Properties

Label 1080.4.q.b.361.1
Level $1080$
Weight $4$
Character 1080.361
Analytic conductor $63.722$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1080,4,Mod(361,1080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1080.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1080, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1080.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,40,0,-34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(63.7220628062\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 16 x^{14} + 14 x^{13} - 284 x^{12} + 764 x^{11} + 19770 x^{10} + 55106 x^{9} + \cdots + 193472540143 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{14} \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(2.04823 + 5.08932i\) of defining polynomial
Character \(\chi\) \(=\) 1080.361
Dual form 1080.4.q.b.721.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.50000 - 4.33013i) q^{5} +(-17.3532 - 30.0566i) q^{7} +(-13.7375 - 23.7941i) q^{11} +(33.0855 - 57.3058i) q^{13} -58.2319 q^{17} +106.853 q^{19} +(10.3464 - 17.9205i) q^{23} +(-12.5000 - 21.6506i) q^{25} +(-95.7760 - 165.889i) q^{29} +(117.666 - 203.804i) q^{31} -173.532 q^{35} -63.4389 q^{37} +(115.337 - 199.769i) q^{41} +(202.677 + 351.048i) q^{43} +(252.504 + 437.350i) q^{47} +(-430.766 + 746.109i) q^{49} -693.794 q^{53} -137.375 q^{55} +(-218.818 + 379.004i) q^{59} +(-287.707 - 498.323i) q^{61} +(-165.428 - 286.529i) q^{65} +(351.378 - 608.604i) q^{67} -238.922 q^{71} +661.982 q^{73} +(-476.780 + 825.808i) q^{77} +(-288.259 - 499.279i) q^{79} +(625.483 + 1083.37i) q^{83} +(-145.580 + 252.152i) q^{85} -402.160 q^{89} -2296.56 q^{91} +(267.133 - 462.689i) q^{95} +(409.278 + 708.891i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 40 q^{5} - 34 q^{7} + 64 q^{11} - 48 q^{13} - 212 q^{17} + 456 q^{19} + 166 q^{23} - 200 q^{25} + 110 q^{29} - 160 q^{31} - 340 q^{35} + 104 q^{37} + 280 q^{41} + 136 q^{43} + 594 q^{47} - 1094 q^{49}+ \cdots + 182 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.50000 4.33013i 0.223607 0.387298i
\(6\) 0 0
\(7\) −17.3532 30.0566i −0.936984 1.62290i −0.771057 0.636766i \(-0.780272\pi\)
−0.165927 0.986138i \(-0.553062\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −13.7375 23.7941i −0.376548 0.652200i 0.614010 0.789298i \(-0.289556\pi\)
−0.990557 + 0.137099i \(0.956222\pi\)
\(12\) 0 0
\(13\) 33.0855 57.3058i 0.705867 1.22260i −0.260511 0.965471i \(-0.583891\pi\)
0.966378 0.257126i \(-0.0827756\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −58.2319 −0.830783 −0.415392 0.909643i \(-0.636355\pi\)
−0.415392 + 0.909643i \(0.636355\pi\)
\(18\) 0 0
\(19\) 106.853 1.29020 0.645101 0.764097i \(-0.276815\pi\)
0.645101 + 0.764097i \(0.276815\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 10.3464 17.9205i 0.0937990 0.162465i −0.815308 0.579028i \(-0.803432\pi\)
0.909107 + 0.416563i \(0.136766\pi\)
\(24\) 0 0
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −95.7760 165.889i −0.613281 1.06223i −0.990683 0.136185i \(-0.956516\pi\)
0.377402 0.926049i \(-0.376817\pi\)
\(30\) 0 0
\(31\) 117.666 203.804i 0.681727 1.18079i −0.292727 0.956196i \(-0.594563\pi\)
0.974454 0.224589i \(-0.0721040\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −173.532 −0.838064
\(36\) 0 0
\(37\) −63.4389 −0.281873 −0.140936 0.990019i \(-0.545011\pi\)
−0.140936 + 0.990019i \(0.545011\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 115.337 199.769i 0.439330 0.760942i −0.558308 0.829634i \(-0.688549\pi\)
0.997638 + 0.0686916i \(0.0218824\pi\)
\(42\) 0 0
\(43\) 202.677 + 351.048i 0.718791 + 1.24498i 0.961479 + 0.274879i \(0.0886377\pi\)
−0.242688 + 0.970104i \(0.578029\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 252.504 + 437.350i 0.783650 + 1.35732i 0.929803 + 0.368059i \(0.119977\pi\)
−0.146153 + 0.989262i \(0.546689\pi\)
\(48\) 0 0
\(49\) −430.766 + 746.109i −1.25588 + 2.17525i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −693.794 −1.79811 −0.899056 0.437833i \(-0.855746\pi\)
−0.899056 + 0.437833i \(0.855746\pi\)
\(54\) 0 0
\(55\) −137.375 −0.336794
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −218.818 + 379.004i −0.482843 + 0.836308i −0.999806 0.0196995i \(-0.993729\pi\)
0.516963 + 0.856008i \(0.327062\pi\)
\(60\) 0 0
\(61\) −287.707 498.323i −0.603886 1.04596i −0.992226 0.124446i \(-0.960285\pi\)
0.388340 0.921516i \(-0.373049\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −165.428 286.529i −0.315673 0.546762i
\(66\) 0 0
\(67\) 351.378 608.604i 0.640711 1.10974i −0.344563 0.938763i \(-0.611973\pi\)
