# Properties

 Label 11.4.a.a Level $11$ Weight $4$ Character orbit 11.a Self dual yes Analytic conductor $0.649$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [11,4,Mod(1,11)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(11, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("11.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$11$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 11.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$0.649021010063$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - 3$$ x^2 - 3 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{3}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\beta + 1) q^{2} + ( - 4 \beta - 1) q^{3} + (2 \beta - 4) q^{4} + (8 \beta + 1) q^{5} + ( - 5 \beta - 13) q^{6} + ( - 4 \beta + 10) q^{7} + ( - 10 \beta - 6) q^{8} + (8 \beta + 22) q^{9}+O(q^{10})$$ q + (b + 1) * q^2 + (-4*b - 1) * q^3 + (2*b - 4) * q^4 + (8*b + 1) * q^5 + (-5*b - 13) * q^6 + (-4*b + 10) * q^7 + (-10*b - 6) * q^8 + (8*b + 22) * q^9 $$q + (\beta + 1) q^{2} + ( - 4 \beta - 1) q^{3} + (2 \beta - 4) q^{4} + (8 \beta + 1) q^{5} + ( - 5 \beta - 13) q^{6} + ( - 4 \beta + 10) q^{7} + ( - 10 \beta - 6) q^{8} + (8 \beta + 22) q^{9} + (9 \beta + 25) q^{10} - 11 q^{11} + (14 \beta - 20) q^{12} + ( - 20 \beta + 40) q^{13} + (6 \beta - 2) q^{14} + ( - 12 \beta - 97) q^{15} + ( - 32 \beta - 4) q^{16} + (12 \beta - 62) q^{17} + (30 \beta + 46) q^{18} + (60 \beta + 36) q^{19} + ( - 30 \beta + 44) q^{20} + ( - 36 \beta + 38) q^{21} + ( - 11 \beta - 11) q^{22} + ( - 36 \beta - 49) q^{23} + (34 \beta + 126) q^{24} + (16 \beta + 68) q^{25} + (20 \beta - 20) q^{26} + (12 \beta - 91) q^{27} + (36 \beta - 64) q^{28} + ( - 56 \beta + 72) q^{29} + ( - 109 \beta - 133) q^{30} + (28 \beta - 17) q^{31} + (44 \beta - 52) q^{32} + (44 \beta + 11) q^{33} + ( - 50 \beta - 26) q^{34} + (76 \beta - 86) q^{35} + (12 \beta - 40) q^{36} + ( - 8 \beta + 27) q^{37} + (96 \beta + 216) q^{38} + ( - 140 \beta + 200) q^{39} + ( - 58 \beta - 246) q^{40} + ( - 4 \beta + 268) q^{41} + (2 \beta - 70) q^{42} + ( - 16 \beta - 30) q^{43} + ( - 22 \beta + 44) q^{44} + (184 \beta + 214) q^{45} + ( - 85 \beta - 157) q^{46} + ( - 120 \beta - 136) q^{47} + (48 \beta + 388) q^{48} + ( - 80 \beta - 195) q^{49} + (84 \beta + 116) q^{50} + (236 \beta - 82) q^{51} + (160 \beta - 280) q^{52} + ( - 56 \beta - 246) q^{53} + ( - 79 \beta - 55) q^{54} + ( - 88 \beta - 11) q^{55} + ( - 76 \beta + 60) q^{56} + ( - 204 \beta - 756) q^{57} + (16 \beta - 96) q^{58} + ( - 132 \beta + 317) q^{59} + ( - 146 \beta + 316) q^{60} + (184 \beta + 420) q^{61} + (11 \beta + 67) q^{62} + ( - 8 \beta + 124) q^{63} + (248 \beta + 112) q^{64} + (300 \beta - 440) q^{65} + (55 \beta + 143) q^{66} + ( - 20 \beta + 377) q^{67} + ( - 172 \beta + 320) q^{68} + (232 \beta + 481) q^{69} + ( - 10 \beta + 142) q^{70} + (76 \beta - 339) q^{71} + ( - 268 \beta - 372) q^{72} + ( - 468 \beta - 200) q^{73} + (19 \beta + 3) q^{74} + ( - 288 \beta - 260) q^{75} + ( - 168 \beta + 216) q^{76} + (44 \beta - 110) q^{77} + (60 \beta - 220) q^{78} + (656 \beta + 158) q^{79} + ( - 64 \beta - 772) q^{80} + (136 \beta - 647) q^{81} + (264 \beta + 256) q^{82} + (120 \beta + 234) q^{83} + (220 \beta - 368) q^{84} + ( - 484 \beta + 226) q^{85} + ( - 46 \beta - 78) q^{86} + ( - 232 \beta + 600) q^{87} + (110 \beta + 66) q^{88} + ( - 328 \beta - 921) q^{89} + (398 \beta + 766) q^{90} + ( - 360 \beta + 640) q^{91} + (46 \beta - 20) q^{92} + (40 \beta - 319) q^{93} + ( - 256 \beta - 496) q^{94} + (348 \beta + 1476) q^{95} + (164 \beta - 476) q^{96} + (144 \beta + 1097) q^{97} + ( - 275 \beta - 435) q^{98} + ( - 88 \beta - 242) q^{99}+O(q^{100})$$ q + (b + 1) * q^2 + (-4*b - 1) * q^3 + (2*b - 4) * q^4 + (8*b + 1) * q^5 + (-5*b - 13) * q^6 + (-4*b + 10) * q^7 + (-10*b - 6) * q^8 + (8*b + 22) * q^9 + (9*b + 25) * q^10 - 11 * q^11 + (14*b - 20) * q^12 + (-20*b + 40) * q^13 + (6*b - 2) * q^14 + (-12*b - 97) * q^15 + (-32*b - 4) * q^16 + (12*b - 62) * q^17 + (30*b + 46) * q^18 + (60*b + 36) * q^19 + (-30*b + 44) * q^20 + (-36*b + 38) * q^21 + (-11*b - 11) * q^22 + (-36*b - 49) * q^23 + (34*b + 126) * q^24 + (16*b + 68) * q^25 + (20*b - 20) * q^26 + (12*b - 91) * q^27 + (36*b - 64) * q^28 + (-56*b + 72) * q^29 + (-109*b - 133) * q^30 + (28*b - 17) * q^31 + (44*b - 52) * q^32 + (44*b + 11) * q^33 + (-50*b - 26) * q^34 + (76*b - 86) * q^35 + (12*b - 40) * q^36 + (-8*b + 27) * q^37 + (96*b + 216) * q^38 + (-140*b + 200) * q^39 + (-58*b - 246) * q^40 + (-4*b + 268) * q^41 + (2*b - 70) * q^42 + (-16*b - 30) * q^43 + (-22*b + 44) * q^44 + (184*b + 214) * q^45 + (-85*b - 157) * q^46 + (-120*b - 136) * q^47 + (48*b + 388) * q^48 + (-80*b - 195) * q^49 + (84*b + 116) * q^50 + (236*b - 82) * q^51 + (160*b - 280) * q^52 + (-56*b - 246) * q^53 + (-79*b - 55) * q^54 + (-88*b - 11) * q^55 + (-76*b + 60) * q^56 + (-204*b - 756) * q^57 + (16*b - 96) * q^58 + (-132*b + 317) * q^59 + (-146*b + 316) * q^60 + (184*b + 420) * q^61 + (11*b + 67) * q^62 + (-8*b + 124) * q^63 + (248*b + 112) * q^64 + (300*b - 440) * q^65 + (55*b + 143) * q^66 + (-20*b + 377) * q^67 + (-172*b + 320) * q^68 + (232*b + 481) * q^69 + (-10*b + 142) * q^70 + (76*b - 339) * q^71 + (-268*b - 372) * q^72 + (-468*b - 200) * q^73 + (19*b + 3) * q^74 + (-288*b - 260) * q^75 + (-168*b + 216) * q^76 + (44*b - 110) * q^77 + (60*b - 220) * q^78 + (656*b + 158) * q^79 + (-64*b - 772) * q^80 + (136*b - 647) * q^81 + (264*b + 256) * q^82 + (120*b + 234) * q^83 + (220*b - 368) * q^84 + (-484*b + 226) * q^85 + (-46*b - 78) * q^86 + (-232*b + 600) * q^87 + (110*b + 66) * q^88 + (-328*b - 921) * q^89 + (398*b + 766) * q^90 + (-360*b + 640) * q^91 + (46*b - 20) * q^92 + (40*b - 319) * q^93 + (-256*b - 496) * q^94 + (348*b + 1476) * q^95 + (164*b - 476) * q^96 + (144*b + 1097) * q^97 + (-275*b - 435) * q^98 + (-88*b - 242) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{2} - 2 q^{3} - 8 q^{4} + 2 q^{5} - 26 q^{6} + 20 q^{7} - 12 q^{8} + 44 q^{9}+O(q^{10})$$ 2 * q + 2 * q^2 - 2 * q^3 - 8 * q^4 + 2 * q^5 - 26 * q^6 + 20 * q^7 - 12 * q^8 + 44 * q^9 $$2 q + 2 q^{2} - 2 q^{3} - 8 q^{4} + 2 q^{5} - 26 q^{6} + 20 q^{7} - 12 q^{8} + 44 q^{9} + 50 q^{10} - 22 q^{11} - 40 q^{12} + 80 q^{13} - 4 q^{14} - 194 q^{15} - 8 q^{16} - 124 q^{17} + 92 q^{18} + 72 q^{19} + 88 q^{20} + 76 q^{21} - 22 q^{22} - 98 q^{23} + 252 q^{24} + 136 q^{25} - 40 q^{26} - 182 q^{27} - 128 q^{28} + 144 q^{29} - 266 q^{30} - 34 q^{31} - 104 q^{32} + 22 q^{33} - 52 q^{34} - 172 q^{35} - 80 q^{36} + 54 q^{37} + 432 q^{38} + 400 q^{39} - 492 q^{40} + 536 q^{41} - 140 q^{42} - 60 q^{43} + 88 q^{44} + 428 q^{45} - 314 q^{46} - 272 q^{47} + 776 q^{48} - 390 q^{49} + 232 q^{50} - 164 q^{51} - 560 q^{52} - 492 q^{53} - 110 q^{54} - 22 q^{55} + 120 q^{56} - 1512 q^{57} - 192 q^{58} + 634 q^{59} + 632 q^{60} + 840 q^{61} + 134 q^{62} + 248 q^{63} + 224 q^{64} - 880 q^{65} + 286 q^{66} + 754 q^{67} + 640 q^{68} + 962 q^{69} + 284 q^{70} - 678 q^{71} - 744 q^{72} - 400 q^{73} + 6 q^{74} - 520 q^{75} + 432 q^{76} - 220 q^{77} - 440 q^{78} + 316 q^{79} - 1544 q^{80} - 1294 q^{81} + 512 q^{82} + 468 q^{83} - 736 q^{84} + 452 q^{85} - 156 q^{86} + 1200 q^{87} + 132 q^{88} - 1842 q^{89} + 1532 q^{90} + 1280 q^{91} - 40 q^{92} - 638 q^{93} - 992 q^{94} + 2952 q^{95} - 952 q^{96} + 2194 q^{97} - 870 q^{98} - 484 q^{99}+O(q^{100})$$ 2 * q + 2 * q^2 - 2 * q^3 - 8 * q^4 + 2 * q^5 - 26 * q^6 + 20 * q^7 - 12 * q^8 + 44 * q^9 + 50 * q^10 - 22 * q^11 - 40 * q^12 + 80 * q^13 - 4 * q^14 - 194 * q^15 - 8 * q^16 - 124 * q^17 + 92 * q^18 + 72 * q^19 + 88 * q^20 + 76 * q^21 - 22 * q^22 - 98 * q^23 + 252 * q^24 + 136 * q^25 - 40 * q^26 - 182 * q^27 - 128 * q^28 + 144 * q^29 - 266 * q^30 - 34 * q^31 - 104 * q^32 + 22 * q^33 - 52 * q^34 - 172 * q^35 - 80 * q^36 + 54 * q^37 + 432 * q^38 + 400 * q^39 - 492 * q^40 + 536 * q^41 - 140 * q^42 - 60 * q^43 + 88 * q^44 + 428 * q^45 - 314 * q^46 - 272 * q^47 + 776 * q^48 - 390 * q^49 + 232 * q^50 - 164 * q^51 - 560 * q^52 - 492 * q^53 - 110 * q^54 - 22 * q^55 + 120 * q^56 - 1512 * q^57 - 192 * q^58 + 634 * q^59 + 632 * q^60 + 840 * q^61 + 134 * q^62 + 248 * q^63 + 224 * q^64 - 880 * q^65 + 286 * q^66 + 754 * q^67 + 640 * q^68 + 962 * q^69 + 284 * q^70 - 678 * q^71 - 744 * q^72 - 400 * q^73 + 6 * q^74 - 520 * q^75 + 432 * q^76 - 220 * q^77 - 440 * q^78 + 316 * q^79 - 1544 * q^80 - 1294 * q^81 + 512 * q^82 + 468 * q^83 - 736 * q^84 + 452 * q^85 - 156 * q^86 + 1200 * q^87 + 132 * q^88 - 1842 * q^89 + 1532 * q^90 + 1280 * q^91 - 40 * q^92 - 638 * q^93 - 992 * q^94 + 2952 * q^95 - 952 * q^96 + 2194 * q^97 - 870 * q^98 - 484 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.73205 1.73205
−0.732051 5.92820 −7.46410 −12.8564 −4.33975 16.9282 11.3205 8.14359 9.41154
1.2 2.73205 −7.92820 −0.535898 14.8564 −21.6603 3.07180 −23.3205 35.8564 40.5885
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$11$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 11.4.a.a 2
3.b odd 2 1 99.4.a.c 2
4.b odd 2 1 176.4.a.i 2
5.b even 2 1 275.4.a.b 2
5.c odd 4 2 275.4.b.c 4
7.b odd 2 1 539.4.a.e 2
8.b even 2 1 704.4.a.p 2
8.d odd 2 1 704.4.a.n 2
11.b odd 2 1 121.4.a.c 2
11.c even 5 4 121.4.c.c 8
11.d odd 10 4 121.4.c.f 8
12.b even 2 1 1584.4.a.bc 2
13.b even 2 1 1859.4.a.a 2
15.d odd 2 1 2475.4.a.q 2
33.d even 2 1 1089.4.a.v 2
44.c even 2 1 1936.4.a.w 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.4.a.a 2 1.a even 1 1 trivial
99.4.a.c 2 3.b odd 2 1
121.4.a.c 2 11.b odd 2 1
121.4.c.c 8 11.c even 5 4
121.4.c.f 8 11.d odd 10 4
176.4.a.i 2 4.b odd 2 1
275.4.a.b 2 5.b even 2 1
275.4.b.c 4 5.c odd 4 2
539.4.a.e 2 7.b odd 2 1
704.4.a.n 2 8.d odd 2 1
704.4.a.p 2 8.b even 2 1
1089.4.a.v 2 33.d even 2 1
1584.4.a.bc 2 12.b even 2 1
1859.4.a.a 2 13.b even 2 1
1936.4.a.w 2 44.c even 2 1
2475.4.a.q 2 15.d odd 2 1

## Hecke kernels

This newform subspace is the entire newspace $$S_{4}^{\mathrm{new}}(\Gamma_0(11))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} - 2T - 2$$
$3$ $$T^{2} + 2T - 47$$
$5$ $$T^{2} - 2T - 191$$
$7$ $$T^{2} - 20T + 52$$
$11$ $$(T + 11)^{2}$$
$13$ $$T^{2} - 80T + 400$$
$17$ $$T^{2} + 124T + 3412$$
$19$ $$T^{2} - 72T - 9504$$
$23$ $$T^{2} + 98T - 1487$$
$29$ $$T^{2} - 144T - 4224$$
$31$ $$T^{2} + 34T - 2063$$
$37$ $$T^{2} - 54T + 537$$
$41$ $$T^{2} - 536T + 71776$$
$43$ $$T^{2} + 60T + 132$$
$47$ $$T^{2} + 272T - 24704$$
$53$ $$T^{2} + 492T + 51108$$
$59$ $$T^{2} - 634T + 48217$$
$61$ $$T^{2} - 840T + 74832$$
$67$ $$T^{2} - 754T + 140929$$
$71$ $$T^{2} + 678T + 97593$$
$73$ $$T^{2} + 400T - 617072$$
$79$ $$T^{2} - 316 T - 1266044$$
$83$ $$T^{2} - 468T + 11556$$
$89$ $$T^{2} + 1842 T + 525489$$
$97$ $$T^{2} - 2194 T + 1141201$$