Properties

Label 11.4.a.a
Level 1111
Weight 44
Character orbit 11.a
Self dual yes
Analytic conductor 0.6490.649
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [11,4,Mod(1,11)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(11, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("11.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: N N == 11 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 11.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.6490210100630.649021010063
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{3})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x23 x^{2} - 3 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=3\beta = \sqrt{3}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β+1)q2+(4β1)q3+(2β4)q4+(8β+1)q5+(5β13)q6+(4β+10)q7+(10β6)q8+(8β+22)q9+(9β+25)q10++(88β242)q99+O(q100) q + (\beta + 1) q^{2} + ( - 4 \beta - 1) q^{3} + (2 \beta - 4) q^{4} + (8 \beta + 1) q^{5} + ( - 5 \beta - 13) q^{6} + ( - 4 \beta + 10) q^{7} + ( - 10 \beta - 6) q^{8} + (8 \beta + 22) q^{9} + (9 \beta + 25) q^{10}+ \cdots + ( - 88 \beta - 242) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q22q38q4+2q526q6+20q712q8+44q9+50q1022q1140q12+80q134q14194q158q16124q17+92q18+72q19+484q99+O(q100) 2 q + 2 q^{2} - 2 q^{3} - 8 q^{4} + 2 q^{5} - 26 q^{6} + 20 q^{7} - 12 q^{8} + 44 q^{9} + 50 q^{10} - 22 q^{11} - 40 q^{12} + 80 q^{13} - 4 q^{14} - 194 q^{15} - 8 q^{16} - 124 q^{17} + 92 q^{18} + 72 q^{19}+ \cdots - 484 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.73205
1.73205
−0.732051 5.92820 −7.46410 −12.8564 −4.33975 16.9282 11.3205 8.14359 9.41154
1.2 2.73205 −7.92820 −0.535898 14.8564 −21.6603 3.07180 −23.3205 35.8564 40.5885
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
1111 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 11.4.a.a 2
3.b odd 2 1 99.4.a.c 2
4.b odd 2 1 176.4.a.i 2
5.b even 2 1 275.4.a.b 2
5.c odd 4 2 275.4.b.c 4
7.b odd 2 1 539.4.a.e 2
8.b even 2 1 704.4.a.p 2
8.d odd 2 1 704.4.a.n 2
11.b odd 2 1 121.4.a.c 2
11.c even 5 4 121.4.c.c 8
11.d odd 10 4 121.4.c.f 8
12.b even 2 1 1584.4.a.bc 2
13.b even 2 1 1859.4.a.a 2
15.d odd 2 1 2475.4.a.q 2
33.d even 2 1 1089.4.a.v 2
44.c even 2 1 1936.4.a.w 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.4.a.a 2 1.a even 1 1 trivial
99.4.a.c 2 3.b odd 2 1
121.4.a.c 2 11.b odd 2 1
121.4.c.c 8 11.c even 5 4
121.4.c.f 8 11.d odd 10 4
176.4.a.i 2 4.b odd 2 1
275.4.a.b 2 5.b even 2 1
275.4.b.c 4 5.c odd 4 2
539.4.a.e 2 7.b odd 2 1
704.4.a.n 2 8.d odd 2 1
704.4.a.p 2 8.b even 2 1
1089.4.a.v 2 33.d even 2 1
1584.4.a.bc 2 12.b even 2 1
1859.4.a.a 2 13.b even 2 1
1936.4.a.w 2 44.c even 2 1
2475.4.a.q 2 15.d odd 2 1

Hecke kernels

This newform subspace is the entire newspace S4new(Γ0(11))S_{4}^{\mathrm{new}}(\Gamma_0(11)).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T22T2 T^{2} - 2T - 2 Copy content Toggle raw display
33 T2+2T47 T^{2} + 2T - 47 Copy content Toggle raw display
55 T22T191 T^{2} - 2T - 191 Copy content Toggle raw display
77 T220T+52 T^{2} - 20T + 52 Copy content Toggle raw display
1111 (T+11)2 (T + 11)^{2} Copy content Toggle raw display
1313 T280T+400 T^{2} - 80T + 400 Copy content Toggle raw display
1717 T2+124T+3412 T^{2} + 124T + 3412 Copy content Toggle raw display
1919 T272T9504 T^{2} - 72T - 9504 Copy content Toggle raw display
2323 T2+98T1487 T^{2} + 98T - 1487 Copy content Toggle raw display
2929 T2144T4224 T^{2} - 144T - 4224 Copy content Toggle raw display
3131 T2+34T2063 T^{2} + 34T - 2063 Copy content Toggle raw display
3737 T254T+537 T^{2} - 54T + 537 Copy content Toggle raw display
4141 T2536T+71776 T^{2} - 536T + 71776 Copy content Toggle raw display
4343 T2+60T+132 T^{2} + 60T + 132 Copy content Toggle raw display
4747 T2+272T24704 T^{2} + 272T - 24704 Copy content Toggle raw display
5353 T2+492T+51108 T^{2} + 492T + 51108 Copy content Toggle raw display
5959 T2634T+48217 T^{2} - 634T + 48217 Copy content Toggle raw display
6161 T2840T+74832 T^{2} - 840T + 74832 Copy content Toggle raw display
6767 T2754T+140929 T^{2} - 754T + 140929 Copy content Toggle raw display
7171 T2+678T+97593 T^{2} + 678T + 97593 Copy content Toggle raw display
7373 T2+400T617072 T^{2} + 400T - 617072 Copy content Toggle raw display
7979 T2316T1266044 T^{2} - 316 T - 1266044 Copy content Toggle raw display
8383 T2468T+11556 T^{2} - 468T + 11556 Copy content Toggle raw display
8989 T2+1842T+525489 T^{2} + 1842 T + 525489 Copy content Toggle raw display
9797 T22194T+1141201 T^{2} - 2194 T + 1141201 Copy content Toggle raw display
show more
show less