0.985274 0.170981i \(-0.0546937\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −238.922 −0.399363 −0.199682 0.979861i \(-0.563991\pi\)
−0.199682 + 0.979861i \(0.563991\pi\)
\(72\) 0 0
\(73\) 661.982 1.06136 0.530679 0.847573i \(-0.321937\pi\)
0.530679 + 0.847573i \(0.321937\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −476.780 + 825.808i −0.705638 + 1.22220i
\(78\) 0 0
\(79\) −288.259 499.279i −0.410527 0.711054i 0.584420 0.811451i \(-0.301322\pi\)
−0.994947 + 0.100397i \(0.967989\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 625.483 + 1083.37i 0.827177 + 1.43271i 0.900244 + 0.435386i \(0.143388\pi\)
−0.0730664 + 0.997327i \(0.523279\pi\)
\(84\) 0 0
\(85\) −145.580 + 252.152i −0.185769 + 0.321761i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −402.160 −0.478976 −0.239488 0.970899i \(-0.576980\pi\)
−0.239488 + 0.970899i \(0.576980\pi\)
\(90\) 0 0
\(91\) −2296.56 −2.64554
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 267.133 462.689i 0.288498 0.499693i
\(96\) 0 0
\(97\) 409.278 + 708.891i 0.428411 + 0.742030i 0.996732 0.0807768i \(-0.0257401\pi\)
−0.568321 + 0.822807i \(0.692407\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −222.832 385.956i −0.219530 0.380238i 0.735134 0.677922i \(-0.237119\pi\)
−0.954665 + 0.297684i \(0.903786\pi\)
\(102\) 0 0
\(103\) −9.19756 + 15.9306i −0.00879867 + 0.0152397i −0.870391 0.492361i \(-0.836134\pi\)
0.861593 + 0.507601i \(0.169467\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1649.12 −1.48997 −0.744985 0.667082i \(-0.767543\pi\)
−0.744985 + 0.667082i \(0.767543\pi\)
\(108\) 0 0
\(109\) 588.802 0.517404 0.258702 0.965957i \(-0.416705\pi\)
0.258702 + 0.965957i \(0.416705\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 248.491 430.400i 0.206868 0.358306i −0.743858 0.668337i \(-0.767006\pi\)
0.950726 + 0.310031i \(0.100340\pi\)
\(114\) 0 0
\(115\) −51.7321 89.6026i −0.0419482 0.0726564i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1010.51 + 1750.25i 0.778431 + 1.34828i
\(120\) 0 0
\(121\) 288.060 498.935i 0.216424 0.374857i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 666.725 0.465844 0.232922 0.972495i \(-0.425171\pi\)
0.232922 + 0.972495i \(0.425171\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −433.896 + 751.530i −0.289387 + 0.501232i −0.973663 0.227990i \(-0.926785\pi\)
0.684277 + 0.729222i \(0.260118\pi\)
\(132\) 0 0
\(133\) −1854.25 3211.65i −1.20890 2.09388i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 697.909 + 1208.81i 0.435229 + 0.753839i 0.997314 0.0732406i \(-0.0233341\pi\)
−0.562085 + 0.827079i \(0.690001\pi\)
\(138\) 0 0
\(139\) −536.221 + 928.762i −0.327206 + 0.566738i −0.981956 0.189107i \(-0.939441\pi\)
0.654750 + 0.755845i \(0.272774\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1818.05 −1.06317
\(144\) 0 0
\(145\) −957.760 −0.548535
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1075.01 1861.98i 0.591064 1.02375i −0.403026 0.915189i \(-0.632042\pi\)
0.994090 0.108564i \(-0.0346251\pi\)
\(150\) 0 0
\(151\) −936.168 1621.49i −0.504532 0.873874i −0.999986 0.00524048i \(-0.998332\pi\)
0.495455 0.868634i \(-0.335001\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −588.332 1019.02i −0.304877 0.528063i
\(156\) 0 0
\(157\) −692.805 + 1199.97i −0.352178 + 0.609989i −0.986631 0.162972i \(-0.947892\pi\)
0.634453 + 0.772961i \(0.281225\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −718.174 −0.351553
\(162\) 0 0
\(163\) 141.709 0.0680950 0.0340475 0.999420i \(-0.489160\pi\)
0.0340475 + 0.999420i \(0.489160\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −405.399 + 702.171i −0.187849 + 0.325363i −0.944533 0.328417i \(-0.893485\pi\)
0.756684 + 0.653781i \(0.226818\pi\)
\(168\) 0 0
\(169\) −1090.80 1889.32i −0.496496 0.859955i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −670.032 1160.53i −0.294460 0.510020i 0.680399 0.732842i \(-0.261807\pi\)
−0.974859 + 0.222822i \(0.928473\pi\)
\(174\) 0 0
\(175\) −433.830 + 751.415i −0.187397 + 0.324581i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2401.28 1.00268 0.501341 0.865250i \(-0.332840\pi\)
0.501341 + 0.865250i \(0.332840\pi\)
\(180\) 0 0
\(181\) −3779.56 −1.55211 −0.776056 0.630664i \(-0.782783\pi\)
−0.776056 + 0.630664i \(0.782783\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −158.597 + 274.699i −0.0630287 + 0.109169i
\(186\) 0 0
\(187\) 799.963 + 1385.58i 0.312830 + 0.541837i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −790.438 1369.08i −0.299445 0.518655i 0.676564 0.736384i \(-0.263468\pi\)
−0.976009 + 0.217729i \(0.930135\pi\)
\(192\) 0 0
\(193\) −686.848 + 1189.65i −0.256168 + 0.443695i −0.965212 0.261468i \(-0.915793\pi\)
