Properties

Label 11.4
Level 11
Weight 4
Dimension 10
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 40
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 11 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(40\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(11))\).

Total New Old
Modular forms 20 18 2
Cusp forms 10 10 0
Eisenstein series 10 8 2

Trace form

\( 10 q - 5 q^{2} - 5 q^{3} - 5 q^{4} - 5 q^{5} - 55 q^{6} - 15 q^{7} + 35 q^{8} + 75 q^{9} + 90 q^{10} + 45 q^{11} + 150 q^{12} + 15 q^{13} - 200 q^{14} - 315 q^{15} - 385 q^{16} - 155 q^{17} - 10 q^{18}+ \cdots + 1615 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
11.4.a \(\chi_{11}(1, \cdot)\) 11.4.a.a 2 1
11.4.c \(\chi_{11}(3, \cdot)\) 11.4.c.a 8 4