| L(s) = 1 | + (2.5 − 4.33i)5-s + (−17.3 − 30.0i)7-s + (−13.7 − 23.7i)11-s + (33.0 − 57.3i)13-s − 58.2·17-s + 106.·19-s + (10.3 − 17.9i)23-s + (−12.5 − 21.6i)25-s + (−95.7 − 165. i)29-s + (117. − 203. i)31-s − 173.·35-s − 63.4·37-s + (115. − 199. i)41-s + (202. + 351. i)43-s + (252. + 437. i)47-s + ⋯ |
| L(s) = 1 | + (0.223 − 0.387i)5-s + (−0.936 − 1.62i)7-s + (−0.376 − 0.652i)11-s + (0.705 − 1.22i)13-s − 0.830·17-s + 1.29·19-s + (0.0937 − 0.162i)23-s + (−0.100 − 0.173i)25-s + (−0.613 − 1.06i)29-s + (0.681 − 1.18i)31-s − 0.838·35-s − 0.281·37-s + (0.439 − 0.760i)41-s + (0.718 + 1.24i)43-s + (0.783 + 1.35i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.989 - 0.145i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.989 - 0.145i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.254719024\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.254719024\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2.5 + 4.33i)T \) |
| good | 7 | \( 1 + (17.3 + 30.0i)T + (-171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (13.7 + 23.7i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-33.0 + 57.3i)T + (-1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 + 58.2T + 4.91e3T^{2} \) |
| 19 | \( 1 - 106.T + 6.85e3T^{2} \) |
| 23 | \( 1 + (-10.3 + 17.9i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (95.7 + 165. i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-117. + 203. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + 63.4T + 5.06e4T^{2} \) |
| 41 | \( 1 + (-115. + 199. i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-202. - 351. i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + (-252. - 437. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + 693.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (218. - 379. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (287. + 498. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-351. + 608. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 238.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 661.T + 3.89e5T^{2} \) |
| 79 | \( 1 + (288. + 499. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + (-625. - 1.08e3i)T + (-2.85e5 + 4.95e5i)T^{2} \) |
| 89 | \( 1 + 402.T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-409. - 708. i)T + (-4.56e5 + 7.90e5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.327946325436140434522252747140, −7.966568781959159223327906410076, −7.62783084931477164365431409089, −6.39712343683377955259125931652, −5.82179869787264011695105924835, −4.58252349811680132929763977854, −3.67354689167919820124764839824, −2.83108532575864570532583092188, −1.02573074435147117870745669416, −0.34824048138637673589025697095,
1.70801675192981595812604754706, 2.64841020078929928465014025651, 3.54277145316023656090223400798, 4.91344285642718079732794497138, 5.74229475767109365046999745780, 6.58396881263063859754896264586, 7.19948299667819453756126237298, 8.574466925814882874461039918843, 9.154824377085213458528219169152, 9.699667054381893478774209120553