0.709044 + 0.705164i \(0.249127\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 719.881 0.260352 0.130176 0.991491i \(-0.458446\pi\)
0.130176 + 0.991491i \(0.458446\pi\)
\(198\) 0 0
\(199\) −3171.51 −1.12976 −0.564880 0.825173i \(-0.691077\pi\)
−0.564880 + 0.825173i \(0.691077\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3324.04 + 5757.40i −1.14927 + 1.99059i
\(204\) 0 0
\(205\) −576.683 998.844i −0.196474 0.340304i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1467.90 2542.48i −0.485823 0.841470i
\(210\) 0 0
\(211\) −559.827 + 969.648i −0.182654 + 0.316367i −0.942784 0.333405i \(-0.891802\pi\)
0.760129 + 0.649772i \(0.225136\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2026.77 0.642907
\(216\) 0 0
\(217\) −8167.56 −2.55507
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1926.63 + 3337.03i −0.586422 + 1.01571i
\(222\) 0 0
\(223\) −1104.78 1913.53i −0.331754 0.574616i 0.651101 0.758991i \(-0.274307\pi\)
−0.982856 + 0.184375i \(0.940974\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2005.00 + 3472.76i 0.586240 + 1.01540i 0.994720 + 0.102631i \(0.0327260\pi\)
−0.408479 + 0.912768i \(0.633941\pi\)
\(228\) 0 0
\(229\) −89.0792 + 154.290i −0.0257053 + 0.0445229i −0.878592 0.477573i \(-0.841516\pi\)
0.852887 + 0.522096i \(0.174850\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −573.057 −0.161125 −0.0805627 0.996750i \(-0.525672\pi\)
−0.0805627 + 0.996750i \(0.525672\pi\)
\(234\) 0 0
\(235\) 2525.04 0.700917
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 775.518 1343.24i 0.209892 0.363543i −0.741789 0.670634i \(-0.766022\pi\)
0.951680 + 0.307091i \(0.0993555\pi\)
\(240\) 0 0
\(241\) 687.731 + 1191.18i 0.183820 + 0.318386i 0.943178 0.332287i \(-0.107820\pi\)
−0.759358 + 0.650673i \(0.774487\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2153.83 + 3730.55i 0.561646 + 0.972800i
\(246\) 0 0
\(247\) 3535.30 6123.32i 0.910711 1.57740i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1043.09 0.262309 0.131155 0.991362i \(-0.458132\pi\)
0.131155 + 0.991362i \(0.458132\pi\)
\(252\) 0 0
\(253\) −568.537 −0.141279
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2096.54 + 3631.32i −0.508866 + 0.881382i 0.491081 + 0.871114i \(0.336602\pi\)
−0.999947 + 0.0102684i \(0.996731\pi\)
\(258\) 0 0
\(259\) 1100.87 + 1906.76i 0.264110 + 0.457453i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2172.64 + 3763.12i 0.509393 + 0.882295i 0.999941 + 0.0108807i \(0.00346351\pi\)
−0.490547 + 0.871415i \(0.663203\pi\)
\(264\) 0 0
\(265\) −1734.49 + 3004.22i −0.402070 + 0.696406i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2993.79 −0.678567 −0.339284 0.940684i \(-0.610185\pi\)
−0.339284 + 0.940684i \(0.610185\pi\)
\(270\) 0 0
\(271\) 7757.79 1.73894 0.869469 0.493987i \(-0.164461\pi\)
0.869469 + 0.493987i \(0.164461\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −343.438 + 594.853i −0.0753095 + 0.130440i
\(276\) 0 0
\(277\) 3698.00 + 6405.12i 0.802134 + 1.38934i 0.918209 + 0.396096i \(0.129635\pi\)
−0.116075 + 0.993240i \(0.537031\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −1964.10 3401.92i −0.416969 0.722212i 0.578664 0.815566i \(-0.303574\pi\)
−0.995633 + 0.0933546i \(0.970241\pi\)
\(282\) 0 0
\(283\) 479.285 830.146i 0.100673 0.174371i −0.811289 0.584645i \(-0.801234\pi\)
0.911962 + 0.410274i \(0.134567\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8005.83 −1.64658
\(288\) 0 0
\(289\) −1522.04 −0.309799
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1994.24 3454.12i 0.397627 0.688709i −0.595806 0.803128i \(-0.703167\pi\)
0.993433 + 0.114419i \(0.0365006\pi\)
\(294\) 0 0
\(295\) 1094.09 + 1895.02i 0.215934 + 0.374008i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −684.633 1185.82i −0.132419 0.229357i
\(300\) 0 0
\(301\) 7034.20 12183.6i 1.34699 2.33306i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2877.07 −0.540132
\(306\) 0 0
\(307\) −778.464 −0.144721 −0.0723604 0.997379i \(-0.523053\pi\)
−0.0723604 + 0.997379i \(0.523053\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −601.630 + 1042.05i −0.109695 + 0.189998i −0.915647 0.401984i \(-0.868321\pi\)
0.805951 + 0.591982i \(0.201654\pi\)
\(312\) 0 0
\(313\) −4766.23 8255.35i −0.860713 1.49080i −0.871242 0.490853i \(-0.836685\pi\)
0.0105296 0.999945i \(-0.496648\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3766.10 6523.08i −0.667272 1.15575i −0.978664 0.205468i \(-0.934128\pi\)
0.311392 0.950282i \(-0.399205\pi\)
\(318\) 0 0
\(319\) −2631.45 + 4557.81i −0.461859 + 0.799964i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −6222.28 −1.07188
\(324\) 0 0
\(325\) −1654.28 −0.282347
