642\) 7.04569e10 0.0163688
\(643\) −1.32729e12 −0.306208 −0.153104 0.988210i \(-0.548927\pi\)
−0.153104 + 0.988210i \(0.548927\pi\)
\(644\) 0 0
\(645\) −1.22962e11 −0.0279739
\(646\) 1.53106e12 0.345896
\(647\) 3.23220e12 0.725152 0.362576 0.931954i \(-0.381897\pi\)
0.362576 + 0.931954i \(0.381897\pi\)
\(648\) 1.45068e12 0.323210
\(649\) −1.37589e13 −3.04427
\(650\) −6.26042e11 −0.137560
\(651\) 0 0
\(652\) 5.29046e11 0.114651
\(653\) −1.83929e12 −0.395859 −0.197929 0.980216i \(-0.563422\pi\)
−0.197929 + 0.980216i \(0.563422\pi\)
\(654\) −4.60418e11 −0.0984130
\(655\) −6.55147e12 −1.39076
\(656\) −1.36210e12 −0.287173
\(657\) −8.88208e12 −1.85982
\(658\) 0 0
\(659\) 5.84606e12 1.20748 0.603738 0.797182i \(-0.293677\pi\)
0.603738 + 0.797182i \(0.293677\pi\)
\(660\) −4.94925e11 −0.101529
\(661\) −5.65188e12 −1.15156 −0.575780 0.817605i \(-0.695302\pi\)
−0.575780 + 0.817605i \(0.695302\pi\)
\(662\) 8.92609e11 0.180634
\(663\) −1.42006e11 −0.0285428
\(664\) −1.43599e12 −0.286679
\(665\) 0 0
\(666\) −9.50804e11 −0.187265
\(667\) −1.42387e12 −0.278550
\(668\) 1.72998e11 0.0336161
\(669\) −6.54110e11 −0.126250
\(670\) −3.00442e12 −0.576002
\(671\) −3.97141e12 −0.756299
\(672\) 0 0
\(673\) −1.86409e12 −0.350267 −0.175133 0.984545i \(-0.556036\pi\)
−0.175133 + 0.984545i \(0.556036\pi\)
\(674\) 6.42797e12 1.19979
\(675\) 7.23074e11 0.134065
\(676\) −2.07320e12 −0.381840
\(677\) 2.29426e12 0.419753 0.209877 0.977728i \(-0.432694\pi\)
0.209877 + 0.977728i \(0.432694\pi\)
\(678\) 1.20961e11 0.0219842
\(679\) 0 0
\(680\) 5.27418e11 0.0945942
\(681\) −2.75790e11 −0.0491379
\(682\) −6.55105e12 −1.15953
\(683\) −4.93542e12 −0.867822 −0.433911 0.900956i \(-0.642867\pi\)
−0.433911 + 0.900956i \(0.642867\pi\)
\(684\) 3.93598e12 0.687545
\(685\) −5.40710e12 −0.938332
\(686\) 0 0
\(687\) −1.01050e12 −0.173073
\(688\) 3.12238e11 0.0531297
\(689\) 2.86217e12 0.483848
\(690\) −1.10993e11 −0.0186413
\(691\) −7.91985e12 −1.32149 −0.660747 0.750608i \(-0.729761\pi\)
−0.660747 + 0.750608i \(0.729761\pi\)
\(692\) 4.97704e12 0.825076
\(693\) 0 0
\(694\) −5.40595e12 −0.884616
\(695\) −5.84331e12 −0.950008
\(696\) −5.17381e11 −0.0835736
\(697\) 2.47258e12 0.396828
\(698\) 5.75935e12 0.918384
\(699\) −2.03245e12 −0.322012
\(700\) 0 0
\(701\) −1.24405e12 −0.194584 −0.0972919 0.995256i \(-0.531018\pi\)
−0.0972919 + 0.995256i \(0.531018\pi\)
