Properties

Label 1089.4.a.v
Level $1089$
Weight $4$
Character orbit 1089.a
Self dual yes
Analytic conductor $64.253$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1089,4,Mod(1,1089)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1089.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1089, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1089.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,-8,-2,0,-20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.2530799963\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 1) q^{2} + (2 \beta - 4) q^{4} + ( - 8 \beta - 1) q^{5} + (4 \beta - 10) q^{7} + ( - 10 \beta - 6) q^{8} + ( - 9 \beta - 25) q^{10} + (20 \beta - 40) q^{13} + ( - 6 \beta + 2) q^{14} + ( - 32 \beta - 4) q^{16}+ \cdots + ( - 275 \beta - 435) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 8 q^{4} - 2 q^{5} - 20 q^{7} - 12 q^{8} - 50 q^{10} - 80 q^{13} + 4 q^{14} - 8 q^{16} - 124 q^{17} - 72 q^{19} - 88 q^{20} + 98 q^{23} + 136 q^{25} + 40 q^{26} + 128 q^{28} + 144 q^{29}+ \cdots - 870 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
−0.732051 0 −7.46410 12.8564 0 −16.9282 11.3205 0 −9.41154
1.2 2.73205 0 −0.535898 −14.8564 0 −3.07180 −23.3205 0 −40.5885
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1089.4.a.v 2
3.b odd 2 1 121.4.a.c 2
11.b odd 2 1 99.4.a.c 2
12.b even 2 1 1936.4.a.w 2
33.d even 2 1 11.4.a.a 2
33.f even 10 4 121.4.c.c 8
33.h odd 10 4 121.4.c.f 8
44.c even 2 1 1584.4.a.bc 2
55.d odd 2 1 2475.4.a.q 2
132.d odd 2 1 176.4.a.i 2
165.d even 2 1 275.4.a.b 2
165.l odd 4 2 275.4.b.c 4
231.h odd 2 1 539.4.a.e 2
264.m even 2 1 704.4.a.p 2
264.p odd 2 1 704.4.a.n 2
429.e even 2 1 1859.4.a.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
11.4.a.a 2 33.d even 2 1
99.4.a.c 2 11.b odd 2 1
121.4.a.c 2 3.b odd 2 1
121.4.c.c 8 33.f even 10 4
121.4.c.f 8 33.h odd 10 4
176.4.a.i 2 132.d odd 2 1
275.4.a.b 2 165.d even 2 1
275.4.b.c 4 165.l odd 4 2
539.4.a.e 2 231.h odd 2 1
704.4.a.n 2 264.p odd 2 1
704.4.a.p 2 264.m even 2 1
1089.4.a.v 2 1.a even 1 1 trivial
1584.4.a.bc 2 44.c even 2 1
1859.4.a.a 2 429.e even 2 1
1936.4.a.w 2 12.b even 2 1
2475.4.a.q 2 55.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1089))\):

\( T_{2}^{2} - 2T_{2} - 2 \) Copy content Toggle raw display
\( T_{5}^{2} + 2T_{5} - 191 \) Copy content Toggle raw display
\( T_{7}^{2} + 20T_{7} + 52 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 2T - 2 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 2T - 191 \) Copy content Toggle raw display
$7$ \( T^{2} + 20T + 52 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 80T + 400 \) Copy content Toggle raw display
$17$ \( T^{2} + 124T + 3412 \) Copy content Toggle raw display
$19$ \( T^{2} + 72T - 9504 \) Copy content Toggle raw display
$23$ \( T^{2} - 98T - 1487 \) Copy content Toggle raw display
$29$ \( T^{2} - 144T - 4224 \) Copy content Toggle raw display
$31$ \( T^{2} + 34T - 2063 \) Copy content Toggle raw display
$37$ \( T^{2} - 54T + 537 \) Copy content Toggle raw display
$41$ \( T^{2} - 536T + 71776 \) Copy content Toggle raw display
$43$ \( T^{2} - 60T + 132 \) Copy content Toggle raw display
$47$ \( T^{2} - 272T - 24704 \) Copy content Toggle raw display
$53$ \( T^{2} - 492T + 51108 \) Copy content Toggle raw display
$59$ \( T^{2} + 634T + 48217 \) Copy content Toggle raw display
$61$ \( T^{2} + 840T + 74832 \) Copy content Toggle raw display
$67$ \( T^{2} - 754T + 140929 \) Copy content Toggle raw display
$71$ \( T^{2} - 678T + 97593 \) Copy content Toggle raw display
$73$ \( T^{2} - 400T - 617072 \) Copy content Toggle raw display
$79$ \( T^{2} + 316 T - 1266044 \) Copy content Toggle raw display
$83$ \( T^{2} - 468T + 11556 \) Copy content Toggle raw display
$89$ \( T^{2} - 1842 T + 525489 \) Copy content Toggle raw display
$97$ \( T^{2} - 2194 T + 1141201 \) Copy content Toggle raw display
show more
show less