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 8763.51 15178.8i 1.46853 2.54358i
\(330\) 0 0
\(331\) 5814.22 + 10070.5i 0.965494 + 1.67228i 0.708282 + 0.705930i \(0.249471\pi\)
0.257212 + 0.966355i \(0.417196\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1756.89 3043.02i −0.286535 0.496293i
\(336\) 0 0
\(337\) −972.879 + 1685.08i −0.157258 + 0.272380i −0.933879 0.357589i \(-0.883599\pi\)
0.776621 + 0.629969i \(0.216932\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6465.79 −1.02681
\(342\) 0 0
\(343\) 17996.4 2.83299
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6029.45 10443.3i 0.932790 1.61564i 0.154261 0.988030i \(-0.450700\pi\)
0.778529 0.627609i \(-0.215966\pi\)
\(348\) 0 0
\(349\) −3570.73 6184.69i −0.547670 0.948593i −0.998434 0.0559492i \(-0.982182\pi\)
0.450763 0.892643i \(-0.351152\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 4966.00 + 8601.36i 0.748763 + 1.29690i 0.948416 + 0.317029i \(0.102685\pi\)
−0.199653 + 0.979867i \(0.563982\pi\)
\(354\) 0 0
\(355\) −597.304 + 1034.56i −0.0893003 + 0.154673i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −603.288 −0.0886918 −0.0443459 0.999016i \(-0.514120\pi\)
−0.0443459 + 0.999016i \(0.514120\pi\)
\(360\) 0 0
\(361\) 4558.65 0.664622
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1654.95 2866.46i 0.237327 0.411062i
\(366\) 0 0
\(367\) 3530.10 + 6114.32i 0.502098 + 0.869659i 0.999997 + 0.00242403i \(0.000771594\pi\)
−0.497899 + 0.867235i \(0.665895\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 12039.5 + 20853.1i 1.68480 + 2.91816i
\(372\) 0 0
\(373\) 2535.97 4392.42i 0.352030 0.609734i −0.634575 0.772862i \(-0.718825\pi\)
0.986605 + 0.163127i \(0.0521580\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −12675.2 −1.73158
\(378\) 0 0
\(379\) −2562.11 −0.347247 −0.173624 0.984812i \(-0.555548\pi\)
−0.173624 + 0.984812i \(0.555548\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2984.06 5168.54i 0.398116 0.689556i −0.595378 0.803446i \(-0.702998\pi\)
0.993493 + 0.113889i \(0.0363310\pi\)
\(384\) 0 0
\(385\) 2383.90 + 4129.04i 0.315571 + 0.546585i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1273.43 + 2205.64i 0.165978 + 0.287482i 0.937002 0.349324i \(-0.113589\pi\)
−0.771024 + 0.636806i \(0.780255\pi\)
\(390\) 0 0
\(391\) −602.492 + 1043.55i −0.0779267 + 0.134973i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2882.59 −0.367187
\(396\) 0 0
\(397\) 426.226 0.0538833 0.0269416 0.999637i \(-0.491423\pi\)
0.0269416 + 0.999637i \(0.491423\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3109.37 5385.59i 0.387219 0.670682i −0.604856 0.796335i \(-0.706769\pi\)
0.992074 + 0.125653i \(0.0401025\pi\)
\(402\) 0 0
\(403\) −7786.11 13485.9i −0.962416 1.66695i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 871.495 + 1509.47i 0.106139 + 0.183837i
\(408\) 0 0
\(409\) 3063.37 5305.91i 0.370352 0.641468i −0.619268 0.785180i \(-0.712571\pi\)
0.989620 + 0.143712i \(0.0459039\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 15188.8 1.80966
\(414\) 0 0
\(415\) 6254.83 0.739850
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6463.81 11195.7i 0.753647 1.30535i −0.192398 0.981317i \(-0.561626\pi\)
0.946044 0.324037i \(-0.105040\pi\)
\(420\) 0 0
\(421\) 6959.45 + 12054.1i 0.805660 + 1.39544i 0.915845 + 0.401532i \(0.131522\pi\)
−0.110185 + 0.993911i \(0.535144\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 727.899 + 1260.76i 0.0830783 + 0.143896i
\(426\) 0 0
\(427\) −9985.26 + 17295.0i −1.13166 + 1.96010i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 262.768 0.0293668 0.0146834 0.999892i \(-0.495326\pi\)
0.0146834 + 0.999892i \(0.495326\pi\)
\(432\) 0 0
\(433\) 4163.66 0.462108 0.231054 0.972941i \(-0.425783\pi\)
0.231054 + 0.972941i \(0.425783\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1105.55 1914.87i 0.121020 0.209612i
\(438\) 0 0
\(439\) 5439.92 + 9422.22i 0.591419 + 1.02437i 0.994042 + 0.109002i \(0.0347656\pi\)
−0.402622 + 0.915366i \(0.631901\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2561.71 4437.02i −0.274742 0.475867i 0.695328 0.718693i \(-0.255259\pi\)
−0.970070 + 0.242825i \(0.921926\pi\)
\(444\) 0 0
\(445\) −1005.40 + 1741.40i −0.107102 + 0.185507i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6313.23 0.663562 0.331781 0.943356i \(-0.392350\pi\)
0.331781 + 0.943356i \(0.392350\pi\)
\(450\) 0 0
\(451\) −6337.76 −0.661715
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −5741.39 + 9944.38i −0.591562 + 1.02461i
\(456\) 0 0
\(457\) −4900.19 8487.37i −0.501578 0.868758i −0.999998 0.00182282i \(-0.999420\pi\)