\(702\) −7.40987e11 −0.115158
\(703\) −2.50070e12 −0.386156
\(704\) 1.25676e12 0.192830
\(705\) 7.78216e11 0.118645
\(706\) −3.04554e12 −0.461364
\(707\) 0 0
\(708\) −1.12120e12 −0.167700
\(709\) −7.28329e12 −1.08248 −0.541239 0.840869i \(-0.682045\pi\)
−0.541239 + 0.840869i \(0.682045\pi\)
\(710\) 2.91533e12 0.430551
\(711\) 7.90818e12 1.16055
\(712\) −2.11957e12 −0.309092
\(713\) −1.46916e12 −0.212895
\(714\) 0 0
\(715\) −4.05885e12 −0.580799
\(716\) 1.04870e12 0.149123
\(717\) 4.32379e11 0.0610982
\(718\) 6.28317e12 0.882305
\(719\) 3.94689e12 0.550776 0.275388 0.961333i \(-0.411194\pi\)
0.275388 + 0.961333i \(0.411194\pi\)
\(720\) 1.35586e12 0.188027
\(721\) 0 0
\(722\) 5.18899e12 0.710666
\(723\) −5.94199e11 −0.0808742
\(724\) 6.19330e12 0.837720
\(725\) 4.14044e12 0.556578
\(726\) 1.24121e12 0.165818
\(727\) 1.29298e13 1.71667 0.858335 0.513089i \(-0.171499\pi\)
0.858335 + 0.513089i \(0.171499\pi\)
\(728\) 0 0
\(729\) −6.33557e12 −0.830830
\(730\) −8.04726e12 −1.04881
\(731\) −5.66794e11 −0.0734171
\(732\) −3.23627e11 −0.0416624
\(733\) 7.05388e11 0.0902527 0.0451263 0.998981i \(-0.485631\pi\)
0.0451263 + 0.998981i \(0.485631\pi\)
\(734\) 5.19158e11 0.0660187
\(735\) 0 0
\(736\) 2.81845e11 0.0354046
\(737\) 1.29957e13 1.62254
\(738\) 6.35641e12 0.788784
\(739\) 2.48471e12 0.306461 0.153231 0.988190i \(-0.451032\pi\)
0.153231 + 0.988190i \(0.451032\pi\)
\(740\) −8.61438e11 −0.105604
\(741\) −9.60152e11 −0.116992
\(742\) 0 0
\(743\) 7.27764e12 0.876074 0.438037 0.898957i \(-0.355674\pi\)
0.438037 + 0.898957i \(0.355674\pi\)
\(744\) −5.33839e11 −0.0638752
\(745\) −6.76420e11 −0.0804476
\(746\) −7.02399e12 −0.830346
\(747\) 6.70121e12 0.787428
\(748\) −2.28135e12 −0.266462
\(749\) 0 0
\(750\) 1.12928e12 0.130324
\(751\) −5.50393e12 −0.631383 −0.315691 0.948862i \(-0.602236\pi\)
−0.315691 + 0.948862i \(0.602236\pi\)
\(752\) −1.97612e12 −0.225337
\(753\) 8.29152e10 0.00939846
\(754\) −4.24302e12 −0.478083
\(755\) 1.19242e13 1.33557
\(756\) 0 0
\(757\) 1.41842e13 1.56991 0.784955 0.619553i \(-0.212686\pi\)
0.784955 + 0.619553i \(0.212686\pi\)
\(758\) −5.71092e12 −0.628340
\(759\) 4.80104e11 0.0525106
\(760\) 3.56604e12 0.387727
\(761\) −1.00139e13 −1.08236 −0.541180 0.840907i \(-0.682022\pi\)
−0.541180 + 0.840907i \(0.682022\pi\)
\(762\) −7.29102e11 −0.0783414
\(763\) 0 0
\(764\) 1.48992e12 0.158213
