Properties

Label 1080.4
Level 1080
Weight 4
Dimension 37824
Nonzero newspaces 27
Sturm bound 248832
Trace bound 22

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 27 \)
Sturm bound: \(248832\)
Trace bound: \(22\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1080))\).

Total New Old
Modular forms 94752 38208 56544
Cusp forms 91872 37824 54048
Eisenstein series 2880 384 2496

Trace form

\( 37824 q - 16 q^{2} - 24 q^{3} - 28 q^{4} - 10 q^{5} - 72 q^{6} - 76 q^{7} - 28 q^{8} - 48 q^{9} + 30 q^{10} - 120 q^{11} - 24 q^{12} - 12 q^{13} + 116 q^{14} + 96 q^{15} + 36 q^{16} + 420 q^{17} - 24 q^{18}+ \cdots + 7596 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1080))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1080.4.a \(\chi_{1080}(1, \cdot)\) 1080.4.a.a 2 1
1080.4.a.b 2
1080.4.a.c 3
1080.4.a.d 3
1080.4.a.e 3
1080.4.a.f 3
1080.4.a.g 3
1080.4.a.h 3
1080.4.a.i 3
1080.4.a.j 3
1080.4.a.k 3
1080.4.a.l 3
1080.4.a.m 3
1080.4.a.n 3
1080.4.a.o 4
1080.4.a.p 4
1080.4.b \(\chi_{1080}(971, \cdot)\) n/a 192 1
1080.4.d \(\chi_{1080}(109, \cdot)\) n/a 288 1
1080.4.f \(\chi_{1080}(649, \cdot)\) 1080.4.f.a 16 1
1080.4.f.b 18
1080.4.f.c 18
1080.4.f.d 20
1080.4.h \(\chi_{1080}(431, \cdot)\) None 0 1
1080.4.k \(\chi_{1080}(541, \cdot)\) n/a 192 1
1080.4.m \(\chi_{1080}(539, \cdot)\) n/a 288 1
1080.4.o \(\chi_{1080}(1079, \cdot)\) None 0 1
1080.4.q \(\chi_{1080}(361, \cdot)\) 1080.4.q.a 2 2
1080.4.q.b 16
1080.4.q.c 16
1080.4.q.d 18
1080.4.q.e 20
1080.4.s \(\chi_{1080}(377, \cdot)\) n/a 144 2
1080.4.t \(\chi_{1080}(487, \cdot)\) None 0 2
1080.4.w \(\chi_{1080}(163, \cdot)\) n/a 576 2
1080.4.x \(\chi_{1080}(53, \cdot)\) n/a 576 2
1080.4.bb \(\chi_{1080}(359, \cdot)\) None 0 2
1080.4.bd \(\chi_{1080}(179, \cdot)\) n/a 424 2
1080.4.bf \(\chi_{1080}(181, \cdot)\) n/a 288 2
1080.4.bg \(\chi_{1080}(71, \cdot)\) None 0 2
1080.4.bi \(\chi_{1080}(289, \cdot)\) n/a 108 2
1080.4.bk \(\chi_{1080}(469, \cdot)\) n/a 424 2
1080.4.bm \(\chi_{1080}(251, \cdot)\) n/a 288 2
1080.4.bo \(\chi_{1080}(121, \cdot)\) n/a 648 6
1080.4.bp \(\chi_{1080}(307, \cdot)\) n/a 848 4
1080.4.bs \(\chi_{1080}(197, \cdot)\) n/a 848 4
1080.4.bt \(\chi_{1080}(17, \cdot)\) n/a 216 4
1080.4.bw \(\chi_{1080}(127, \cdot)\) None 0 4
1080.4.bx \(\chi_{1080}(59, \cdot)\) n/a 3864 6
1080.4.cc \(\chi_{1080}(61, \cdot)\) n/a 2592 6
1080.4.cd \(\chi_{1080}(119, \cdot)\) None 0 6
1080.4.cg \(\chi_{1080}(49, \cdot)\) n/a 972 6
1080.4.ch \(\chi_{1080}(11, \cdot)\) n/a 2592 6
1080.4.ci \(\chi_{1080}(191, \cdot)\) None 0 6
1080.4.cj \(\chi_{1080}(229, \cdot)\) n/a 3864 6
1080.4.co \(\chi_{1080}(77, \cdot)\) n/a 7728 12
1080.4.cp \(\chi_{1080}(7, \cdot)\) None 0 12
1080.4.cs \(\chi_{1080}(113, \cdot)\) n/a 1944 12
1080.4.ct \(\chi_{1080}(43, \cdot)\) n/a 7728 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1080))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1080)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 32}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 24}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 24}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 18}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(108))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(120))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(135))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(180))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(216))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(270))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(360))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(540))\)\(^{\oplus 2}\)