0.498421 0.866935i \(-0.333914\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8163.20 + 14139.1i 0.824724 + 1.42846i 0.902130 + 0.431465i \(0.142003\pi\)
−0.0774052 + 0.997000i \(0.524664\pi\)
\(462\) 0 0
\(463\) −4251.04 + 7363.01i −0.426701 + 0.739067i −0.996578 0.0826628i \(-0.973658\pi\)
0.569877 + 0.821730i \(0.306991\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −705.493 −0.0699065 −0.0349532 0.999389i \(-0.511128\pi\)
−0.0349532 + 0.999389i \(0.511128\pi\)
\(468\) 0 0
\(469\) −24390.1 −2.40134
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5568.58 9645.06i 0.541318 0.937591i
\(474\) 0 0
\(475\) −1335.67 2313.44i −0.129020 0.223470i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 3412.92 + 5911.35i 0.325554 + 0.563876i 0.981624 0.190824i \(-0.0611159\pi\)
−0.656071 + 0.754700i \(0.727783\pi\)
\(480\) 0 0
\(481\) −2098.91 + 3635.42i −0.198965 + 0.344617i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4092.78 0.383183
\(486\) 0 0
\(487\) 11052.2 1.02839 0.514193 0.857675i \(-0.328092\pi\)
0.514193 + 0.857675i \(0.328092\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3093.91 5358.80i 0.284371 0.492545i −0.688086 0.725630i \(-0.741549\pi\)
0.972456 + 0.233085i \(0.0748820\pi\)
\(492\) 0 0
\(493\) 5577.22 + 9660.03i 0.509504 + 0.882487i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4146.05 + 7181.17i 0.374197 + 0.648128i
\(498\) 0 0
\(499\) 8156.64 14127.7i 0.731746 1.26742i −0.224390 0.974499i \(-0.572039\pi\)
0.956136 0.292922i \(-0.0946278\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −8648.39 −0.766625 −0.383313 0.923619i \(-0.625217\pi\)
−0.383313 + 0.923619i \(0.625217\pi\)
\(504\) 0 0
\(505\) −2228.32 −0.196354
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2937.25 5087.47i 0.255779 0.443022i −0.709328 0.704879i \(-0.751001\pi\)
0.965107 + 0.261857i \(0.0843348\pi\)
\(510\) 0 0
\(511\) −11487.5 19896.9i −0.994475 1.72248i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 45.9878 + 79.6532i 0.00393488 + 0.00681542i
\(516\) 0 0
\(517\) 6937.57 12016.2i 0.590163 1.02219i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −8851.73 −0.744340 −0.372170 0.928164i \(-0.621386\pi\)
−0.372170 + 0.928164i \(0.621386\pi\)
\(522\) 0 0
\(523\) 6699.71 0.560149 0.280075 0.959978i \(-0.409641\pi\)
0.280075 + 0.959978i \(0.409641\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −6851.95 + 11867.9i −0.566367 + 0.980977i
\(528\) 0 0
\(529\) 5869.40 + 10166.1i 0.482403 + 0.835547i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −7631.93 13218.9i −0.620217 1.07425i
\(534\) 0 0
\(535\) −4122.81 + 7140.91i −0.333167 + 0.577063i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 23670.7 1.89159
\(540\) 0 0
\(541\) 2595.30 0.206249 0.103124 0.994668i \(-0.467116\pi\)
0.103124 + 0.994668i \(0.467116\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1472.01 2549.59i 0.115695 0.200390i
\(546\) 0 0
\(547\) 279.236 + 483.650i 0.0218268 + 0.0378051i 0.876732 0.480978i \(-0.159718\pi\)
−0.854906 + 0.518783i \(0.826385\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −10234.0 17725.8i −0.791257 1.37050i
\(552\) 0 0
\(553\) −10004.4 + 17328.2i −0.769315 + 1.33249i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5151.52 0.391880 0.195940 0.980616i \(-0.437224\pi\)
0.195940 + 0.980616i \(0.437224\pi\)
\(558\) 0 0
\(559\) 26822.7 2.02948
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 8901.70 15418.2i 0.666362 1.15417i −0.312552 0.949901i \(-0.601184\pi\)
0.978914 0.204272i \(-0.0654827\pi\)
\(564\) 0 0
\(565\) −1242.46 2152.00i −0.0925142 0.160239i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −4694.29 8130.75i −0.345861 0.599049i 0.639649 0.768667i \(-0.279080\pi\)
−0.985510 + 0.169618i \(0.945747\pi\)
\(570\) 0 0
\(571\) 4928.34 8536.13i 0.361199 0.625614i −0.626960 0.779052i \(-0.715701\pi\)
0.988158 + 0.153437i \(0.0490343\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −517.321 −0.0375196
\(576\) 0 0
\(577\) 12115.4 0.874126 0.437063 0.899431i \(-0.356019\pi\)
0.437063 + 0.899431i \(0.356019\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 21708.3 37599.8i 1.55010 2.68486i
\(582\) 0 0
\(583\) 9531.02 + 16508.2i 0.677075 + 1.17273i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12384.1 + 21449.8i 0.870775 + 1.50823i 0.861197 + 0.508272i \(0.169716\pi\)
0.00957831 + 0.999954i \(0.496951\pi\)
\(588\) 0 0
\(589\) 12573.1 21777.2i 0.879565 1.52345i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6341.37 0.439138 0.219569 0.975597i \(-0.429535\pi\)
0.219569 + 0.975597i \(0.429535\pi\)
\(594\) 0 0
\(595\) 10105.1 0.696250