\(765\) −2.46125e12 −0.259824
\(766\) 2.43956e12 0.256025
\(767\) −9.19491e12 −0.959331
\(768\) 1.02412e11 0.0106225
\(769\) −1.39641e12 −0.143994 −0.0719968 0.997405i \(-0.522937\pi\)
−0.0719968 + 0.997405i \(0.522937\pi\)
\(770\) 0 0
\(771\) −1.79822e12 −0.183273
\(772\) 6.10773e12 0.618874
\(773\) 7.42756e12 0.748236 0.374118 0.927381i \(-0.377945\pi\)
0.374118 + 0.927381i \(0.377945\pi\)
\(774\) −1.45709e12 −0.145933
\(775\) 4.27215e12 0.425391
\(776\) −5.42838e12 −0.537394
\(777\) 0 0
\(778\) 8.91389e12 0.872286
\(779\) 1.67179e13 1.62654
\(780\) −3.30752e11 −0.0319946
\(781\) −1.26103e13 −1.21282
\(782\) −5.11623e11 −0.0489238
\(783\) 4.90065e12 0.465935
\(784\) 0 0
\(785\) −7.36353e12 −0.692106
\(786\) 2.30928e12 0.215811
\(787\) 4.31315e12 0.400782 0.200391 0.979716i \(-0.435779\pi\)
0.200391 + 0.979716i \(0.435779\pi\)
\(788\) −2.89963e12 −0.267901
\(789\) 2.80426e12 0.257615
\(790\) 7.16489e12 0.654467
\(791\) 0 0
\(792\) −5.86481e12 −0.529652
\(793\) −2.65404e12 −0.238330
\(794\) −1.38546e13 −1.23709
\(795\) −1.47559e12 −0.131013
\(796\) −4.48734e12 −0.396168
\(797\) 6.97760e12 0.612553 0.306276 0.951943i \(-0.400917\pi\)
0.306276 + 0.951943i \(0.400917\pi\)
\(798\) 0 0
\(799\) 3.58718e12 0.311382
\(800\) −8.19573e11 −0.0707429
\(801\) 9.89119e12 0.848989
\(802\) −1.08239e13 −0.923841
\(803\) 3.48086e13 2.95438
\(804\) 1.05900e12 0.0893811
\(805\) 0 0
\(806\) −4.37798e12 −0.365398
\(807\) 1.77063e12 0.146959
\(808\) −2.59343e11 −0.0214054
\(809\) 2.28389e11 0.0187459 0.00937296 0.999956i \(-0.497016\pi\)
0.00937296 + 0.999956i \(0.497016\pi\)
\(810\) −6.13348e12 −0.500638
\(811\) 1.24712e12 0.101231 0.0506156 0.998718i \(-0.483882\pi\)
0.0506156 + 0.998718i \(0.483882\pi\)
\(812\) 0 0
\(813\) −1.91709e12 −0.153899
\(814\) 3.72617e12 0.297476
\(815\) −2.23680e12 −0.177590
\(816\) −1.85905e11 −0.0146787
\(817\) −3.83228e12 −0.300925
\(818\) 4.46468e12 0.348658
\(819\) 0 0
\(820\) 5.75897e12 0.444818
\(821\) −4.26405e11 −0.0327550 −0.0163775 0.999866i \(-0.505213\pi\)
−0.0163775 + 0.999866i \(0.505213\pi\)
\(822\) 1.90591e12 0.145606
\(823\) −1.02124e12 −0.0775939 −0.0387970 0.999247i \(-0.512353\pi\)
−0.0387970 + 0.999247i \(0.512353\pi\)
\(824\) 4.62495e12 0.349490
\(825\) −1.39609e12 −0.104923
\(826\) 0 0
\(827\) −5.09034e12 −0.378418 −0.189209 0.981937i \(-0.560592\pi\)
−0.189209 + 0.981937i \(0.560592\pi\)
\(828\) −1.31526e12 −0.0972468
\(829\) −1.29008e13 −0.948681 −0.474340 0.880342i \(-0.657313\pi\)
−0.474340 + 0.880342i \(0.657313\pi\)
\(830\) 6.07137e12 0.444053
\(831\) −3.11359e12 −0.226494
\(832\) 8.39877e11 0.0607660
\(833\) 0 0
\(834\) 2.05966e12 0.147418
\(835\) −7.31436e11 −0.0520699
\(836\) −1.54250e13 −1.09219
\(837\) 5.05654e12 0.356114
\(838\) 1.53975e12 0.107858
\(839\) 6.08459e12 0.423938 0.211969 0.977276i \(-0.432012\pi\)
0.211969 + 0.977276i \(0.432012\pi\)
\(840\) 0 0
\(841\) 1.35548e13 0.934353
\(842\) 6.96699e11 0.0477684
\(843\) −1.48631e12 −0.101364
\(844\) −8.00307e12 −0.542895
\(845\) 8.76548e12 0.591454
\(846\) 9.22179e12 0.618940
\(847\) 0 0
\(848\) 3.74696e12 0.248827
\(849\) −1.61742e10 −0.00106841
\(850\) 1.48774e12 0.0977559
\(851\) 8.35641e11 0.0546181
\(852\) −1.02760e12 −0.0668108
\(853\) −1.69683e13 −1.09741 −0.548703 0.836017i \(-0.684878\pi\)
−0.548703 + 0.836017i \(0.684878\pi\)
\(854\) 0 0
\(855\) −1.66413e13 −1.06498
\(856\) 7.56435e11 0.0481548
\(857\) 4.71057e12 0.298305 0.149152 0.988814i \(-0.452346\pi\)
0.149152 + 0.988814i \(0.452346\pi\)
\(858\) 1.43067e12 0.0901255
\(859\) −8.04517e12 −0.504157 −0.252079 0.967707i \(-0.581114\pi\)
−0.252079 + 0.967707i \(0.581114\pi\)
\(860\) −1.32014e12 −0.0822957
\(861\) 0 0
\(862\) 1.24184e13 0.766093
\(863\) 1.75627e13 1.07781 0.538907 0.842365i \(-0.318837\pi\)
0.538907 + 0.842365i \(0.318837\pi\)
\(864\) −9.70052e11 −0.0592220
\(865\) −2.10429e13 −1.27801
\(866\) −9.56214e12 −0.577730
\(867\) −2.49023e12 −0.149676
\(868\) 0 0
\(869\) −3.09919e13 −1.84357
\(870\) 2.18749e12 0.129452
\(871\) 8.68484e12 0.511305
\(872\) −4.94311e12 −0.289518
\(873\) 2.53321e13 1.47607
\(874\) −3.45925e12 −0.200531
\(875\) 0 0
\(876\) 2.83652e12 0.162748
\(877\) 8.42019e12 0.480644 0.240322 0.970693i \(-0.422747\pi\)
0.240322 + 0.970693i \(0.422747\pi\)
\(878\) 5.11734e12 0.290615
\(879\) −1.35239e11 −0.00764102
\(880\) −5.31358e12 −0.298686
\(881\) 3.03091e13 1.69504 0.847522 0.530760i \(-0.178093\pi\)
0.847522 + 0.530760i \(0.178093\pi\)
\(882\) 0 0
\(883\) −2.44649e12 −0.135432 −0.0677159 0.997705i \(-0.521571\pi\)
−0.0677159 + 0.997705i \(0.521571\pi\)
\(884\) −1.52460e12 −0.0839693
\(885\) 4.74044e12 0.259761
\(886\) −7.07358e12 −0.385645
\(887\) −2.05372e13 −1.11400 −0.557001 0.830512i \(-0.688048\pi\)
−0.557001 + 0.830512i \(0.688048\pi\)