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 9280.18 16073.7i 0.633018 1.09642i −0.353914 0.935278i \(-0.615149\pi\)
0.986931 0.161141i \(-0.0515174\pi\)
\(600\) 0 0
\(601\) −3194.27 5532.63i −0.216800 0.375509i 0.737028 0.675862i \(-0.236229\pi\)
−0.953828 + 0.300354i \(0.902895\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1440.30 2494.67i −0.0967877 0.167641i
\(606\) 0 0
\(607\) −11744.6 + 20342.2i −0.785334 + 1.36024i 0.143466 + 0.989655i \(0.454175\pi\)
−0.928800 + 0.370582i \(0.879158\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 33416.9 2.21261
\(612\) 0 0
\(613\) −13134.2 −0.865389 −0.432694 0.901541i \(-0.642437\pi\)
−0.432694 + 0.901541i \(0.642437\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −7625.20 + 13207.2i −0.497535 + 0.861756i −0.999996 0.00284411i \(-0.999095\pi\)
0.502461 + 0.864600i \(0.332428\pi\)
\(618\) 0 0
\(619\) −11117.1 19255.4i −0.721865 1.25031i −0.960252 0.279136i \(-0.909952\pi\)
0.238387 0.971170i \(-0.423381\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6978.76 + 12087.6i 0.448793 + 0.777332i
\(624\) 0 0
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3694.17 0.234175
\(630\) 0 0
\(631\) −24006.1 −1.51453 −0.757265 0.653108i \(-0.773465\pi\)
−0.757265 + 0.653108i \(0.773465\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1666.81 2887.00i 0.104166 0.180421i
\(636\) 0 0
\(637\) 28504.2 + 49370.8i 1.77297 + 3.07087i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5888.32 10198.9i −0.362831 0.628442i 0.625594 0.780148i \(-0.284856\pi\)
−0.988426 + 0.151707i \(0.951523\pi\)
\(642\) 0 0
\(643\) 11862.2 20545.9i 0.727525 1.26011i −0.230401 0.973096i \(-0.574004\pi\)
0.957926 0.287015i \(-0.0926629\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −14545.5 −0.883839 −0.441919 0.897055i \(-0.645702\pi\)
−0.441919 + 0.897055i \(0.645702\pi\)
\(648\) 0 0
\(649\) 12024.1 0.727253
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −686.969 + 1189.86i −0.0411687 + 0.0713063i −0.885876 0.463923i \(-0.846441\pi\)
0.844707 + 0.535229i \(0.179775\pi\)
\(654\) 0 0
\(655\) 2169.48 + 3757.65i 0.129418 + 0.224158i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −296.323 513.246i −0.0175161 0.0303387i 0.857135 0.515093i \(-0.172242\pi\)
−0.874651 + 0.484754i \(0.838909\pi\)
\(660\) 0 0
\(661\) −7955.53 + 13779.4i −0.468130 + 0.810826i −0.999337 0.0364168i \(-0.988406\pi\)
0.531206 + 0.847243i \(0.321739\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −18542.5 −1.08127
\(666\) 0 0
\(667\) −3963.75 −0.230101
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −7904.76 + 13691.5i −0.454784 + 0.787709i
\(672\) 0 0
\(673\) 499.218 + 864.670i 0.0285935 + 0.0495254i 0.879968 0.475033i \(-0.157564\pi\)
−0.851375 + 0.524558i \(0.824231\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −4873.92 8441.88i −0.276691 0.479243i 0.693869 0.720101i \(-0.255905\pi\)
−0.970560 + 0.240858i \(0.922571\pi\)
\(678\) 0 0
\(679\) 14204.6 24603.0i 0.802829 1.39054i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −18314.6 −1.02605 −0.513023 0.858375i \(-0.671474\pi\)
−0.513023 + 0.858375i \(0.671474\pi\)
\(684\) 0 0
\(685\) 6979.09 0.389281
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −22954.5 + 39758.4i −1.26923 + 2.19837i
\(690\) 0 0
\(691\) −5800.22 10046.3i −0.319321 0.553080i 0.661026 0.750363i \(-0.270121\pi\)
−0.980347 + 0.197283i \(0.936788\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2681.11 + 4643.81i 0.146331 + 0.253453i
\(696\) 0 0
\(697\) −6716.27 + 11632.9i −0.364988 + 0.632178i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −28849.1 −1.55438 −0.777188 0.629269i \(-0.783354\pi\)
−0.777188 + 0.629269i \(0.783354\pi\)
\(702\) 0 0
\(703\) −6778.67 −0.363673
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −7733.68 + 13395.1i −0.411393 + 0.712554i
\(708\) 0 0
\(709\) −15505.1 26855.6i −0.821304 1.42254i −0.904711 0.426025i \(-0.859913\pi\)
0.0834070 0.996516i \(-0.473420\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2434.85 4217.29i −0.127891 0.221513i
\(714\) 0 0
\(715\) −4545.13 + 7872.40i −0.237732 + 0.411764i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3437.02 0.178275 0.0891373 0.996019i \(-0.471589\pi\)
0.0891373 + 0.996019i \(0.471589\pi\)
\(720\) 0 0
\(721\) 638.428 0.0329768
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2394.40 + 4147.22i −0.122656 + 0.212447i
\(726\) 0 0
\(727\) 8217.94 + 14233.9i 0.419239 + 0.726143i 0.995863 0.0908665i \(-0.0289637\pi\)
−0.576624 + 0.817009i \(0.695630\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −11802.3 20442.2i −0.597160 1.03431i
\(732\) 0 0