\(888\) 3.03642e11 0.0163871
\(889\) 0 0
\(890\) 8.96152e12 0.478770
\(891\) 2.65305e13 1.41025
\(892\) −7.02261e12 −0.371413
\(893\) 2.42541e13 1.27630
\(894\) 2.38426e11 0.0124835
\(895\) −4.43391e12 −0.230985
\(896\) 0 0
\(897\) 3.20847e11 0.0165475
\(898\) −1.27033e13 −0.651891
\(899\) 2.89546e13 1.47842
\(900\) 3.82463e12 0.194311
\(901\) −6.80173e12 −0.343841
\(902\) −2.49105e13 −1.25301
\(903\) 0 0
\(904\) 1.29865e12 0.0646748
\(905\) −2.61853e13 −1.29759
\(906\) −4.20306e12 −0.207247
\(907\) 1.35046e13 0.662598 0.331299 0.943526i \(-0.392513\pi\)
0.331299 + 0.943526i \(0.392513\pi\)
\(908\) −2.96092e12 −0.144557
\(909\) 1.21025e12 0.0587948
\(910\) 0 0
\(911\) 2.83771e13 1.36501 0.682504 0.730882i \(-0.260891\pi\)
0.682504 + 0.730882i \(0.260891\pi\)
\(912\) −1.25697e12 −0.0601654
\(913\) −2.62618e13 −1.25085
\(914\) 1.55455e12 0.0736796
\(915\) 1.36829e12 0.0645333
\(916\) −1.08488e13 −0.509159
\(917\) 0 0
\(918\) 1.76090e12 0.0818357
\(919\) −2.60212e13 −1.20339 −0.601696 0.798725i \(-0.705508\pi\)
−0.601696 + 0.798725i \(0.705508\pi\)
\(920\) −1.19164e12 −0.0548403
\(921\) 4.31997e12 0.197839
\(922\) −1.43391e13 −0.653478
\(923\) −8.42730e12 −0.382191
\(924\) 0 0
\(925\) −2.42995e12 −0.109134
\(926\) −1.10299e13 −0.492970
\(927\) −2.15829e13 −0.959953
\(928\) −5.55468e12 −0.245863
\(929\) 1.70441e13 0.750764 0.375382 0.926870i \(-0.377512\pi\)
0.375382 + 0.926870i \(0.377512\pi\)
\(930\) 2.25707e12 0.0989399
\(931\) 0 0
\(932\) −2.18206e13 −0.947318
\(933\) −2.47523e12 −0.106942
\(934\) 6.00928e12 0.258382
\(935\) 9.64556e12 0.412739
\(936\) −3.91938e12 −0.166908
\(937\) −1.17078e13 −0.496188 −0.248094 0.968736i \(-0.579804\pi\)
−0.248094 + 0.968736i \(0.579804\pi\)
\(938\) 0 0
\(939\) 3.54962e12 0.149000
\(940\) 8.35504e12 0.349038
\(941\) 1.59944e13 0.664990 0.332495 0.943105i \(-0.392110\pi\)
0.332495 + 0.943105i \(0.392110\pi\)
\(942\) 2.59551e12 0.107398
\(943\) −5.58651e12 −0.230058
\(944\) −1.20374e13 −0.493353
\(945\) 0 0
\(946\) 5.71029e12 0.231819
\(947\) −2.70384e13 −1.09246 −0.546231 0.837635i \(-0.683938\pi\)
−0.546231 + 0.837635i \(0.683938\pi\)
\(948\) −2.52550e12 −0.101557
\(949\) 2.32621e13 0.931003
\(950\) 1.00591e13 0.400686
\(951\) 4.71407e12 0.186889
\(952\) 0 0
\(953\) −3.10710e13 −1.22022 −0.610108 0.792318i \(-0.708874\pi\)
−0.610108 + 0.792318i \(0.708874\pi\)