\(733\) 13548.4 23466.6i 0.682705 1.18248i −0.291447 0.956587i \(-0.594137\pi\)
0.974152 0.225893i \(-0.0725298\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −19308.3 −0.965033
\(738\) 0 0
\(739\) 9125.36 0.454238 0.227119 0.973867i \(-0.427069\pi\)
0.227119 + 0.973867i \(0.427069\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1754.29 + 3038.52i −0.0866201 + 0.150030i −0.906080 0.423106i \(-0.860940\pi\)
0.819460 + 0.573136i \(0.194273\pi\)
\(744\) 0 0
\(745\) −5375.06 9309.88i −0.264332 0.457836i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 28617.5 + 49567.0i 1.39608 + 2.41808i
\(750\) 0 0
\(751\) −1514.80 + 2623.71i −0.0736029 + 0.127484i −0.900478 0.434902i \(-0.856783\pi\)
0.826875 + 0.562386i \(0.190116\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −9361.68 −0.451267
\(756\) 0 0
\(757\) 22804.0 1.09488 0.547441 0.836845i \(-0.315602\pi\)
0.547441 + 0.836845i \(0.315602\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7377.18 12777.6i 0.351409 0.608659i −0.635087 0.772440i \(-0.719036\pi\)
0.986497 + 0.163782i \(0.0523693\pi\)
\(762\) 0 0
\(763\) −10217.6 17697.4i −0.484799 0.839697i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 14479.4 + 25079.1i 0.681645 + 1.18064i
\(768\) 0 0
\(769\) −9006.49 + 15599.7i −0.422344 + 0.731520i −0.996168 0.0874577i \(-0.972126\pi\)
0.573825 + 0.818978i \(0.305459\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 24820.4 1.15489 0.577445 0.816430i \(-0.304050\pi\)
0.577445 + 0.816430i \(0.304050\pi\)
\(774\) 0 0
\(775\) −5883.32 −0.272691
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12324.1 21346.0i 0.566825 0.981770i
\(780\) 0 0
\(781\) 3282.19 + 5684.93i 0.150379 + 0.260464i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3464.03 + 5999.87i 0.157499 + 0.272796i
\(786\) 0 0
\(787\) −18283.1 + 31667.2i −0.828109 + 1.43433i 0.0714116 + 0.997447i \(0.477250\pi\)
−0.899520 + 0.436879i \(0.856084\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −17248.5 −0.775329
\(792\) 0 0
\(793\) −38075.7 −1.70505
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −21278.7 + 36855.7i −0.945707 + 1.63801i −0.191378 + 0.981516i \(0.561296\pi\)
−0.754329 + 0.656497i \(0.772038\pi\)
\(798\) 0 0
\(799\) −14703.8 25467.7i −0.651043 1.12764i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −9094.00 15751.3i −0.399652 0.692217i
\(804\) 0 0
\(805\) −1795.43 + 3109.78i −0.0786096 + 0.136156i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −25817.9 −1.12201 −0.561007 0.827811i \(-0.689586\pi\)
−0.561007 + 0.827811i \(0.689586\pi\)
\(810\) 0 0
\(811\) 19818.9 0.858120 0.429060 0.903276i \(-0.358845\pi\)
0.429060 + 0.903276i \(0.358845\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 354.272 613.617i 0.0152265 0.0263731i
\(816\) 0 0
\(817\) 21656.8 + 37510.6i 0.927386 + 1.60628i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 11389.6 + 19727.4i 0.484166 + 0.838600i 0.999835 0.0181878i \(-0.00578968\pi\)
−0.515668 + 0.856788i \(0.672456\pi\)
\(822\) 0 0
\(823\) −7234.48 + 12530.5i −0.306413 + 0.530723i −0.977575 0.210588i \(-0.932462\pi\)
0.671162 + 0.741311i \(0.265796\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −21163.1 −0.889858 −0.444929 0.895566i \(-0.646771\pi\)
−0.444929 + 0.895566i \(0.646771\pi\)
\(828\) 0 0
\(829\) −1919.89 −0.0804348 −0.0402174 0.999191i \(-0.512805\pi\)
−0.0402174 + 0.999191i \(0.512805\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 25084.4 43447.4i 1.04336 1.80716i
\(834\) 0 0
\(835\) 2026.99 + 3510.86i 0.0840084 + 0.145507i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −17590.9 30468.4i −0.723845 1.25374i −0.959448 0.281887i \(-0.909040\pi\)
0.235603 0.971849i \(-0.424294\pi\)
\(840\) 0 0
\(841\) −6151.58 + 10654.9i −0.252228 + 0.436871i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −10908.0 −0.444079
\(846\) 0 0
\(847\) −19995.0 −0.811143
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −656.366 + 1136.86i −0.0264394 + 0.0457944i
\(852\) 0 0
\(853\) 3310.95 + 5734.73i 0.132901 + 0.230192i 0.924794 0.380469i \(-0.124237\pi\)
−0.791893 + 0.610660i \(0.790904\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −21840.3 37828.5i −0.870538 1.50782i −0.861441 0.507857i \(-0.830438\pi\)
−0.00909673 0.999959i \(-0.502896\pi\)
\(858\) 0 0
\(859\) 7842.56 13583.7i 0.311507 0.539546i −0.667182 0.744895i \(-0.732500\pi\)
0.978689 + 0.205349i \(0.0658329\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 38263.8 1.50929 0.754643 0.656135i \(-0.227810\pi\)
0.754643 + 0.656135i \(0.227810\pi\)
\(864\) 0 0
\(865\) −6700.32 −0.263373
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −7919.94 + 13717.7i −0.309166 + 0.535492i
\(870\) 0 0
\(871\) −23251.0 40272.0i −0.904513 1.56666i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2169.15 + 3757.08i 0.0838064 + 0.145157i
\(876\) 0 0
\(877\) 18834.7 32622.6i 0.725201 1.25609i −0.233690 0.972311i \(-0.575080\pi\)
0.958891 0.283774i \(-0.0915867\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1945.38 0.0743945 0.0371972 0.999308i \(-0.488157\pi\)
0.0371972 + 0.999308i \(0.488157\pi\)
\(882\) 0 0
\(883\) −48739.4 −1.85754 −0.928772 0.370653i \(-0.879134\pi\)
−0.928772 + 0.370653i \(0.879134\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −12886.8 + 22320.6i −0.487820 + 0.844928i −0.999902 0.0140080i \(-0.995541\pi\)
0.512082 + 0.858936i \(0.328874\pi\)
\(888\) 0 0
\(889\) −11569.8 20039.5i −0.436489 0.756021i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 26980.9 + 46732.3i 1.01107 + 1.75122i
\(894\) 0 0
\(895\) 6003.20 10397.8i 0.224206 0.388337i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −45078.5 −1.67236
\(900\) 0 0
\(901\) 40401.0 1.49384
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9448.89 + 16366.0i −0.347063 + 0.601130i
\(906\) 0 0
\(907\) 2842.92 + 4924.08i 0.104077 + 0.180266i 0.913361 0.407152i \(-0.133478\pi\)
−0.809284 + 0.587418i \(0.800145\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −19342.8 33502.7i −0.703463 1.21843i −0.967243 0.253852i \(-0.918303\pi\)
0.263780 0.964583i \(-0.415031\pi\)
\(912\) 0 0
\(913\) 17185.2 29765.6i 0.622943 1.07897i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 30117.9 1.08460
\(918\) 0 0
\(919\) −22903.7 −0.822115 −0.411057 0.911609i \(-0.634840\pi\)
−0.411057 + 0.911609i \(0.634840\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −7904.84 + 13691.6i −0.281897 + 0.488260i
\(924\) 0 0
\(925\) 792.987 + 1373.49i 0.0281873 + 0.0488218i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −19361.3 33534.8i −0.683773 1.18433i −0.973821 0.227317i \(-0.927005\pi\)
0.290048 0.957012i \(-0.406329\pi\)
\(930\) 0 0
\(931\) −46028.9 + 79724.3i −1.62034 + 2.80651i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 7999.63 0.279803
\(936\) 0 0
\(937\) −24777.8 −0.863879 −0.431940 0.901903i \(-0.642171\pi\)
−0.431940 + 0.901903i \(0.642171\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −12059.3 + 20887.4i −0.417772 + 0.723602i −0.995715 0.0924747i \(-0.970522\pi\)
0.577943 + 0.816077i \(0.303856\pi\)
\(942\) 0 0
\(943\) −2386.64 4133.78i −0.0824175 0.142751i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −13793.3 23890.7i −0.473307 0.819791i 0.526226 0.850345i \(-0.323606\pi\)
−0.999533 + 0.0305531i \(0.990273\pi\)
\(948\) 0 0
\(949\) 21902.0 37935.4i 0.749177 1.29761i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 17641.7 0.599654 0.299827 0.953994i \(-0.403071\pi\)
0.299827 + 0.953994i \(0.403071\pi\)
\(954\) 0 0
\(955\) −7904.38 −0.267832
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 24221.9 41953.5i 0.815605 1.41267i
\(960\) 0 0
\(961\) −12795.3 22162.1i −0.429503 0.743920i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3434.24 + 5948.27i 0.114562 + 0.198427i
\(966\) 0 0
\(967\) 13075.9 22648.1i 0.434843 0.753169i −0.562440 0.826838i \(-0.690137\pi\)
0.997283 + 0.0736685i \(0.0234707\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −6455.27 −0.213347 −0.106673 0.994294i \(-0.534020\pi\)
−0.106673 + 0.994294i \(0.534020\pi\)
\(972\) 0 0
\(973\) 37220.6 1.22635
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −4569.07 + 7913.86i −0.149619 + 0.259147i −0.931087 0.364798i \(-0.881138\pi\)
0.781468 + 0.623945i \(0.214471\pi\)
\(978\) 0 0
\(979\) 5524.69 + 9569.04i 0.180357 + 0.312388i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −7207.09 12483.0i −0.233846 0.405033i 0.725091 0.688653i \(-0.241798\pi\)
−0.958937 + 0.283620i \(0.908464\pi\)
\(984\) 0 0
\(985\) 1799.70 3117.18i 0.0582165 0.100834i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8387.95 0.269688
\(990\) 0 0
\(991\) 6347.11 0.203454 0.101727 0.994812i \(-0.467563\pi\)
0.101727 + 0.994812i \(0.467563\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −7928.77 + 13733.0i −0.252622 + 0.437554i
\(996\) 0 0
\(997\) −18183.0 31493.9i −0.577595 1.00042i −0.995754 0.0920507i \(-0.970658\pi\)
0.418159 0.908374i \(-0.362676\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1080.4.q.b.361.1 16
3.2 odd 2 360.4.q.b.121.6 16
9.2 odd 6 360.4.q.b.241.6 yes 16
9.7 even 3 inner 1080.4.q.b.721.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.4.q.b.121.6 16 3.2 odd 2
360.4.q.b.241.6 yes 16 9.2 odd 6
1080.4.q.b.361.1 16 1.1 even 1 trivial
1080.4.q.b.721.1 16 9.7 even 3 inner