\(954\) −1.74856e13 −0.683460
\(955\) −6.29936e12 −0.245065
\(956\) 4.64208e12 0.179743
\(957\) −9.46201e12 −0.364653
\(958\) 1.89117e13 0.725415
\(959\) 0 0
\(960\) −4.32999e11 −0.0164538
\(961\) 3.43597e12 0.129955
\(962\) 2.49015e12 0.0937427
\(963\) −3.52999e12 −0.132268
\(964\) −6.37941e12 −0.237921
\(965\) −2.58235e13 −0.958610
\(966\) 0 0
\(967\) −1.42603e13 −0.524457 −0.262228 0.965006i \(-0.584457\pi\)
−0.262228 + 0.965006i \(0.584457\pi\)
\(968\) 1.33258e13 0.487815
\(969\) 2.28173e12 0.0831394
\(970\) 2.29512e13 0.832401
\(971\) −2.58561e13 −0.933418 −0.466709 0.884411i \(-0.654561\pi\)
−0.466709 + 0.884411i \(0.654561\pi\)
\(972\) 6.82345e12 0.245192
\(973\) 0 0
\(974\) −4.45548e12 −0.158628
\(975\) −9.32987e11 −0.0330640
\(976\) −3.47450e12 −0.122565
\(977\) 1.08261e13 0.380141 0.190071 0.981770i \(-0.439128\pi\)
0.190071 + 0.981770i \(0.439128\pi\)
\(978\) 7.88434e11 0.0275575
\(979\) −3.87632e13 −1.34865
\(980\) 0 0
\(981\) 2.30676e13 0.795227
\(982\) 1.27520e12 0.0437598
\(983\) 2.76603e13 0.944855 0.472428 0.881369i \(-0.343378\pi\)
0.472428 + 0.881369i \(0.343378\pi\)
\(984\) −2.02994e12 −0.0690246
\(985\) 1.22596e13 0.414967
\(986\) 1.00832e13 0.339745
\(987\) 0 0
\(988\) −1.03083e13 −0.344177
\(989\) 1.28061e12 0.0425630
\(990\) 2.47964e13 0.820409
\(991\) −2.70965e13 −0.892446 −0.446223 0.894922i \(-0.647231\pi\)
−0.446223 + 0.894922i \(0.647231\pi\)
\(992\) −5.73137e12 −0.187912
\(993\) 1.33025e12 0.0434172
\(994\) 0 0
\(995\) 1.89724e13 0.613648
\(996\) −2.14005e12 −0.0689060
\(997\) −3.13132e13 −1.00369 −0.501845 0.864958i \(-0.667345\pi\)
−0.501845 + 0.864958i \(0.667345\pi\)
\(998\) 5.11795e12 0.163309
\(999\) −2.87610e12 −0.0913608
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 98.10.a.i.1.3 3
7.2 even 3 98.10.c.k.67.1 6
7.3 odd 6 14.10.c.a.9.3 6
7.4 even 3 98.10.c.k.79.1 6
7.5 odd 6 14.10.c.a.11.3 yes 6
7.6 odd 2 98.10.a.j.1.1 3
21.5 even 6 126.10.g.f.109.2 6
21.17 even 6 126.10.g.f.37.2 6
28.3 even 6 112.10.i.b.65.1 6
28.19 even 6 112.10.i.b.81.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.10.c.a.9.3 6 7.3 odd 6
14.10.c.a.11.3 yes 6 7.5 odd 6
98.10.a.i.1.3 3 1.1 even 1 trivial
98.10.a.j.1.1 3 7.6 odd 2
98.10.c.k.67.1 6 7.2 even 3
98.10.c.k.79.1 6 7.4 even 3
112.10.i.b.65.1 6 28.3 even 6
112.10.i.b.81.1 6 28.19 even 6
126.10.g.f.37.2 6 21.17 even 6
126.10.g.f.109.2 6 21.5 even 6